check_numerical_variables#
check_numerical_variables()
checks that the variables in the list are of
type numerical.
Let’s create a toy dataset with numerical, categorical and datetime variables:
import pandas as pd
df = pd.DataFrame({
"Name": ["tom", "nick", "krish", "jack"],
"City": ["London", "Manchester", "Liverpool", "Bristol"],
"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],
"dob": pd.date_range("2020-02-24", periods=4, freq="T"),
})
print(df.head())
We see the resulting dataframe below:
Name City Age Marks dob
0 tom London 20 0.9 2020-02-24 00:00:00
1 nick Manchester 21 0.8 2020-02-24 00:01:00
2 krish Liverpool 19 0.7 2020-02-24 00:02:00
3 jack Bristol 18 0.6 2020-02-24 00:03:00
Let’s now check that 2 of the variables are of type numerical:
from feature_engine.variable_handling import check_numerical_variables
var_num = check_numerical_variables(df, ['Age', 'Marks'])
var_num
If the variables are numerical, the function returns their names in a list:
['Age', 'Marks']
If we pass a variable that is not of type numerical,
check_numerical_variables()
will return an error:
check_numerical_variables(df, ['Age', 'Name'])
Below we see the error message:
TypeError: Some of the variables are not numerical. Please cast them as numerical
before using this transformer.