check_all_variables#
With check_all_variables()
we can check that the variables in a list are
present in the dataframe.
Let’s create a toy dataset with numerical, categorical and datetime variables:
import pandas as pd
from sklearn.datasets import make_classification
X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,
)
# transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)
X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000
X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000
print(X.head())
We see the resulting dataframe below:
num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye
2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye
date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24
We can use check_all_variables()
with a list of variable names to verify that
the variables in the list are in the dataframe.
from feature_engine.variable_handling import check_all_variables
checked_vars = check_all_variables(X, ["num_var_1", "cat_var1", "date1"])
checked_vars
The output is the list of variable names passed to the function:
['num_var_1', 'cat_var1', 'date1']
If we pass the name of a variable that is not in the dataframe, check_all_variables()
will return an error:
check_all_variables(X, ["hola", "cat_var1", "date1"])
Below we see the error message:
KeyError: 'Some of the variables are not in the dataframe.'