find_or_check_datetime_variables#
With find_or_check_datetime_variables()
you can automatically capture in a list
the names of all datetime variables in a dataset, whether they are parsed as datetime
or object.
Let’s create a toy dataset with numerical, categorical and datetime variables:
import pandas as pd
from sklearn.datasets import make_classification
X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,
)
# transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)
X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000
X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000
print(X.head())
We see the resulting dataframe below:
num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye
2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye
date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24
The dataframe has 3 datetime variables, two of them are of type datetime and one of type object.
We can now use find_or_check_datetime_variables()
to capture all datetime variables
regardless of their data type. So let’s do that and then display the list:
from feature_engine.variable_handling import find_or_check_datetime_variables
var_date = find_or_check_datetime_variables(X)
var_date
Below we see the variable names in the list:
['date1', 'date2', 'date3']
Note that find_or_check_datetime_variables()
captures all 3 datetime variables.
The first 2 are of type datetime, whereas the third variable is of type object. But as it
can be parsed as datetime, it will be captured in the list as well.
We can also corroborate that a list of variables can be parsed as datetime as follows:
var_date = find_or_check_datetime_variables(X, ["date2", "date3"])
var_date
In this case, both variables, if they can be parsed as datetime, will be in the resulting list:
['date2', 'date3']
If we pass a variable that can’t be parsed as datetime, find_or_check_datetime_variables()
will return an error:
find_or_check_datetime_variables(X, ["date2", "cat_var1"])
Below the error message:
TypeError: Some of the variables are not datetime.