ArbitraryOutlierCapper#

The ArbitraryOutlierCapper() caps the maximum or minimum values of a variable at an arbitrary value indicated by the user. The maximum or minimum values should be entered in a dictionary with the form {feature:capping value}.

Let’s look at this in an example. First we load the Titanic dataset, and separate it into a train and a test set:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine.outliers import ArbitraryOutlierCapper

# Load dataset
def load_titanic():
        data = pd.read_csv('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')
        data = data.replace('?', np.nan)
        data['cabin'] = data['cabin'].astype(str).str[0]
        data['pclass'] = data['pclass'].astype('O')
        data['embarked'].fillna('C', inplace=True)
        data['fare'] = data['fare'].astype('float')
        data['fare'].fillna(data['fare'].median(), inplace=True)
        data['age'] = data['age'].astype('float')
        data['age'].fillna(data['age'].median(), inplace=True)
        return data

data = load_titanic()

# Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
                data.drop(['survived', 'name', 'ticket'], axis=1),
                data['survived'], test_size=0.3, random_state=0)

Now, we set up the ArbitraryOutlierCapper() indicating that we want to cap the variable ‘age’ at 50 and the variable ‘Fare’ at 200. We do not want to cap these variables on the left side of their distribution.

# set up the capper
capper = ArbitraryOutlierCapper(max_capping_dict={'age': 50, 'fare': 200}, min_capping_dict=None)

# fit the capper
capper.fit(X_train)

With fit() the transformer does not learn any parameter. It just reassigns the entered dictionary to the attribute that will be used in the transformation:

capper.right_tail_caps_
{'age': 50, 'fare': 200}

Now, we can go ahead and cap the variables:

# transform the data
train_t= capper.transform(X_train)
test_t= capper.transform(X_test)

If we now check the maximum values in the transformed data, they should be those entered in the dictionary:

train_t[['fare', 'age']].max()
fare    200
age      50
dtype: float64

More details#

You can find more details about the ArbitraryOutlierCapper() functionality in the following notebook:

All notebooks can be found in a dedicated repository.