YeoJohnsonTransformer#

class feature_engine.transformation.YeoJohnsonTransformer(variables=None)[source]#

The YeoJohnsonTransformer() applies the Yeo-Johnson transformation to the numerical variables.

The Yeo-Johnson transformation implemented by this transformer is that of SciPy.stats: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html

The YeoJohnsonTransformer() works only with numerical variables.

A list of variables can be passed as an argument. Alternatively, the transformer will automatically select and transform all numerical variables.

More details in the User Guide.

Parameters
variables: list, default=None

The list of numerical variables to transform. If None, the transformer will automatically find and select all numerical variables.

Attributes
lambda_dict_

Dictionary containing the best lambda for the Yeo-Johnson per variable.

variables_:

The group of variables that will be transformed.

n_features_in_:

The number of features in the train set used in fit.

References

1

Weisberg S. “Yeo-Johnson Power Transformations”. https://www.stat.umn.edu/arc/yjpower.pdf

Methods

fit:

Learn the optimal lambda for the Yeo-Johnson transformation.

transform:

Apply the Yeo-Johnson transformation.

fit_transform:

Fit to data, then transform it.

fit(X, y=None)[source]#

Learn the optimal lambda for the Yeo-Johnson transformation.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The training input samples. Can be the entire dataframe, not just the variables to transform.

y: pandas Series, default=None

It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)[source]#

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
Xarray-like of shape (n_samples, n_features)

Input samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None

Target values (None for unsupervised transformations).

**fit_paramsdict

Additional fit parameters.

Returns
X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfestimator instance

Estimator instance.

transform(X)[source]#

Apply the Yeo-Johnson transformation.

Parameters
X: Pandas DataFrame of shape = [n_samples, n_features]

The data to be transformed.

Returns
X: pandas dataframe

The dataframe with the transformed variables.

:rtype:py:class:~pandas.core.frame.DataFrame