OutlierTrimmer#

class feature_engine.outliers.OutlierTrimmer(capping_method='gaussian', tail='right', fold=3, variables=None, missing_values='raise')[source]#

The OutlierTrimmer() removes observations with outliers from the dataset.

The OutlierTrimmer() first calculates the maximum and /or minimum values beyond which a value will be considered an outlier, and thus removed.

Limits are determined using:

  • a Gaussian approximation

  • the inter-quantile range proximity rule

  • percentiles.

Gaussian limits:

  • right tail: mean + 3* std

  • left tail: mean - 3* std

IQR limits:

  • right tail: 75th quantile + 3* IQR

  • left tail: 25th quantile - 3* IQR

where IQR is the inter-quartile range: 75th quantile - 25th quantile.

percentiles or quantiles:

  • right tail: 95th percentile

  • left tail: 5th percentile

You can select how far out to cap the maximum or minimum values with the parameter 'fold'.

If capping_method='gaussian' fold gives the value to multiply the std.

If capping_method='iqr' fold is the value to multiply the IQR.

If capping_method='quantile', fold is the percentile on each tail that should be censored. For example, if fold=0.05, the limits will be the 5th and 95th percentiles. If fold=0.1, the limits will be the 10th and 90th percentiles.

The OutlierTrimmer() works only with numerical variables. A list of variables can be indicated. Alternatively, it will select all numerical variables.

The transformer first finds the values at one or both tails of the distributions (fit). The transformer then removes observations with outliers from the dataframe (transform).

More details in the User Guide.

Parameters
capping_method: str, default=’gaussian’

Desired capping method. Can take ‘gaussian’, ‘iqr’ or ‘quantiles’.

‘gaussian’: the transformer will find the maximum and / or minimum values to cap the variables using the Gaussian approximation.

‘iqr’: the transformer will find the boundaries using the IQR proximity rule.

‘quantiles’: the limits are given by the percentiles.

tail: str, default=’right’

Whether to cap outliers on the right, left or both tails of the distribution. Can take ‘left’, ‘right’ or ‘both’.

fold: int or float, default=3

How far out to to place the capping values. The number that will multiply the std or IQR to calculate the capping values. Recommended values, 2 or 3 for the gaussian approximation, or 1.5 or 3 for the IQR proximity rule.

If capping_method='quantile', then 'fold' indicates the percentile. So if fold=0.05, the limits will be the 95th and 5th percentiles.

Note: Outliers will be removed up to a maximum of the 20th percentiles on both sides. Thus, when capping_method='quantile', then 'fold' takes values between 0 and 0.20.

variables: list, default=None

The list of variables for which the outliers will be removed. If None, the transformer will find and select all numerical variables.

missing_values: string, default=’raise’

Indicates if missing values should be ignored or raised. Sometimes we want to remove outliers in the raw, original data, sometimes, we may want to remove outliers in the already pre-transformed data. If missing_values=’ignore’, the transformer will ignore missing data when learning the capping parameters or transforming the data. If missing_values=’raise’ the transformer will return an error if the training or the datasets to transform contain missing values.

Attributes
right_tail_caps_:

Dictionary with the maximum values above which values will be removed.

left_tail_caps_

Dictionary with the minimum values below which values will be removed.

variables_:

The group of variables that will be transformed.

n_features_in_:

The number of features in the train set used in fit.

Methods

fit:

Find maximum and minimum values.

transform:

Remove outliers.

fit_transform:

Fit to the data. Then transform it.

fit(X, y=None)[source]#

Learn the values that should be used to replace outliers.

Parameters
Xpandas dataframe of shape = [n_samples, n_features]

The training input samples.

ypandas Series, default=None

y is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)[source]#

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
Xarray-like of shape (n_samples, n_features)

Input samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None

Target values (None for unsupervised transformations).

**fit_paramsdict

Additional fit parameters.

Returns
X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfestimator instance

Estimator instance.

transform(X)[source]#

Remove observations with outliers from the dataframe.

Parameters
Xpandas dataframe of shape = [n_samples, n_features]

The data to be transformed.

Returns
X_new: pandas dataframe of shape = [n_samples, n_features]

The dataframe without outlier observations.

:rtype:py:class:~pandas.core.frame.DataFrame