feature_engine Documentation
Release 1.7.0

Feature-engine Developers

Apr 29, 2024

10

CONTENTS

A Python library for Feature Engineering and Selection 1
1.1 Pstt Howdidyoufindus? 2
What is unique about Feature-engine? 3
Installation 5
Feature-engine features in the following resources 7
Feature-engine’s Transformers 9
5.1 Missing Data Imputation: Imputers L e 9
5.2 Categorical Encoders: Encoders e 9
5.3 Variable Discretisation: Discretisers L e 10
54 Outlier Cappingor Removal e 10
5.5 Numerical Transformation: Transformers 10
5.6 Feature Creation: L e e e e e e e e 10
57 Datetime: L. e e e e e 10
5.8 Feature Selection: L e 11
5.9 Forecasting: L e e e e e e e e 11
5.10 Preprocessing: oo . e e e e e e e e e e e e e e e e e e 11
5.11 Scikit-learn Wrapper: L e e e e e e e e e e e e e 11
Getting Help 13
Contributing 15
Sponsor us 17
Open Source 19
Table of Contents 21
10.1 Quick Start L e e e e 21
102 UserGuide 0 i i e e e 27
103 APL . . e e 372
104 RESOUICES . .« ¢ v v v vt e e e e et e e e e e e e e e e e e e e e e 649
10.5 Contribute e e e e e 653
10.6 AbOUL o L e e e 669
10.7 What'Snew o o e e e e e e e e e e e e e e e 677
10.8 Other versions o i i i e e e e e e e e e e 707
10.9 SPONSOTUS . . . v v i it e e e e e e e e e e e e e e e e e 707
10.10 SPonsors . . . o v o i e e e e e e e e e e e e e e e e e 708

Bibliography 709

Index 711

CHAPTER
ONE

A PYTHON LIBRARY FOR FEATURE ENGINEERING AND
SELECTION

Fig. 1: Feature-engine rocks!

Feature-engine is a Python library with multiple transformers to engineer and select features to use in machine learning
models. Feature-engine preserves Scikit-learn functionality with methods £fit() and transform() to learn parame-
ters from and then transform the data.

Feature-engine includes transformers for:
* Missing data imputation
* Categorical encoding
* Discretisation
* Outlier capping or removal
* Variable transformation
* Variable creation
* Variable selection
¢ Datetime features
* Time series
* Preprocessing

Feature-engine allows you to select the variables you want to transform within each transformer. This way, different
engineering procedures can be easily applied to different feature subsets.

Feature-engine transformers can be assembled within the Scikit-learn pipeline, therefore making it possible to save and
deploy one single object (.pkl) with the entire machine learning pipeline. Check **Quick Start** for an example.

feature_engine Documentation, Release 1.7.0

1.1 Pst! How did you find us?

We want to share Feature-engine with more people. It'd help us loads if you tell us how you discovered us.
Then we’d know what we are doing right and which channels to use to share the love.

Please share your story by answering 1 quick question at this link .

2 Chapter 1. A Python library for Feature Engineering and Selection

https://docs.google.com/forms/d/e/1FAIpQLSfxvgnJvuvPf2XgosakhXo5VNQafqRrjNXkoW5qDWqnuxZNSQ/viewform?usp=sf_link

CHAPTER
TWO

WHAT IS UNIQUE ABOUT FEATURE-ENGINE?

The following characteristics make Feature-engine unique:

Feature-engine contains the most exhaustive collection of feature engineering transformations.
Feature-engine can transform a specific group of variables in the dataframe.

Feature-engine returns dataframes, hence suitable for data exploration and model deployment.
Feature-engine is compatible with the Scikit-learn pipeline, Grid and Random search and cross validation.
Feature-engine automatically recognizes numerical, categorical and datetime variables.

Feature-engine alerts you if a transformation is not possible, e.g., if applying logarithm to negative variables or
divisions by 0.

If you want to know more about what makes Feature-engine unique, check this article.

https://trainindata.medium.com/feature-engine-a-new-open-source-python-package-for-feature-engineering-29a0ab88ea7c

feature_engine Documentation, Release 1.7.0

4 Chapter 2. What is unique about Feature-engine?

CHAPTER
THREE

INSTALLATION

Feature-engine is a Python 3 package and works well with 3.7 or later. Earlier versions are not compatible with the
latest versions of Python numerical computing libraries.

The simplest way to install Feature-engine is from PyPI with pip:

$ pip install feature-engine

Note, you can also install it with a _ as follows:

$ pip install feature_engine

Feature-engine is an active project and routinely publishes new releases. To upgrade Feature-engine to the latest version,
use pip like this:

$ pip install -U feature-engine

If you’re using Anaconda, you can install the Anaconda Feature-engine package:

$ conda install -c conda-forge feature_engine

https://anaconda.org/conda-forge/feature_engine

feature_engine Documentation, Release 1.7.0

6 Chapter 3. Installation

CHAPTER
FOUR

FEATURE-ENGINE FEATURES IN THE FOLLOWING RESOURCES

 Feature Engineering for Machine Learning, Online Course.

¢ Feature Selection for Machine Learning, Online Course.

* Feature Engineering for Time Series Forecasting, Online Course.
* Python Feature Engineering Cookbook, book.

* Feature Selection in Machine Learning with Python, book.

More learning resources in the **Learning Resources**.

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://www.www.trainindata.com/p/feature-engineering-for-forecasting
https://packt.link/0ewSo
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

8 Chapter 4. Feature-engine features in the following resources

CHAPTER
FIVE

FEATURE-ENGINE’S TRANSFORMERS

Feature-engine hosts the following groups of transformers:

5.1

Missing Data Imputation: Imputers

MeanMedianImputer: replaces missing data in numerical variables by the mean or median
ArbitraryNumberImputer: replaces missing data in numerical variables by an arbitrary number
EndTaillmputer: replaces missing data in numerical variables by numbers at the distribution tails
Categoricallmputer: replaces missing data with an arbitrary string or by the most frequent category
RandomSamplelmputer: replaces missing data by random sampling observations from the variable
AddMissingIndicator: adds a binary missing indicator to flag observations with missing data

DropMissingData: removes observations (rows) containing missing values from dataframe

Categorical Encoders: Encoders

OneHotEncoder: performs one hot encoding, optional: of popular categories
CountFrequencyEncoder: replaces categories by the observation count or percentage
OrdinalEncoder: replaces categories by numbers arbitrarily or ordered by target
MeanEncoder: replaces categories by the target mean

WoEEncoder: replaces categories by the weight of evidence

DecisionTreeEncoder: replaces categories by predictions of a decision tree
RareLabelEncoder: groups infrequent categories

StringSimilarityEncoder: encodes categories based on string similarity

feature_engine Documentation, Release 1.7.0

5.3 Variable Discretisation: Discretisers

e ArbitraryDiscretiser: sorts variable into intervals defined by the user

» EqualFrequencyDiscretiser: sorts variable into equal frequency intervals

EqualWidthDiscretiser: sorts variable into equal width intervals

DecisionTreeDiscretiser: uses decision trees to create finite variables

* GeometricWidthDiscretiser: sorts variable into geometrical intervals

5.4 Outlier Capping or Removal

ArbitraryOutlierCapper: caps maximum and minimum values at user defined values

Winsorizer: caps maximum or minimum values using statistical parameters

OutlierTrimmer: removes outliers from the dataset

5.5 Numerical Transformation: Transformers

LogTransformer: performs logarithmic transformation of numerical variables

» LogCpTransformer: performs logarithmic transformation after adding a constant value

ReciprocalTransformer: performs reciprocal transformation of numerical variables

* PowerTransformer: performs power transformation of numerical variables

BoxCoxTransformer: performs Box-Cox transformation of numerical variables

YeoJohnsonTransformer: performs Yeo-Johnson transformation of numerical variables

ArcsinTransformer: performs arcsin transformation of numerical variables

5.6 Feature Creation:

* MathFeatures: creates new variables by combining features with mathematical operations
* RelativeFeatures: combines variables with reference features

» CyclicalFeatures: creates variables using sine and cosine, suitable for cyclical features

5.7 Datetime:

e DatetimeFeatures: extract features from datetime variables

* DatetimeSubtraction: computes subtractions between datetime variables

10 Chapter 5. Feature-engine’s Transformers

feature_engine Documentation, Release 1.7.0

5.8 Feature Selection:

* DropFeatures: drops an arbitrary subset of variables from a dataframe

* DropConstantFeatures: drops constant and quasi-constant variables from a dataframe

* DropDuplicateFeatures: drops duplicated variables from a dataframe

» DropCorrelatedFeatures: drops correlated variables from a dataframe

e SmartCorrelatedSelection: selects best features from correlated groups

* DropHighPSIFeatures: selects features based on the Population Stability Index (PSI)

o SelectByInformationValue: selects features based on their information value

* SelectByShuffling: selects features by evaluating model performance after feature shuffling

o SelectBySingleFeaturePerformance: selects features based on their performance on univariate estimators
e SelectByTargetMeanPerformance: selects features based on target mean encoding performance
* RecursiveFeatureElimination: selects features recursively, by evaluating model performance

* RecursiveFeatureAddition: selects features recursively, by evaluating model performance

* ProbeFeatureSelection: selects features whose importance is greater than those of random variables

5.9 Forecasting:

» LagFeatures: extract lag features
» WindowFeatures: create window features

e ExpandingWindowFeatures: create expanding window features

5.10 Preprocessing:

* MatchCategories: ensures categorical variables are of type ‘category’

e MatchVariables: ensures that columns in test set match those in train set

5.11 Scikit-learn Wrapper:

* SklearnTransformerWrapper: applies Scikit-learn transformers to a selected subset of features

5.8. Feature Selection: 11

feature_engine Documentation, Release 1.7.0

12 Chapter 5. Feature-engine’s Transformers

CHAPTER
SIX

GETTING HELP

Can’t get something to work? Here are places where you can find help.
1. The **User Guide** in the docs.
. Stack Overflow. If you ask a question, please mention “feature_engine” in it.
. If you are enrolled in the Feature Engineering for Machine Learning course , post a question in a relevant section.

2
3
4. If you are enrolled in the Feature Selection for Machine Learning course , post a question in a relevant section.
5. Join our gitter community. You an ask questions here as well.

6

. Ask a question in the repo by filing an issue (check before if there is already a similar issue created :)).

13

https://stackoverflow.com/search?q=feature_engine
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://gitter.im/feature_engine/community
https://github.com/feature-engine/feature_engine/issues/

feature_engine Documentation, Release 1.7.0

14 Chapter 6. Getting Help

CHAPTER
SEVEN

CONTRIBUTING

Interested in contributing to Feature-engine? That is great news!

Feature-engine is a welcoming and inclusive project and we would be delighted to have you on board. We follow the
Python Software Foundation Code of Conduct.

Regardless of your skill level you can help us. We appreciate bug reports, user testing, feature requests, bug fixes,
addition of tests, product enhancements, and documentation improvements. We also appreciate blogs about Feature-
engine. If you happen to have one, let us know!

For more details on how to contribute check the contributing page. Click on the **Contribute** guide.

15

http://www.python.org/psf/codeofconduct/

feature_engine Documentation, Release 1.7.0

16 Chapter 7. Contributing

CHAPTER
EIGHT

SPONSOR US

Empower Sole, the main developer of Feature-engine, to assemble a team of paid contributors to accelerate the devel-
opment of Feature-engine.

Feature-engine

Currently, Sole and our contributors dedicate their free time voluntarily to advancing the project. You can help us reach
a funding milestone, so that we can gather on a group of 2-3 contributors who will commit regular hours each week to
enhance documentation and expand Feature-engine’s functionality at a faster pace.

Your contribution will play a vital role in propelling Feature-engine to new heights, ensuring it remains a valuable
resource for the data science community.

If you don’t have a Github account, you can also sponsor us here.

17

https://github.com/sponsors/solegalli
https://github.com/sponsors/solegalli
https://github.com/sponsors/solegalli
https://buymeacoffee.com/solegalliy

feature_engine Documentation, Release 1.7.0

18 Chapter 8. Sponsor us

CHAPTER
NINE

OPEN SOURCE

Feature-engine’s license is an open source BSD 3-Clause.

Feature-engine is hosted on GitHub. The issues and pull requests are tracked there.

19

https://github.com/feature-engine/feature_engine/blob/master/LICENSE.md
https://github.com/feature-engine/feature_engine/
https://github.com/feature-engine/feature_engine/issues/
https://github.com/feature-engine/feature_engine/pulls

feature_engine Documentation, Release 1.7.0

20 Chapter 9. Open Source

CHAPTER
TEN

TABLE OF CONTENTS

10.1 Quick Start

If you're new to Feature-engine this guide will get you started. Feature-engine transformers have the methods £fit ()
and transform() to learn parameters from the data and then modify the data. They work just like any Scikit-learn
transformer.

10.1.1 Installation

Feature-engine is a Python 3 package and works well with 3.7 or later. Earlier versions are not compatible with the
latest versions of Python numerical computing libraries.

$ pip install feature-engine

Note, you can also install it with a _ as follows:

$ pip install feature_engine

Note that Feature-engine is an active project and routinely publishes new releases. In order to upgrade Feature-engine
to the latest version, use pip as follows.

$ pip install -U feature-engine

If you’re using Anaconda, you can install the Anaconda Feature-engine package:

$ conda install -c conda-forge feature_engine

Once installed, you should be able to import Feature-engine without an error, both in Python and in Jupyter notebooks.

10.1.2 Example Use

This is an example of how to use Feature-engine’s transformers to perform missing data imputation.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from feature_engine.imputation import MeanMedianImputer

(continues on next page)

21

https://anaconda.org/conda-forge/feature_engine

feature_engine Documentation, Release 1.7.0

(continued from previous page)

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets

X_train, X_test, y_train, y_test = train_test_split(
data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'],
test_size=0.3,
random_state=0

)

set up the imputer
median_imputer = MeanMedianImputer(
imputation_method='median', variables=['LotFrontage', 'MasVnrArea']

)

fit the imputer
median_imputer. fit(X_train)

transform the data
train_t = median_imputer.transform(X_train)
test_t = median_imputer.transform(X_test)

fig = plt.figure()

ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind="kde', ax=ax)
train_t['LotFrontage'].plot(kind="kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

0.030 - — LotFrontage
— LotFrontage

0.025 A

0.020 - \

ity

0.015 1

Dens

0.010 -

0.005 A

0.000 -

~100 0 100 200 300 400

22 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

10.1.3 Feature-engine with the Scikit-learn’s pipeline

Feature-engine’s transformers can be assembled within a Scikit-learn pipeline. This way, we can store our entire feature
engineering pipeline in one single object or pickle (.pkl). Here is an example of how to do it:

from math import sqgrt

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import Lasso

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline as pipe

from sklearn.preprocessing import MinMaxScaler

from feature_engine.encoding import RareLabelEncoder, MeanEncoder
from feature_engine.discretisation import DecisionTreeDiscretiser
from feature_engine.imputation import (

AddMissingIndicator,

MeanMedianImputer,

CategoricalImputer,

load dataset
data = pd.read_csv('houseprice.csv')

drop some variables

data.drop(
labels=['YearBuilt', 'YearRemodAdd', 'GarageYrBlt', 'Id'],
axis=1,
inplace=True

make a list of categorical variables
categorical = [var for var in data.columns if data[var].dtype == '0']

make a list of numerical variables
numerical = [var for var in data.columns if data[var].dtype != '0']

make a list of discrete variables
discrete = [var for var in numerical if len(data[var].unique()) < 20]

categorical encoders work only with object type variables
to treat numerical variables as categorical, we need to re-cast them
data[discrete]= data[discrete].astype('0')

continuous variables

numerical = [
var for var in numerical if var not in discrete
and var not in ['Id', 'SalePrice']

]

(continues on next page)

10.1. Quick Start 23

feature_engine Documentation, Release 1.7.0

(continued from previous page)

separate into train and test sets

X_train, X_test, y_train, y_test = train_test_split(
data.drop(labels=['SalePrice'], axis=1),
data.SalePrice,
test_size=0.1,
random_state=0
)

set up the pipeline

price_pipe = pipe([
add a binary variable to indicate missing information for the 2 variables below
('continuous_var_imputer', AddMissingIndicator(variables=['LotFrontage'])),

replace NA by the median in the 2 variables below, they are numerical
('continuous_var_median_imputer', MeanMedianImputer(
imputation_method='median', variables=['LotFrontage', 'MasVnrArea']

)),

replace NA by adding the label "Missing" in categorical variables
('categorical_imputer', CategoricalImputer(variables=categorical)),

disretise continuous variables using trees
('numerical_tree_discretiser', DecisionTreeDiscretiser(
cv=3,
scoring="'neg_mean_squared_error',
variables=numerical,
regression=True)),

remove rare labels in categorical and discrete variables
('rare_label_encoder', RareLabelEncoder(
t0l=0.03, n_categories=1, variables=categorical+discrete

)),

encode categorical and discrete variables using the target mean
('categorical_encoder', MeanEncoder(variables=categorical+discrete)),

scale features
('scaler', MinMaxScaler()),

Lasso
('lasso', Lasso(random_state=2909, alpha=0.005))

D

train feature engineering transformers and Lasso
price_pipe.fit(X_train, np.log(y_train))

predict
pred_train = price_pipe.predict(X_train)

pred_test = price_pipe.predict(X_test)

Evaluate

(continues on next page)

24 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

print('Lasso Linear Model train mse: {}'.format(
mean_squared_error(y_train, np.exp(pred_train))))

print('Lasso Linear Model train rmse: {}'.format(
sqrt(mean_squared_error(y_train, np.exp(pred_train)))))

print()

print('Lasso Linear Model test mse: {}'.format(
mean_squared_error(y_test, np.exp(pred_test))))

print('Lasso Linear Model test rmse: {}'.format(
sqrt(mean_squared_error(y_test, np.exp(pred_test)))))

Lasso Linear Model train mse: 949189263.8948538
Lasso Linear Model train rmse: 30808.9153313591

Lasso Linear Model test mse: 1344649485.0641894
Lasso Linear Model train rmse: 36669.46256852136

plt.scatter(y_test, np.exp(pred_test))
plt.xlabel('True Price')
plt.ylabel('Predicted Price")
plt.show()

400000 1
350000 4 -
300000 -

250000 -

Predicted Price

200000 4

150000 A

100000 4

100000 200000 300000 400000 500000 600000 700000
True Price

10.1. Quick Start

25

feature_engine Documentation, Release 1.7.0

More examples

More examples can be found in:
* User Guide
* Learning Resources

* Jupyter notebooks

Datasets

The user guide and examples included in Feature-engine’s documentation are based on these 3 datasets:

Titanic dataset

We use the dataset available in openML which can be downloaded from here.

Ames House Prices dataset

We use the data set created by Professor Dean De Cock: * Dean De Cock (2011) Ames, lowa: Alternative to the Boston
Housing * Data as an End of Semester Regression Project, Journal of Statistics Education, Vol.19, No. 3.

The examples are based on a copy of the dataset available on Kaggle.
The original data and documentation can be found here:
* Documentation

e Data

Credit Approval dataset

We use the Credit Approval dataset from the UCI Machine Learning Repository:

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA: University of California, School of
Information and Computer Science.

To download the dataset visit this website and click on “crx.data” to download the data set.

To prepare the data for the examples:

import random
import pandas as pd
import numpy as np

load data
data = pd.read_csv('crx.data', header=None)

create variable names according to UCI Machine Learning information
varnames = ['A'+str(s) for s in range(1,17)]

data.columns = varnames

replace ? by np.nan

(continues on next page)

26 Chapter 10. Table of Contents

https://nbviewer.jupyter.org/github/feature-engine/feature-engine-examples/tree/main/
https://www.openml.org/d/40945
https://www.openml.org/data/get_csv/16826755/phpMYEkMl
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
http://jse.amstat.org/v19n3/decock/DataDocumentation.txt
http://jse.amstat.org/v19n3/decock/AmesHousing.xls
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/

feature_engine Documentation, Release 1.7.0

(continued from previous page)

data = data.replace('?', np.nan)

re-cast some variables to the correct types
data['A2'] = data['A2'].astype('float"')
data['Al4'] = data['Al4'].astype('float')

encode target to binary
data['Al6'] = data['Al6'].map({'+':1, "-'":0})

save the data
data.to_csv('creditApprovalUCI.csv', index=False)

10.2 User Guide

In this section you will find additional information about Feature-engine’s transformers and feature engineering trans-

formations in general, as well as additional examples.

10.2.1 Transformation

Missing Data Imputation

Feature-engine’s missing data imputers replace missing data by parameters estimated from data or arbitrary values

pre-defined by the user. The following image summarizes the main imputer’s functionality.

Numerical Categorical
variables variables
MeanMedianimputer J x Replaces missing values by the mean or median
ArbitraryNumberimputer Vv Replaces missing values by an arbitrary value
EndTaillmputer \V x Replaces missing values by a value atthe end of the distribution
. - : Replaces missing values by the most frequent category or by an
Categoricalmputer v W .
arbitrary value
; : Replaces missing values by random value extractions from the
RandomSamplelmputer v W q
variable
AddMissingindicator v v Adds a binary variable to flag missing observations
DropMissingData v v Removes observations with missing data from the dataset

In this guide, you will find code snippets to quickly be able to apply the imputers to your datasets, as well as general

knowledge and guidance on the imputation techniques.

10.2. User Guide

27

feature_engine Documentation, Release 1.7.0

Imputers
MeanMedianimputer

The MeanlMedianImputer () replaces missing data with the mean or median of the variable. It works only with nu-
merical variables. You can pass the list of variables you want to impute, or alternatively, the imputer will automatically
select all numerical variables in the train set.

Note that in symetrical distributions, the mean and the median are very similar. But in skewed distributions, the median
is a better representation of the majority, as the mean is biased to extreme values. The following image was taken from
Wikipedia. The image links to the use license.

Mean
Median Median Median
Mode
Mode < | 1= Mean I Mean-i | — Mode
N i . ¥4
I I I
I
I
) I I
I I I
I I I
I I I
I I I
Positive Symmetrical Negative
Skew Distribution Skew

With the fit () method, the transformer learns and stores the mean or median values per variable. Then it uses these
values in the transform() method to transform the data.

Below a code example using the House Prices Dataset (more details about the dataset /ere).

First, let’s load the data and separate it into train and test:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from feature_engine.imputation import MeanMedianImputer

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'],
test_size=0.3,
random_state=0,

)

Now we set up the MeanMedianImputer () to impute in this case with the median and only 2 variables from the dataset.

set up the imputer
median_imputer = MeanMedianImputer(

(continues on next page)

28 Chapter 10. Table of Contents

https://commons.wikimedia.org/wiki/File:Relationship_between_mean_and_median_under_different_skewness.png

feature_engine Documentation, Release 1.7.0

(continued from previous page)

imputation_method='"median',
variables=['LotFrontage', 'MasVnrArea']

)

fit the imputer
median_imputer. fit(X_train)

With fit, the MeanMedianImputer () learned the median values for the indicated variables and stored it in one of its
attributes. We can now go ahead and impute both the train and the test sets.

transform the data
train_t= median_imputer.transform(X_train)
test_t= median_imputer.transform(X_test)

Note that after the imputation, if the percentage of missing values is relatively big, the variable distribution will differ
from the original one (in red the imputed variable):

fig = plt.figure()

ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind="kde', ax=ax)
train_t['LotFrontage'].plot(kind="kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

—— LotFrontage

0.030 1
n — LotFrontage

0.025 -
0.020 - A

0.015 1

Density

0010 -

0.005 A

0.000 -

~100 0 100 200 300 400

10.2. User Guide 29

feature_engine Documentation, Release 1.7.0

Additional resources

In the following Jupyter notebook you will find more details on the functionality of the MeanMedianImputer(),
including how to select numerical variables automatically. You will also see how to navigate the different attributes of
the transformer to find the mean or median values of the variables.

* Jupyter notebook

For more details about this and other feature engineering methods check out these resources:

Or read our book:

Fig. 1: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

30 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/MeanMedianImputer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

enn Eprrron

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

re Engineering

feature_engine Documentation, Release 1.7.0

ArbitraryNumberimputer

The ArbitraryNumberImputer() replaces missing data with an arbitrary
numerical value determined by the user. It works only with numerical vari-
ables.

The ArbitraryNumberImputer() can find and impute all numerical vari-
ables automatically. Alternatively, you can pass a list of the variables you want
to impute to the variables parameter.

You can impute all variables with the same number, in which case you need to
define the variables to impute in the variables parameter and the imputation
number in arbitrary_number parameter. For example, you can impute varA
and varB with 99 like this:

transformer = ArbitraryNumberImputer

variables = ['varA', 'varB'],
arbitrary_number = 99
)

Xt = transformer.fit_transform(X)

You can also impute different variables with different numbers. To do this,
you need to pass a dictionary with the variable names and the numbers to use
for their imputation to the imputer_dict parameter. For example, you can
impute varA with 1 and varB with 99 like this:

transformer = ArbitraryNumberImputer (
imputer_dict = {'varA' : 1, 'varB': 99}
)

Xt = transformer.fit_transform(X)

Below a code example using the House Prices Dataset (more details about the
dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from..
- feature_engine.imputation import ArbitraryNumberImputer

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets

X_train, X_test, y_train, y_test = train_test_split(

o data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'],
test_size=0.3,

(continues on next page)

10.2. User Guide 31

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

random_state=0,

)

Now we set up the ArbitraryNumberImputer () to impute 2 variables from
the dataset with the number -999:

set up the imputer

arbitrary_imputer = ArbitraryNumberImputer (
arbitrary_number=-999,
variables=['LotFrontage', 'MasVnrArea'],

)

fit the imputer
arbitrary_imputer. fit(X_train)

With fit(), the transformer does not learn any parameter. It just assigns
the imputation values to each variable, which can be found in the attribute
imputer_dict_.

With transform, we replace the missing data with the arbitrary values both in
train and test sets:

transform the data
train_t= arbitrary_imputer.transform(X_train)
test_t= arbitrary_imputer.transform(X_test)

Note that after the imputation, if the percentage of missing values is relatively
big, the variable distribution will differ from the original one (in red the im-
puted variable):

fig = plt.figure()

ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind="kde', ax=ax)

train_

—t['LotFrontage'].plot(kind="kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

32 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Additional resources

0.0200 - = LotFrontag
00175 - = |otFrontag

0.0150 -

00125 -

0.0100 -

Density

0.0075 -

0.0050 -

0.0025 -
0.0000 - _/L/_J K

In the following Jupyter notebook you will find more details on the function-
ality of the ArbitraryNumberImputer (), including how to select numerical
variables automatically. You will also see how to navigate the different at-
tributes of the transformer.

Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

33

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/ArbitraryNumberImputer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

EndTaillmputer

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

re Engineering

The EndTailImputer() replaces missing data with a value at the end of the
distribution. The value can be determined using the mean plus or minus a num-
ber of times the standard deviation, or using the inter-quartile range proximity
rule. The value can also be determined as a factor of the maximum value.

You decide whether the missing data should be placed at the right or left tail
of the variable distribution.

In a sense, the EndTailImputer() ‘‘automates” the work of the
ArbitraryNumberImputer () because it will find automatically “arbitrary
values” far out at the end of the variable distributions.

EndTailImputer () works only with numerical variables. You can impute
only a subset of the variables in the data by passing the variable names in a list.
Alternatively, the imputer will automatically select all numerical variables in
the train set.

Below a code example using the House Prices Dataset (more details about the
dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np
import pandas as pd

Load dataset

import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine.imputation import EndTailImputer

data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

(continues on next page)

34

Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

—

. data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'],
test_size=0.3,
random_state=0,

)

Now we set up the EndTailImputer () toimpute in this case only 2 variables
from the dataset. We instruct the imputer to find the imputation values using
the mean plus 3 times the standard deviation as follows:

set up the imputer

tail_

—imputer = EndTailImputer (imputation_method='gaussian',
tail="right',
fold=3,

o variables=['LotFrontage', 'MasVnrArea'])

fit the imputer
tail_imputer.fit(X_train)

With fit, the EndTailImputer () learned the imputation values for the indi-
cated variables and stored it in one of its attributes. We can now go ahead and
impute both the train and the test sets.

transform the data
train_t= tail_imputer.transform(X_train)
test_t= tail_imputer.transform(X_test)

Note that after the imputation, if the percentage of missing values is relatively
big, the variable distribution will differ from the original one (in red the im-
puted variable):

fig = plt.figure()

ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind="kde', ax=ax)

train_

—t['LotFrontage'].plot(kind="kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

10.2. User Guide 35

feature_engine Documentation, Release 1.7.0

0.0200 4 — LokFrontac
00175 - = | okFrontar

0.0150 -

00125 -

0.0100 -

Density

0.0075 -

0.0050 -

0.0025 A

0.0000 -

Additional resources

In the following Jupyter notebook you will find more details on the functional-
ity of the CategoricalImputer (), including how to select numerical vari-
ables automatically, how to impute with the most frequent category, and how
to impute with a used defined string.

* Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/EndTailImputer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

Categoricallmputer

<packt>

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

Handling missing values
SOLEDAD GALLI

re Engineering

Categorical data are common in most data science projects and can also show
missing values. There are 2 main imputation methods that are used to replace
missing data in categorical variables. One method consists of replacing the
missing values with the most frequent category. The second method consists
of replacing missing values with a dedicated string, for example, “Missing.”

Scikit-learn’s machine learning algorithms can neither handle missing data nor
categorical variables out of the box. Hence, during data preprocessing, we
need to use imputation techniques to replace the nan values by any permitted
value and then proceed with categorical encoding, before training classifica-
tion or regression models.

Feature-engine’s CategoricalImputer () can replace missing data in cate-
gorical variables with an arbitrary value, like the string ‘Missing’, or with the
most frequent category.

You can impute a subset of the categorical variables by passing their names
to CategoricalImputer() in a list. Alternatively, the categorical imputer
automatically finds and imputes all variables of type object and categorical
found in the training dataframe.

Originally, we designed this imputer to work only with categorical variables.
In version 1.1.0, we introduced the parameter ignore_format to allow the
imputer to also impute numerical variables with this functionality. This is
because, in some cases, variables that are by nature categorical have numerical
values.

10.2. User Guide

37

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Python implementation

We’ll show the CategoricalImputer()’s data imputation functionality us-
ing the Ames house prices dataset. We’ll start by loading the necessary li-
braries, functions and classes, loading the dataset, and separating it into a
training and a test set.

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from feature_engine.imputation import CategoricalImputer

data fetch_openml (name="house_prices', as_frame=True)
data = data.frame

X = data.drop(['SalePrice', '"Id'], axis=1)
y data['SalePrice']

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

print(X_train.head())

In the following output we see the predictor variables of the house prices

dataset:

MSSubClass..
—MSZoning LotFrontage LotArea Street Alley LotShape \
254 o
- 20 RL 70.0 8400 Pave NaN Reg
1066 o
- 60 RL 59.0 7837 Pave NaN IR1
638 o
- 30 RL 67.0 8777 Pave NaN Reg
799 o
- 50 RL 60.0 7200 Pave NaN Reg
380 o
- 50 RL 50.0 5000 Pave Pave Reg

LandContour Utilities.
—LotConfig ... ScreenPorch PoolArea PoolQC Fence \
254 Lvl o
—Al11Pub Inside ... 0 0 NaN NaN
1066 Lvl .
—A11Pub Inside ... 0 0 NaN NaN
638 Lvl .
—Al11Pub Inside ... 0 0 NaN MnPrv
799 Lvl .
—Al11Pub Corner ... 0 0 NaN MnPrv
380 Lvl .
—Al11Pub Inside ... 0 0 NaN NaN

(continues on next page)

38 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

MiscFeature..

—MiscVal MoSold YrSold SaleType SaleCondition

254 o

< NaN 0 6 2010 WD Normal
1066 o

. NaN 0 5 2009 WD Normal
638 o

. NaN 0 5 2008 WD Normal
799 o

< NaN 0 6 2007 WD Normal
380 o

. NaN 0 5 2010 WD Normal

[5 rows x 79 columns]

These 2 variables show null values, let’s check that out:

X_train[['Alley', 'MasVnrType']].isnull().sum()

We see the null values in the following output:

Alley 1094
MasVnrType 6
dtype: int64

Imputation with an arbitrary string

Let’s set up the categorical imputer to impute these 2 variables with the arbi-
trary string ‘missing’:

imputer = CategoricalImputer(
variables=['Alley', 'MasVnrType'],
fill_value="missing",

)

imputer.fit(X_train)

During fit, the transformer corroborates that the 2 variables are of type object
or categorical and creates a dictionary of variable to replacement value.

We can check the value that will be use to “fillna” as follows:

imputer.fill_value

We can check the dictionary with the replacement values per variable like this:

imputer.imputer_dict_

The dictionary contains the names of the variables in its keys and the imputa-
tion value among its values. In this case, the result is not super exciting because
we are replacing nan values in all variables with the same value:

10.2. User Guide 39

feature_engine Documentation, Release 1.7.0

{'Alley': 'missing', 'MasVnrType': 'missing'}

We can now go ahead and impute the missing data and then plot the categories
in the resulting variable after the imputation:

train_t = imputer.transform(X_train)
test_t = imputer.transform(X_test)

test_t['MasVnrType'].value_counts().plot.bar()
plt.ylabel ("Number of observations")
plt.show()

In the following plot, we see the presence of the category “missing”, corre-
sponding to the imputed values:

175
150
125
100 -
75 1
5{) -
25 1
D -

ik} @ L] = on

! - : : =

2 € 7 g %

@ @ S

MasVnrType

40 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Imputation with the most frequent category

Let’s now impute the variables with the most frequent category instead:

imputer = CategoricalImputer(
variables=['Alley', 'MasVnrType'],
imputation_method="frequent"

)

imputer.fit(X_train)

We can find the most frequent category per variable in the imputer dictionary:

imputer.imputer_dict_

In the following output, we see that the most frequent category for Alley is
'Grvl' and the most frequent value for MasVnrType is 'None'.

{'Alley': 'Grvl', 'MasVnrType': 'None'}

We can now go ahead and impute the missing data to obtain a complete dataset,
at least for these 2 variables, and then plot the distribution of values after the
imputation:

train_t = imputer.transform(X_train)
test_t = imputer.transform(X_test)

test_t['MasVnrType'].value_counts() .plot.bar()
plt.ylabel ("Number of observations")
plt.show()

In the following image we see the resulting variable distribution:

10.2. User Guide 41

feature_engine Documentation, Release 1.7.0

175 ~

150 ~

125 +

100 ~

75 4

MNone
BrkFace
Stone

MasVnrType

Automatically impute all categorical variables

CategoricalImputer() can automatically find and impute all categorical
features in the training dataset when we set the parameter variables to None:

imputer = CategoricalImputer(
variables=None,

)

train_t = imputer.fit_transform(X_train)
test_t = imputer.transform(X_test)

We can find the categorical variables in the variables_ attribute:

imputer.variables_

Below, we see the list of categorical variables that were found in the training
dataframe:

42 Chapter 10. Table of Contents

BrkCmn

feature_engine Documentation, Release 1.7.0

['MSZoning',
'Street’,
'Alley’',
'LotShape’,
'LandContour’,

'SaleType',
'SaleCondition']

Categorical features with 2 modes

It is possible that one variable has more than one mode. In that case, the trans-
former will raise an error. For example, when you set the transformer to impute
the variable ‘PoolQC" with the most frequent value:

imputer = CategoricalImputer(
variables=['PoolQC'],
imputation_method="frequent"

)

imputer.fit(X_train)

‘PoolQC" has more than 1 mode, so the transformer raises the following error:

196 self.imputer_dict_ = {var: mode_vals[0]}
198 # imputing multiple variables:
199 else:
200 #.
—Returns a dataframe with 1 row if there is one mode per
201,
. # variable, or more rows if there are more modes:

ValueError: The.
—variable PoolQC contains multiple frequent categories.

We can check that the variable has various modes like this:

X_train['PoolQC'].mode()

We see that this variable has 3 categories with similar maximum number of
observations:

Ex
Fa
Gd
Name: PoolQC, dtype: object

N~

10.2. User Guide 43

feature_engine Documentation, Release 1.7.0

Considerations

Additional resources

Replacing missing values in categorical features with a bespoke category is
standard practice and perhaps the more natural thing to do. We’ll probably
want to impute with the most frequent category when the percentage of miss-
ing values is small and the cardinality of the variable is low, not to introduce
unnecessary noise.

Combining imputation with data analysis is useful to decide the most conve-
nient imputation method as well as the impact of the imputation on the variable
distribution. Note that the variable distribution and its cardinality will affect
the performance and workings of machine learning models.

Imputation with the most frequent category will blend the missing values with
the most common values of the variable. Hence, it is common practice to
add dummy variables to indicate that the values were originally missing. See
AddMissingIndicator.

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Fig. 7: Feature Engineering for Machine Learning

44

Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

RandomSamplelmputer

<packt>

Feature

ineering
Cookbook

creating, engineering, and Set“ng the seed

d machine learning models

SOLEDAD GALLI

re Engineering

The RandomSampleImputer () replaces missing data with a random sample
extracted from the variable. It works with both numerical and categorical vari-
ables. A list of variables can be indicated, or the imputer will automatically
select all variables in the train set.

Note

The random samples used to replace missing values may vary from execution
to execution. This may affect the results of your work. Thus, it is advisable to
set a seed.

There are 2 ways in which the seed can be set in the
RandomSampleImputer():

If seed = "general' then the random_state can be either None or an inte-
ger. The random_state then provides the seed to use in the imputation. All
observations will be imputed in one go with a single seed. This is equiva-
lent to pandas.sample(n, random_state=seed) where n is the number
of observations with missing data and seed is the number you entered in the
random_state.

If seed = 'observation', then the random_state should be a variable
name or a list of variable names. The seed will be calculated obser-
vation per observation, either by adding or multiplying the values of the
variables indicated in the random_state. Then, a value will be ex-
tracted from the train set using that seed and used to replace the NAN in
that particular observation. This is the equivalent of pandas.sample(1,
random_state=varl+var2) if the seeding_method is set to add or
pandas.sample(l, random_state=varl*var2) if the seeding_method
is set tomultiply.

For example, if the observation shows variables color: np.nan, height: 152,
weight:52, and we set the imputer as:

RandomSampleImputer (random_state=["'height', 'weight'],
seed="observation',
seeding_method="add"))

the np.nan in the variable colour will be replaced using pandas sample as fol-
lows:

observation.sample(l, random_state=int(152+52))

10.2. User Guide

45

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

For more details on why this functionality is important refer to the course Fea-
ture Engineering for Machine Learning.

You can also find more details about this imputation in the following notebook.

Note, if the variables indicated in the random_state list are not numerical
the imputer will return an error. In addition, the variables indicated as seed
should not contain missing values themselves.

Important for GDPR

This estimator stores a copy of the training set when the fit() method is
called. Therefore, the object can become quite heavy. Also, it may not
be GDPR compliant if your training data set contains Personal Information.
Please check if this behaviour is allowed within your organisation.

Below a code example using the House Prices Dataset (more details about the
dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from feature_engine.imputation import RandomSampleImputer

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets

X_train, X_test, y_train, y_test = train_test_split(
data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'],
test_size=0.3,
random_state=0

In this example, we sample values at random, observation per observation,
using as seed the value of the variable ‘MSSubClass’ plus the value of the
variable “YrSold’. Note that this value might be different for each observation.

The RandomSampleImputer () will impute all variables in the data, as we left
the default value of the parameter variables to None.

set up the imputer
imputer = RandomSampleImputer(
random_state=['MSSubClass', 'YrSold'],
seed="observation',
seeding_method="add'
)

fit the imputer
imputer.fit(X_train)

46 Chapter 10. Table of Contents

https://www.udemy.com/feature-engineering-for-machine-learning/
https://www.udemy.com/feature-engineering-for-machine-learning/
https://github.com/solegalli/feature-engineering-for-machine-learning/blob/master/Section-04-Missing-Data-Imputation/04.07-Random-Sample-Imputation.ipynb

feature_engine Documentation, Release 1.7.0

With fit () the imputer stored a copy of the X_train. And with transform, it
will extract values at random from this X_train to replace NA in the datasets
indicated in the transform() methods.

transform the data
train_t = imputer.transform(X_train)
test_t = imputer.transform(X_test)

The beauty of the random sampler is that it preserves the original variable
distribution:

fig = plt.figure()

ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind="kde', ax=ax)

train_

—t['LotFrontage'].plot(kind="kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

0.0200 m — LotFrontar

QL0175 +
0.0150 -

0.0125 4

ity

= 0.0100 -

1A

[
0.0075 4

0.0050 -

0.0025 A

— LotFrontac

0.0000 -

~100 0 100 200 300

Additional resources

In the following Jupyter notebook you will find more details on the functional-
ity of the RandomSampleImputer (), including how to set the different types
of seeds.

* Jupyter notebook
All Feature-engine notebooks can be found in a dedicated repository.

And finally, there is also a lot of information about this and other imputation
techniques in this online course:

10.2. User Guide 47

400

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/RandomSampleImputer.ipynb
https://github.com/feature-engine/feature-engine-examples

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 9: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

AddMissingindicator

The AddMissingIndicator() adds a binary variable indicating if observa-
tions are missing (missing indicator). It adds missing indicators to both cate-
gorical and numerical variables.

You can select the variables for which the missing indicators should be created
passing a variable list to the variables parameter. Alternatively, the imputer
will automatically select all variables.

Feature

. A The imputer has the option to add missing indicators to all variables or only
ineering to those that have missing data in the train set. You can change the behaviour
Cookbook using the parameter missing_only.

If missing_only=True, missing indicators will be added only to those vari-
ables with missing data in the train set. This means that if you passed a variable
SOLEDAD GALLI list to variables and some of those variables did not have missing data, no

ire Engineering 4g Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

missing indicators will be added to them. If it is paramount that all variables in
your list get their missing indicators, make sure to set missing_only=False.

It is recommended to use missing_only=True when not passing a list of
variables to impute.

Below a code example using the House Prices Dataset (more details about the
dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from feature_engine.imputation import AddMissingIndicator

Load dataset
data = pd.read_csv('houseprice.csv"')

Separate into train and test sets

X_train, X_test, y_train, y_test = train_test_split(
data.drop(['Id', 'SalePrice'], axis=1),

— data['SalePrice'], test_size=0.3, random_state=0)

Now we set up the imputer to add missing indicators to the 4 indicated vari-
ables:

set up the imputer

addBinary_imputer = AddMissingIndicator(

variables=[

—'Alley', 'MasVnrType', 'LotFrontage', 'MasVnrArea'],
)

fit the imputer
addBinary_imputer. fit(X_train)

Because we left the default value for missing_only, the
AddMissingIndicator() will check if the variables indicated above
have missing data in X_train. If they do, missing indicators will be added
for all 4 variables looking forward. If one of them had not had missing data
in X_train, missing indicators would have been added to the remaining 3
variables only.

We can know which variables will have missing indicators by looking at the
variable list in the AddMissingIndicator()’s attribute variables_.

Now, we can go ahead and add the missing indicators:

transform the data
train_t = addBinary_imputer.transform(X_train)
test_t = addBinary_imputer.transform(X_test)

train_t[['Alley_na', 'MasVnrType_

—na', 'LotFrontage_na', 'MasVnrArea_na']].head()

10.2. User Guide 49

feature_engine Documentation, Release 1.7.0

Tip

Additional resources

Alley_na MasVnrType_na LotFrontage_na MasVnrArea_na

64 1 0 1
682 1 0 1
960 1 0 0

1384 1 0 0
1100 1 0 0

Note that after adding missing indicators, we still need to replace NA in the
original variables if we plan to use them to train machine learning models.

Missing indicators are commonly used together with random sampling, mean
or median imputation, or frequent category imputation.

In the following Jupyter notebook you will find more details on the function-
ality of the AddMissingIndicator(), including how to use the parameter
missing_indicator and how to select the variables automatically.

Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Chapter 10. Table of Contents

0

o o o O

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/AddMissingIndicator.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

DropMissingData

Removing rows with nan values from a dataset is a common practice in data
science and machine learning projects.

You are probably familiar with the use of pandas dropna. You basically take a
pandas dataframe or a pandas series, apply dropna, and eliminate those rows
that contain nan values in one or more columns.

Here, we have an example of that syntax:

import numpy as np
import pandas as pd

X = pd.DataFrame(dict(

x1 = [np.nan,1,1,0,np.nan],
x2 = ["a", np.nan, "b", np.nan, "a"],

)

X.dropna(inplace=True)
print (X)

The previous code returns a dataframe without missing values:

x1 x2
2 1.0 b

Feature-engine’s DropMissingData () wraps pandas dropna in a transformer
that will remove rows with na values while adhering to scikit-learn’s £it and
transform functionality.

Here we have a snapshot of DropMissingData()’s syntax:

import pandas as pd
import numpy as np

from feature_engine.imputation import DropMissingData

(continues on next page)

10.2. User Guide

51

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X = pd.DataFrame(dict(
x1 = [np.nan,1,1,0,np.nan],

x2 = ["a", np.nan, "b", np.nan, "a"],

)

dmd = DropMissingData()
dmd. fit(X)
dmd. transform(X)

The previous code returns a dataframe without missing values:

x1 x2
2 1.0 b
DropMissingData() allows you therefore to remove null values as part of
any scikit-learn feature engineering workflow.
DropMissingData
DropMissingData() has some advantages over pandas:
* It learns and stores the variables for which rows with nan values should be
deleted.
* It can be used within a Scikit-learn like pipeline.
With DropMissingData (), you can drop nan values from numerical and cat-
egorical variables. In other words, you can remove null values from numerical,
categorical or object datatypes.
You have the option to remove nan values from all columns or only from a
subset of them. Alternatively, you can remove rows if they have more than a
certain percentage of nan values.
Let’s better illustrate DropMissingData()’s functionality through code ex-
amples.
Dropna

Let’s start by importing pandas and numpy, and creating a toy dataframe with
nan values in 2 columns:

import numpy as np
import pandas as pd

from feature_engine.imputation import DropMissingData

X = pd.DataFrame(
dict(
x1=[2, 1, 1, 0, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],
x3=[2, 3, 4, 5, 5],

(continues on next page)

52 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

)
)
y = pd.Series([1, 2, 3, 4, 51)

print(X.head())

Below we see the new dataframe:

x1 x2 X3
0 2.0 a 2
1 1.0 NaN 3
2 1.0 b 4
3 0.0 NaN 5
4 NaN a 5

We can drop nan values across all columns as follows:

dmd = DropMissingData()
Xt = dmd. fit_transform(X)
Xt.head (O

We see the transformed dataframe without null values:

x1 x2 x3
0 2.0 a 2
2 1.0 b 4

By default, DropMissingData() will find and store the columns that had
missing data during fit, that is, in the training set. They are stored here:

dmd.variables_

['x1", "x2']

That means that every time that we apply transform() to a new dataframe,
the transformer will remove rows with nan values only in those columns.

If we want to force DropMissingData() to drop na across all columns, re-
gardless of whether they had nan values during fit, we need to set up the class
like this:

dmd = DropMissingData(missing_only=False)
Xt = dmd. fit_transform(X)

Now, when we explore the paramter variables_, we see that all the variables
in the train set are stored, and hence, will be used to remove nan values:

dmd.variables_

['x1', '"x2", 'x3']

10.2. User Guide 53

feature_engine Documentation, Release 1.7.0

Adjust target after dropna

DropMissingData () has the option to remove rows with nan from both train-
ing set and target variable. Like this, we can obtain a target that is aligned with
the resulting dataframe after the transformation.

The method transform_x_y removes rows with null values from the train set,
and then realigns the target. Let’s take a look:

Xt, yt = dmd.transform_x_y X, y)

Xt

Below we see the dataframe without nan:
x1 x2 x3

0 2.0 a 2

2 1.0 b 4

yt
And here we see the target with those rows corresponing to the remaining rows
in the transformed dataframe:

0 1

2 3

dtype: int64

Let’s check that the shape of the transformed dataframe and target are the same:

Xt.shape, yt.shape

We see that the resulting training set and target have each 2 rows, instead of
the 5 original rows.

(2, 3, @2,

Return the rows with nan

When we have a model in production, it might be useful to know which rows
are being removed by the transformer. We can obtain that information as fol-
lows:

dmd.return_na_data(X)

The previous command returns the rows with nan. In other words, it does the
opposite of transform(), or pandas.dropna.

x1 x2 X3
1 1.0 NaN 3
3 0.0 NaN 5
4 NaN a 5

54 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Dropna from subset of variables

We can choose to remove missing data only from a specific column or group of
columns. We just need to pass the column name or names to the variables
parameter:

Here, we’ll dropna from the variables “x1, “x3”.

dmd = DropMissingData(variables=[
~"x1", "x3"], missing_only=False)

Xt = dmd.fit_transform(X)
Xt.head ()

Below, we see the transformed dataframe. It removed the rows with nan in
“x1”, and we see that those rows with nan in “x2” are still in the dataframe:

x1 x2 X3
0 2.0 a 2
1 1.0 NaN 3
2 1.0 b 4
3 0.0 NaN 5

Only rows with nan in “x1” and “x3” are removed. We can corroborate that
by examining the variables_ parameter:

Important

When you indicate which variables should be examined to remove rows with
nan, make sure you set the parameter missing_only to the boolean False.
Otherwise, DropMissingData () will select from your list only those vari-
ables that showed nan values in the train set.

See for example what happens when we set up the class like this:

dmd = DropMissingData(variables=[
< "x1", "x3"], missing_only=True)

Xt = dmd.fit_transform(X)
dmd.variables_

Note, that we indicated that we wanted to remove nan from “x1”, “x3”. Yet,
only “x1” has nan in X. So the transformer learns that nan should be only
dropped from “x1”:

['x1"]

DropMissingData () took the 2 variables indicated in the list, and stored only
the one that showed nan in during fit. That means that when transforming
future dataframes, it will only remove rows with nan in “x1”.

In other words, if you pass a list of variables to impute and set
missing_only=True, and some of the variables in your list do not have miss-
ing data in the train set, missing data will not be removed during transform for
those particular variables.

When missing_only=True, the transformer “double checks” that the entered
variables have missing data in the train set. If not, it ignores them during
transform().

10.2. User Guide

55

feature_engine Documentation, Release 1.7.0

It is recommended to use missing_only=True when not passing a list of
variables to impute.

Dropna based on percentage of non-nan values

We can set DropMissingData() to require a percentage of non-NA values
in a row to keep it. We can control this behaviour through the threshold
parameter, which is equivalent to pandas.dropna’s thresh parameter.

If threshold=1, all variables need to have data to keep a row. If
threshold=0.5, 50% of the variables need to have data to keep a row. If
threshold=0.01, 10% of the variables need to have data to keep the row. If
threshold=None, rows with NA in any of the variables will be dropped.

Let’s see this with an example. We create a new dataframe that has different
proportion of non-nan values in every row.

X = pd.DataFrame(

dict(
x1=[2,

1,
x2=["a", np.nan,

1, np.nan, np.nan],
"b", np.nan, np.nan],

x3=[2, 3, 4, 5, np.nan],

)
)
X
We see that the bottom row has nan in all columns, row 3 has nan in 2 of 3
columns, and row 1 has nan in 1 variable:
x1 x2 x3
® 2.0 a 2.0
1 1.0 NaN 3.0
2 1.0 b 4.0
3 NaN NaN 5.0
4 NaN NaN NaN

Now, we can set DroplMissingData() to drop rows if >50% of its values are
nan:

dmd = DropMissingData(threshold=.5)
dmd. fit(X)
dmd. transform(X)

We see that the last 2 rows are dropped, because they have more than 50% nan
values.

N~
_ =N
(=== R

X2

=
o
T =2

SwWw N

o oo w

Instead, we can set class:DropMissingData() to drop rows if >70% of its
values are nan as follows:

56

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

dmd = DropMissingData(threshold=.3)
dmd. fit(X)
dmd. transform(X)

Now we see that only the last row was removed.

x1 X2 x3

0 2.0 a 2.0
1 1.0 NaN 3.0
2 1.0 b 4.0
3 NaN NaN 5.0

Scikit-learn compatible

DropMissingData() is fully compatible with the Scikit-learn API, so you
will find common methods that you also find in Scikit-learn transformers, like,
for example, the get_feature_names_out () method to obtain the variable
names in the transformed dataframe.

Pipeline

When we dropna from a dataframe, we then need to realign the target. We saw
previously that we can do that by using the method transform_x_y.

We can align the target with the resulting dataframe automatically from within
a pipeline as well, by utilizing Feature-engine’s pipeline.

Let’s start by importing the necessary libraries:

import numpy as np
import pandas as pd

from feature_engine.imputation import DropMissingData
from feature_engine.encoding import OrdinalEncoder
from feature_engine.pipeline import Pipeline

Let’s create a new dataframe with nan values in some rows, two numerical and
one categorical variable, and its corresponding target variable:

X = pd.DataFrame(
dict(
x1=[2, 1, 1, 0O, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],
x3=[2, 3, 4, 5, 5],
)
)

y = pd.Series([1, 2, 3, 4, 51)

X.head(O

Below, we see the resulting dataframe:

10.2. User Guide 57

feature_engine Documentation, Release 1.7.0

x1 X2 X3
0 2.0 a 2
1 1.0 NaN 3
2 1.0 b 4
3 0.0 NaN 5
4 NaN a 5

Let’s now set up a pipeline to dropna first, and then encode the categorical
variable by using ordinal encoding:

pipe = Pipeline(
[
("drop", DropMissingData()),
o ("enc", OrdinalEncoder(encoding_method="arbitrary")),
]
)

pipe.fit_transform(X, y)

When we apply fit and transform or fit_transform, we will obtain the
transformed training set only:

x1 x2 x3
0 2.0 0 2
2 1.0 1 4

To obtain the transform training set and target, we use transform_x_y:

pipe.fit(X,y)
Xt, yt = pipe.transform_x_y(X, y)

Xt
Here we see the transformed training set:
x1l x2 x3
® 2.0 0 2
2 1.0 1 4
yt
And here we see the re-aligned target variable:
0 1
2

And to wrap up, let’s add an estimator to the pipeline:

import numpy as np
import pandas as pd

from sklearn.linear_model import Lasso

from feature_engine.imputation import DropMissingData

(continues on next page)

58 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

from feature_engine.encoding import OrdinalEncoder
from feature_engine.pipeline import Pipeline

df = pd.DataFrame(
dict(
x1=[2, 1, 1, 0, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],
x3=[2, 3, 4, 5, 5],
)

)
y = pd.Series([1, 2, 3, 4, 51)

pipe = Pipeline(
[
("drop", DropMissingData()),

[

. ("enc", OrdinalEncoder(encoding_method="arbitrary")),

("lasso", Lasso(random_state=2))

)

pipe.fit(df, y)
pipe.predict(df)

array([2., 2.])

Dropna or fillna?

DropMissingData() has the same functionality than pandas.series.
dropna or pandas.dataframe.dropna’. If you want functionality compat-
ible with pandas. fillna instead, check our other imputation transformers.

Drop columns with nan

At the moment, Feature-engine does not have transformers that will find
columns with a certain percentage of missing values and drop them. Instead,
you can find those columns manually, and then drop them with the help of

DropFeatures from the selection module.

See also

Check out our tutorials on LagFeatures and WindowFeatures to see how to
combine DropMissingData () with lags or rolling windows, to create features

for forecasting.

10.2. User Guide

59

feature_engine Documentation, Release 1.7.0

Tutorials, books and courses

In the following Jupyter notebook, in our accompanying Github repository,
you will find more examples using DropMissingData().

* Jupyter notebook

For tutorials about this and other feature engineering methods check out our
online course:

Or read our book:

Fig. 13: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

60 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/DropMissingData.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Categorical Encoding

<packt>

Feature-engine’s categorical encoders replace variable strings by estimated or
arbitrary numbers. The following image summarizes the main encoder’s func-
tionality.

Summary of Feature-engine’s encoders characteristics

Feature Transformer Regres- | Classifica- | Multi- Description
e end OneHotEncoder () - = e Adds dummy variables to re t each cate-
Conlano y present each cate
gory
crearing, engincering, and OrdinalEncoder () Replaces categories with an integer
L CountFreuencyEncoder () Replaces categories with their count or fre-
SOLEDAD GALLI quenCy
MeanEncoder () X Replaces categories with the targe mean value
WoEEncoder () X X Replaces categories with the weight of the evi-
ire Engineering dence
DecisionTreeEncoder() Replaces categories with the predictions of a
decision tree
RareLabelEncoder() Groups infrequent categories into a single one

Feature-engine’s categorical encoders work only with categorical variables
by default. From version 1.1.0, you have the option to set the parameter ig-
nore_format to False, and make the transformers also accept numerical vari-
ables as input.

Monotonicity

Most Feature-engine’s encoders will return, or attempt to return monotonic
relationships between the encoded variable and the target. A monotonic rela-
tionship is one in which the variable value increases as the values in the other
variable increase, or decrease. See the following illustration as examples:

Monotonic relationships tend to help improve the performance of linear mod-
els and build shallower decision trees.

Regression vs Classification

Most Feature-engine’s encoders are suitable for both regression and classifi-
cation, with the exception of the WoEEncoder () and the PRatioEncoder ()
which are designed solely for binary classification.

Multi-class classification

Finally, some Feature-engine’s encoders can handle multi-class
targets off-the-shelf for example the OneHotEncoder(), the
:class:CountFrequencyEncoder()” and the DecisionTreeEncoder().

Note that while the MeanEncoder () and the OrdinalEncoder () will operate
with multi-class targets, but the mean of the classes may not be significant and
this will defeat the purpose of these encoding techniques.

Encoders

10.2. User Guide 61

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

A A
Monotonic Monotonic 4
3
4 v
”¢‘ :v
‘0’ “'
* es?®
* ‘II‘
‘Q" 0.
o* :
> >
? A
. Monotonic Non-monotonic
|)
"’ ..‘Il.“
“ .' u
. K4 .
“ L] .
[} : .
KR - \‘
4...II. '.
b 4
> >

OneHotEncoder

One-hot encoding is a method used to represent categorical data, where each
category is represented by a binary variable. The binary variable takes the
value 1 if the category is present and 0 otherwise. The binary variables are
also known as dummy variables.

To represent the categorical feature “is-smoker” with categories “Smoker” and
“Non-smoker”, we can generate the dummy variable “Smoker”, which takes
1 if the person smokes and O otherwise. We can also generate the variable
“Non-smoker”, which takes 1 if the person does not smoke and 0 otherwise.

The following table shows a possible one hot encoded representation of the
variable “is smoker”:

is smoker | smoker | non-smoker
smoker 1 0
non-smoker | 0 1
non-smoker | 0 1
smoker 1 0
non-smoker | 0 1

For the categorical variable Country with values England, Argentina, and
Germany, we can create three variables called England, Argentina, and
Germany. These variables will take the value of 1 if the observation is England,
Argentina, or Germany, respectively, and 0 otherwise.

62 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Encoding into k vs k-1 variables

A categorical feature with k unique categories can be encoded using k-1 binary
variables. For Smoker, k is 2 as it contains two labels (Smoker and Non-
Smoker), so we only need one binary variable (k - 1 = 1) to capture all of the
information.

In the following table we see that the dummy variable Smoker fully represents
the original categorical values:

is smoker | smoker
smoker 1
non-smoker | 0
non-smoker | 0
smoker 1
non-smoker | 0

For the Country variable, which has three categories (k=3; England, Ar-
gentina, and Germany), we need two (k - 1 = 2) binary variables to capture
all the information. The variable will be fully represented like this:

Country | England | Argentina
England 1 0
Argentina | 0 1
Germany | O 0

As we see in the previous table, if the observation is England, it will show the
value 1 in the England variable; if the observation is Argentina, it will show
the value 1 in the Argentina variable; and if the observation is Germany, it
will show zeroes in both dummy variables.

Like these, by looking at the values of the k-1 dummies, we can infer the orig-
inal categorical value of each observation.

Encoding into k-1 binary variables is well-suited for linear regression models.
Linear models evaluate all features during fit, thus, with k-1 they have all the
information about the original categorical variable.

There are a few occasions in which we may prefer to encode the categorical
variables with k binary variables.

Encode into k dummy variables if training decision trees based models or per-
forming feature selection. Decision tree based models and many feature selec-
tion algorithms evaluate variables or groups of variables separately. Thus, if
encoding into k-1, the last category will not be examined. In other words, we
lose the information contained in that category.

10.2. User Guide

63

feature_engine Documentation, Release 1.7.0

Binary variables

Encoding popular categories

OneHotEncoder

When a categorical variable has only 2 categories, like “Smoker” in our pre-
vious example, then encoding into k-1 suits all purposes, because the second
dummy variable created by one hot encoding is completely redundant.

One hot encoding can increase the feature space dramatically, particularly if we
have many categorical features, or the features have high cardinality. To con-
trol the feature space, it is common practice to encode only the most frequent
categories in each categorical variable.

When we encode the most frequent categories, we will create binary variables
for each of these frequent categories, and when the observation has a different,
less popular category, it will have a 0 in all binary variables. See the following
example:

var popular1 | popular2

popularl

popular2

popularl

non-popular

popular2

less popular

unpopular

(=) Nl Neol ol Hen) Ren) B Ranl

(=) Nl Nl Heo]) B Reo) N

lonely

As we see in the previous table, less popular categories are represented as a
group by showing zeroes in all binary variables.

Feature-engine’s OneHotEncoder () encodes categorical data as a one-hot nu-
meric dataframe.

OneHotEncoder () can encode into k or k-1 dummy variables. The behaviour
is specified through the drop_last parameter, which can be set to False for
k, or to True for k-1 dummy variables.

OneHotEncoder () can specifically encode binary variables into k-1 variables
(that is, 1 dummy) while encoding categorical features of higher cardinal-
ity into k dummies. This behaviour is specified by setting the parameter
drop_last_binary=True. This will ensure that for every binary variable
in the dataset, that is, for every categorical variable with ONLY 2 categories,
only 1 dummy is created. This is recommended, unless you suspect that the
variable could, in principle, take more than 2 values.

OneHotEncoder () can also create binary variables for the n most popular cat-
egories, n being determined by the user. For example, if we encode only the
6 more popular categories, by setting the parameter top_categories=6, the
transformer will add binary variables only for the 6 most frequent categories.

64

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Python implementation

The most frequent categories are those with the greatest number of observa-
tions. The remaining categories will show zeroes in each one of the derived
dummies. This behaviour is useful when the categorical variables are highly

cardinal to control the expansion of the feature space.

Note

The parameter drop_last is ignored when encoding the most popular cate-
gories.

Let’s look at an example of one hot encoding, using Feature-engine’s

OneHotEncoder () utilizing the Titanic Dataset.

We’ll start by importing the libraries, functions and classes, and loading the
data into a pandas dataframe and dividing it into a training and a testing set:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic

from feature_engine.encoding import OneHotEncoder

X, v = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the first 5 rows of the training data below:

pclass.,
. sex age sibsp parch fare cabin embarked
501 2.
— female 13.000000 0 1 19.5000 M
588 2.
— female 4.000000 1 1 23.0000 M
402 2.
— female 30.000000 1 ® 13.8583 M
1193 3.
— male 29.881135 0 0 7.7250 M
686 3.
— female 22.000000 0 0 7.7250 M

Let’s explore the cardinality of 4 of the categorical features:

X_train[['sex', 'pclass', 'cabin', 'embarked']].nunique()

10.2. User Guide

65

feature_engine Documentation, Release 1.7.0

sex
pclass

cabin
embarked
dtype: int64

SO w N

We see that the variable sex has 2 categories, pclass has 3 categories, the vari-
able cabin has 9 categories, and the variable embarked has 4 categories.

Let’s now set up the OneHotEncoder to encode 2 of the categorical variables
into k-1 dummy variables:

encoder = OneHotEncoder/(
variables=['cabin', 'embarked'],
drop_last=True,

)

encoder. fit(X_train)

With £it () the encoder learns the categories of the variables, which are stored
in the attribute encoder_dict_.

encoder.encoder_dict_

{lcabinv: [’M‘, 'E', 'C', 'D', IBI, IAI’ IFI’ le]’
"embarked': ['S', 'C', 'Q']}

The encoder_dict_ contains the categories that will be represented by
dummy variables for each categorical variable.

With transform, we go ahead and encode the variables. Note that by default,
the OneHotEncoder () drops the original categorical variables, which are now
represented by the one-hot array.

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

Below we see the one hot dummy variables added to the dataset and the original
variables are no longer in the dataframe:

pclass sex.
< age sibsp parch fare cabin_ M cabin_E \
501 2 female.
- 13.000000 0 1 19.5000 1 0
588 2 female.,
— 4.000000 1 1 23.0000 1 0
402 2 female.
— 30.000000 1 ® 13.8583 1 0
1193 3 4
—male 29.881135 0 ® 7.7250 1 0
686 3 female.
— 22.000000 0 0 7.7250 1 0

(continues on next page)

66 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

D cabin_B cabin_A cabin_F

cabin_

cabin_C
501 (VA
. 0
588 0.
. 0
402 0.
. 0
1193 0.
N 0
686 0.
. 0
embarked_C
501 0
588 0
402 1
1193 0
686 0

0

embarked_

Q
0
0
0
1
1

cabin_T embarked_S \

0 0 1
0 0 1
0 0 0
0 0 0
0 0 0

Finding categorical variables automatically

Feature-engine’s OneHotEncoder () can automatically find and encode all
categorical features in the pandas dataframe. Let’s show that with an example.

Let’s set up the OneHotEncoder to find and encode all categorical features:

encoder = OneHotEncoder(
variables=None,
drop_last=True,

)

encoder.fit(X_train)

With fit, the encoder finds the categorical features and identifies it’s unique
categories. We can find the categorical variables like this:

encoder.variables_

['sex', 'cabin',

'embarked']

And we can identify the unique categories for each variables like this:

encoder.encoder_dict_

{'sex': ['female'],

'cabin':

'embarked’:

L,
L'st,

'E|Y 'C|Y 'D|Y
‘¢, Q1Y

lBl’ lAl, lFl, lTl]’

We can now encode the categorical variables:

10.2. User Guide

67

feature_engine Documentation, Release 1.7.0

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

And here we see the resulting dataframe:

pclass age.
-, sibsp parch fare sex_female cabin M cabin E \
501 2 13.000000.
.) 1 19.5000 1 1 0
588 2 4.000000.
o 1 1 23.0000 1 1 0
402 2 30.000000.
N 1 ® 13.8583 1 1 0
1193 3 29.881135.
- 0 ® 7.7250 0 1 0
686 3 22.000000.
o) ® 7.7250 1 1 0

cabin_C cabin_
D cabin_B cabin_A cabin_F cabin_T embarked_S \
501 (VA
. 0 0 0 0 0 1
588 0.
N 0 0 0 0 0 1
402 (VN
. 0 0 0 0 0 0
1193 0.
. 0 0 0 0 0 0
686 0.
. 0 0 0 0 0 0
embarked_C embarked_
501 0
588 0
402 1
1193 0
0

Q
0
0
0
1
686 1

Encoding variables of type numeric

By default, Feature-engine’s OneHotEncoder () will only encode categorical
features. If you attempt to encode a variable of numeric dtype, it will raise an
error. To avoid this error, you can instruct the encoder to ignore the data type
format as follows:

enc = OneHotEncoder(
variables=["'pclass'],
drop_last=True,
ignore_format=True,

)

(continues on next page)

68 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

enc.fit(X_train)

train_t = enc.transform(X_train)
test_t = enc.transform(X_test)

print(train_t.head())

Note that pclass had numeric values instead of strings, and it was one hot en-
coded by the transformer into 2 dummies:

sex o

— age sibsp parch fare cabin embarked pclass_2 \

501 female 13.

— 000000 0 1 19.5000 M S 1

588 female .

—4.000000 1 1 23.0000 M S 1

402 female 30.

- 000000 1 ® 13.8583 M C 1

1193 male 29.

-»881135 0 ® 7.7250 M Q 0

686 female 22.

—000000 0 ® 7.7250 M Q 0
pclass_3

501 0

588 0

402 0

1193 1

686 1

Encoding binary variables into 1 dummy

With Feature-engine’s OneHotEncoder () we can encode all categorical vari-
ables into k dummies and the binary variables into k-1 by setting the encoder
as follows:

ohe = OneHotEncoder(
variables=['sex', 'cabin', 'embarked'],
drop_last=False,
drop_last_binary=True,

)

train_t = ohe.fit_transform(X_train)
test_t = ohe.transform(X_test)

print(train_t.head())

As we see in the following input, for the variable sex, we have only have 1
dummy, and for all the rest we have k dummies:

10.2. User Guide 69

feature_engine Documentation, Release 1.7.0

pclass age.
< sibsp parch fare sex_female cabin_M cabin_E \
501 2 13.000000.
. 0 1 19.5000 1 1 0
588 2 4.000000..
. 1 1 23.0000 1 1 0
402 2 30.000000.
. 1 ® 13.8583 1 1 0
1193 3 29.881135.
o 0 ® 7.7250 0 1 0
686 3 22.000000.
. 0 0 7.7250 1 1 0
cabin_C,
<, cabin_D cabin_B cabin_A cabin_F cabin_T cabin_G \
501 o
-~ 0 0 0 0 0 0 0
588 o
- 0 0 0 0 0 0 0
402 o
- 0 0 0 0 0 0 0
1193 o
-~ 0 0 0 0 0 0 0
686 o
- 0 0 0 0 0 0 0
embarked_S embarked_C embarked_Q embarked_Missing
501 1 0 0 0
588 1 0 0 0
402 0 1 0 0
1193 0 0 1 0

Encoding frequent categories

If the categorical variables are highly cardinal, we may end up with very big
datasets after one hot encoding. In addition, if some of these variables are
fairly constant or fairly similar, we may end up with one hot encoded features
that are highly correlated, if not identical. To avoid this behaviour, we can
encode only the most frequent categories.

To encode the 2 most frequent categories of each categorical column, we set
up the transformer as follows:

ohe = OneHotEncoder(
top_categories=2,
variables=['pclass', 'cabin', 'embarked'],
ignore_format=True,

)

train_t = ohe.fit_transform(X_train)
test_t = ohe.transform(X_test)

(continues on next page)

70 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

print(train_t.head())

As we see in the resulting dataframe, we created only 2 dummies per variable:

sex
-, sibsp parch
501 female 13.
. 0 1

588 female 4

. 1

402 female 30.
. 1 0
1193 male 29.
. 0 0
686 female 22.
. 0 0

age.

fare
000000,
19.5000

.000000.,

23.0000
000000..
13.8583
881135,

7.7250
000000..

7.7250

cabin_C embarked_

501 0
588 0
402 0
1193 0
686 0

pclass_3 pclass_1

0

embarked_

@D DFEk =k Wn

C
0
0
1
0
0

0

cabin_ M \

1

Finally, if we want to obtain the column names in the resulting dataframe we
can do the following:

encoder.get_feature_names_out()

We see the names of the columns below:

['sex',
'age',
'sibsp’,
'parch',
'fare',
'pclass_3"',
'pclass_1",
'cabin_M',
'cabin_C',
'embarked_S"',
'embarked_C']

10.2. User Guide

71

feature_engine Documentation, Release 1.7.0

Considerations

Tutorials, books and courses

Encoding categorical variables into k dummies, will handle unknown cate-
gories automatically. Those features not seen during training will show zeroes
in all dummies.

Encoding categorical features into k-1 dummies, will cause unseen data to be
treated as the category that is dropped.

Encoding the top categories will make unseen categories part of the group of
less popular categories.

If you add a big number of dummy variables to your data, many may be iden-
tical or highly correlated. Consider dropping identical and correlated features
with the transformers from the selection module.

For alternative encoding methods used in data science check the
OrdinalEncoder() and other encoders included in the encoding mod-
ule.

For more details into OneHotEncoder ()’s functionality visit:
Jupyter notebook

For tutorials about this and other data preprocessing methods check out our
online course:

Or read our book:

Fig. 15: Feature Engineering for Machine Learning

72

Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/OneHotEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

CountFrequencyEncoder

<packt>

Count encoding and frequency encoding are 2 categorical encoding techniques
that were commonly used during data preprocessing in Kaggle’s data science
competitions, even when their predictive value is not immediately obvious.

Count encoding consists of replacing the categories of categorical features by
their counts, which are estimated from the training set. For example, in the
variable color, if 10 observations are blue and 5 observations are red, blue will

Feature be replaced by 10 and red by 5.
ineering Frequency encoding consists of replacing the labels of categorical data with
Cookbook their frequency, which is also estimated from the training set. Then, in the
N variable City, if London appears in 10% of the observations and Bristol in 1%,
R e London will be replaced by 0.1 and Bristol with 0.01.

SOLEDAD GALLI

Count and frequency encoding in machine learning

ire Engineerin
£ £ We’d use count encoding or frequency encoding when we think that the repre-

sentation of the categories in the dataset has some sort of predictive value. To
be honest, the only example that I can think of where count encoding could be
useful is in sales forecasting or sales data analysis scenarios, where the count
of a product or an item represents its popularity. In other words, we may be
more likely to sell a product with a high count.

Count encoding and frequency encoding can be suitable for categorical vari-
ables with high cardinality because these types of categorical encoding will
cause what is called collisions: categories that are present in a similar number
of observations will be replaced with similar, if not the same values, which
reduces the variability.

This, of course, can result in the loss of information by placing two categories
that are otherwise different in the same pot. But on the other hand, if we are
using count encoding or frequency encoding, we have reasons to believe that
the count or the frequency are a good indicator of predictive performance or
somehow capture data insight, so that categories with similar counts would
show similar patterns or behaviors.

10.2. User Guide 73

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Count and Frequency encoding with Feature-engine

The CountFrequencyEncoder () replaces categories of categorical features
by either the count or the percentage of observations each category shows in
the training set.

With CountFrequencyEncoder () we can automatically encode all categor-
ical features in the dataset, or only a subset of them, by passing the variable
names in a list to the variables parameter when we set up the encoder.

By default, CountFrequencyEncoder () will encode only categorical data.
If we want to encode numerical values, we need to explicitly say so by setting
the parameter ignore_format to True.

Count and frequency encoding with unseen categories

When we learn mappings from strings to numbers, either with count encoding
or other encoding techniques like ordinal encoding or target encoding, we do so
by observing the categories in the training set. Hence, we won’t have mappings
for categories that appear only in the test set. These are the so-called “unseen
categories.”

When encountering unseen categories, CountFrequencyEncoder () will ig-
nore them by default, which means that unseen categories will be replaced with
missing values. We can instruct the encoder to raise an error when a new cat-
egory is encountered, or alternatively, to encode unseen categories with zero.

Count encoding vs other encoding methods

Python example

Count and frequency encoding, similar to ordinal encoding and contrarily to
one-hot encoding, feature hashing, or binary encoding, does not increase the
dataset dimensionality. From one categorical variable, we obtain one numeri-
cal feature.

Let’s examine the functionality of CountFrequencyEncoder () by using the
Titanic dataset. We’ll start by loading the libraries and functions, loading the
dataset, and then splitting it into a training and a testing set.

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import CountFrequencyEncoder

X, v = load_titanic(

return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

X_train, X_test, y_train, y_test = train_test_split(

(continues on next page)

74

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting dataframe with the predictor variables below:

pclass.
. sex age
501 2.
— female 13.000000
588 2.
-, female 4.000000
402 2.
— female 30.000000
1193 3.
< male 29.881135
686 3.

- female 22.000000

sibsp parch

0

1

19.

23

13.

fare cabin embarked

5000

.0000

8583

.7250

.7250

M

M

Q

Q

Count encoding

This dataset has three obvious categorical features: cabin, embarked, and sex,
and in addition, pclass could also be handled as a categorical.

We'll start by encoding the three categorical variables using their counts, that
is, replacing the strings with the number of times each category is present in

the training dataset.

encoder = CountFrequencyEncoder (
encoding_method="count"',

1

variables=['cabin',

)

encoder. fit(X_train)

sex',

'embarked'],

With fit(), the count encoder learns the counts of each category. We can

inspect the counts as follows:

encoder.encoder_dict_

We see the counts of each category for each of the three variables in the fol-
lowing output:

{'cabin': {'M': 702,
'c': 71,

'B': 42,
'E': 32,
'D': 32,
'A': 17,
'F': 15,
'G': 4,

(continues on next page)

10.2. User Guide

75

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'T': 13,
'sex': {'male': 581, 'female': 335},
'embarked': {'S': 652, 'C': 179, 'Q': 83, 'Missing': 2}}

Now, we can go ahead and encode the variables:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

We see the resulting dataframe where the categorical features are now replaced
with integer values corresponding to the category counts:

pclass.
< sex age sibsp parch fare cabin embarked
501 2.
< 335 13.000000 0 1 19.5000 702 652
588 2.
< 335 4.000000 1 1 23.0000 702 652
402 2.
< 335 30.000000 1 ® 13.8583 702 179
1193 3.
< 581 29.881135 0 ® 7.7250 702 83
686 3.
< 335 22.000000 0 ® 7.7250 702 83

We can now use the encoded dataframes to train machine learning models.

Frequency encoding

Let’s now perform frequency encoding. We’ll encode 2 categorical and 1 nu-
merical variable, hence, we need to set the encoder to ignore the variable’s

type:

encoder = CountFrequencyEncoder(
encoding_method="frequency',
variables=['cabin', 'pclass', 'embarked'],
ignore_format=True,

)

Now, we fit the frequency encoder to the train set and transform it straightaway,
and then we transform the test set:

t_train = encoder.fit_transform(X_train)
t_test = encoder.transform(X_test)

test.head()

In the following output we see the transformed dataframe, where the categor-
ical features are now encoded into their frequencies:

76 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

pclass sex.
. age sibsp parch fare cabin embarked
1139 0.543668 male.
— 38.000000 0 ® 7.8958 0.766376 0.71179
533 0.205240 female.
— 21.000000 0 1 21.0000 0.766376 0.71179
459 0.205240 male.
— 42.000000 1 ® 27.0000 0.766376 0.71179
1150 0.543668 male.
- 29.881135 0 ® 14.5000 0.766376 0.71179
393 0.205240 male.
— 25.000000 0 ® 31.5000 0.766376 0.71179

With £fit() the encoder learns the frequencies of each category, which are
stored in its encoder_dict_ parameter. We can inspect them like this:

encoder.encoder_dict_

In the encoder_dict_ we find the frequencies for each one of the unique
categories of each variable to encode. This way, we can map the original value
to the new value.

{'cabin': {'M': 0.7663755458515283,

'C': 0.07751091703056769,

'B': 0.04585152838427948,

'"E': 0.034934497816593885,
'D': 0.034934497816593885,
'A': 0.018558951965065504,
'F': 0.016375545851528384,
'G': 0.004366812227074236,
'T': 0.001091703056768559},

'pclass': {3: 0.5436681222707423,
1: 0.25109170305676853,
2: 0.2052401746724891},
'embarked': {'S': 0.7117903930131004,
"C': 0.19541484716157206,
'Q': 0.0906113537117904,
'Missing': 0.002183406113537118}}

We can now use these dataframes to train machine learning algorithms.

With the method inverse_transform, we can transform the encoded
dataframes back to their original representation, that is, we can replace the
encoding with the original categorical values.

10.2. User Guide 77

feature_engine Documentation, Release 1.7.0

Additional resources

In the following notebook, you can find more details into the
CountFrequencyEncoder() functionality and example plots with the
encoded variables:

* Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 17: Feature Engineering for Machine Learning

Our book:

Fig. 18: Feature Engineering for Time Series Forecasting

78 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/CountFrequencyEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-engineering-for-forecasting

<packt>

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Both our book and courses are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

OrdinalEncoder

The OrdinalEncoder () replaces the categories by digits, starting from 0O to
k-1, where k is the number of different categories. If you select “arbitrary”
in the encoding_method, then the encoder will assign numbers as the labels
appear in the variable (first come first served). If you select “ordered”, the
encoder will assign numbers following the mean of the target value for that
label. So labels for which the mean of the target is higher will get the number
0, and those where the mean of the target is smallest will get the number k-1.
This way, we create a monotonic relationship between the encoded variable
and the target.

Arbitrary vs ordered encoding

Ordered ordinal encoding: for the variable colour, if the mean of the target
for blue, red and grey is 0.5, 0.8 and 0.1 respectively, blue is replaced by 1, red
by 2 and grey by 0.

The motivation is to try and create a monotonic relationship between the target
and the encoded categories. This tends to help improve performance of linear
models.

Arbitrary ordinal encoding: the numbers will be assigned arbitrarily to the
categories, on a first seen first served basis.

Let’s look at an example using the Titanic Dataset.

First, let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import OrdinalEncoder

X, v = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting data below:

10.2. User Guide

79

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

pclass..
. sex age sibsp parch fare cabin embarked
501 2.
—, female 13.000000 0 1 19.5000 M S
588 2.
—, female 4.000000 1 1 23.0000 M S
402 2.
—, female 30.000000 1 ® 13.8583 M C
1193 3.
— male 29.881135 0 0O 7.7250 M Q
686 3.
—, female 22.000000 0 ® 7.7250 M Q

Now, we set up the OrdinalEncoder () to replace the categories by strings
based on the target mean value and only in the 3 indicated variables:

encoder = OrdinalEncoder(
encoding_method="ordered",
variables=['pclass', 'cabin', 'embarked'],
ignore_format=True)

encoder. fit(X_train, y_train)

With £fit() the encoder learns the mappings for each category, which are
stored in its encoder_dict_ parameter:

encoder.encoder_dict_

In the encoder_dict_ we find the integers that will replace each one of the
categories of each variable that we want to encode. This way, we can map the
original value of the variable to the new value.

{'pclass': {3: 0, 2: 1, 1: 2%,
'cabin': {'T': O,

'M': 1,
'G': 2,
'A': 3,
'C': 4,
'F': 5,
'D': 6,
'E': 7,
'B': 8},

"embarked': {'S': 0, 'Q': 1, 'C': 2, 'Missing': 3}}

We can now go ahead and replace the original strings with the numbers:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

Below we see the resulting dataframe, where the original variable values are
now replaced with integers:

80 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

pclass .
-, sex age sibsp parch fare cabin embarked
501 1 female.,
— 13.000000 0 1 19.5000 1 0
588 1 female.
< 4.000000 1 1 23.0000 1 0
402 1 female.
— 30.000000 1 ® 13.8583 1 2
1193 0 .
-, male 29.881135 0 0 7.7250 1 1
686 ® female.
— 22.000000 0 ® 7.7250 1 1

Additional resources

In the following notebook, you can find more details into the
OrdinalEncoder()’s functionality and example plots with the encoded
variables:

* Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Fig. 20: Feature Engineering for Machine Learning

10.2. User Guide 81

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/OrdinalEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

Mean encoding is the process of replacing the categories in categorical features
by the mean value of the target variable shown by each category. For exam-
ple, if we are trying to predict the default rate (that’s the target variable), and
our dataset has the categorical variable City, with the categories of London,
Manchester, and Bristol, and the default rate per city is 0.1, 0.5, and 0.3, re-
spectively, with mean encoding, we would replace London by 0.1, Manchester
by 0.5, and Bristol by 0.3.

Mean encoding, together with one hot encoding and ordinal encoding, belongs
to the most commonly used categorical encoding techniques in data science.

Itis said that mean encoding can easily cause overfitting. That’s because we are
capturing some information about the target into the predictive features during
the encoding. More importantly, the overfitting can be caused by encoding
categories with low frequencies with mean target values that are unreliable. In
short, the mean target values seen for those categories in the training set do not
hold for test data or new observations.

When the categories in the categorical features have a good representation, or,
in other words, when there are enough observations in our dataset that show
the categories that we want to encode, then taking the simple average of the
target variable per category is a good approximation. We can trust that a new
data point, say from the test data, that shows that category will also have a
target value that is similar to the target mean value that we calculated for said
category during training.

However, if there are only a few observations that show some of the categories,
then the mean target value for those categories will be unreliable. In other
words, the certainty that we have that a new observation that shows this cate-
gory will have a mean target value close to the one we estimated decreases.

To account for the uncertainty of the encoding values for rare categories, what
we normally do is “blend” the mean target variable per category with the gen-
eral mean of the target, calculated over the entire training dataset. And this
blending is proportional to the variability of the target within that category
and the category frequency.

engine.
MeanEncoder
<packt>
Feature
ineering
Cookbook
creating, engineering, and
d machine learning models
SOLEDAD GALLI
ire Engineering
Overfitting
82

Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Smoothing

High cardinality

To avoid overfitting, we can determine the mean target value estimates as a
mixture of two values: the mean target value per category (known as the pos-
terior) and the mean target value in the entire dataset (known as the prior).

The following formula shows the estimation of the mean target value with
smoothing:

mapping = (w;)posterior + (1 — w;)prior

The prior and posterior values are “blended” using a weighting factor (wi).
This weighting factor is a function of the category group size (n_i) and the
variance of the target in the data (t) and within the category (s):

w; = nt/(s + n;t)

When the category group is large, the weighing factor is close to 1, and there-
fore more weight is given to the posterior (the mean of the target per category).
When the category group size is small, then the weight gets closer to 0, and
more weight is given to the prior (the mean of the target in the entire dataset).

In addition, if the variability of the target within that category is large, we also
give more weight to the prior, whereas if it is small, then we give more weight
to the posterior.

In short, adding smoothing can help prevent overfitting in those cases where
categorical data have many infrequent categories or show high cardinality.

High cardinality refers to a high number of unique categories in the categorical
features. Mean encoding was specifically designed to tackle highly cardinal
variables by taking advantage of this smoothing function, which will essen-
tially blend infrequent categories together by replacing them with values very
close to the overall target mean calculated over the training data.

Another encoding method that tackles cardinality out of the box is count en-
coding. See for example CountFrequencyEncoder.

To account for highly cardinal variables in alternative encoding methods, you
can group rare categories together by using the RareLabelEncoder.

Alternative Python implementations of mean encoding

In Feature-engine, we blend the probabilities considering the target variability
and the category frequency. In the original paper, there are alternative for-
mulations to determine the blending. If you want to check those out, use the
transformers from the Python library Category encoders:

* M-estimate

 Target Encoder

10.2.

User Guide

83

https://contrib.scikit-learn.org/category_encoders/mestimate.html
https://contrib.scikit-learn.org/category_encoders/targetencoder.html

feature_engine Documentation, Release 1.7.0

Mean encoder

Unseen categories

Feature-engine’s MeanEncoder () replaces categories with the mean of the
target per category. By default, it does not implement smoothing. That means
that it will replace categories by the mean target value as determined during
training over the training data set (just the posterior).

To apply smoothing using the formulation that we described earlier, set the
parameter smoothing to "auto". That would be our recommended solution.
Alternatively, you can set the parameter smoothing to any value that you want,
in which case the weighting factor wi will be calculated like this:

w; =n; /(s +n;)

where s is the value your pass to smoothing.

Unseen categories are those labels that were not seen during training. Or in
other words, categories that were not present in the training data.

With the MeanEncoder (), we can take care of unseen categories in 1 of 3
ways:
We can set the mean encoder to ignore unseen categories, in which case those

categories will be replaced by nan.

We can set the mean encoder to raise an error when it encounters unseen cate-
gories. This is useful when we don’t expect new categories for those categor-
ical variables.

We can instruct the mean encoder to replace unseen or new categories with the
mean of the target shown in the training data, that is, the prior.

Mean encoding and machine learning

Python examples

Feature-engine’s MeanEncoder () can perform mean encoding for regression
and binary classification datasets. At the moment, we do not support multi-
class targets.

In the following sections, we’ll show the functionality of MeanEncoder () us-
ing the Titanic Dataset.

First, let’s load the libraries, functions and classes:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import MeanEncoder

To avoid data leakage, it is important to separate the data into training and test
sets. The mean target values, with or without smoothing, will be determined
using the training data only.

84

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Let’s load and split the data:

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting dataframe containing 3 categorical columns: sex, cabin
and embarked:

pclass..
. sex age sibsp parch fare cabin embarked
501 2.
—, female 13.000000 0 1 19.5000 M S
588 2.
—, female 4.000000 1 1 23.0000 M S
402 2.
— female 30.000000 1 ® 13.8583 M C
1193 3.
— male 29.881135 0 0 7.7250 M Q
686 3.
— female 22.000000 0 0 7.7250 M Q

Simple mean encoding

Let’s set up the MeanEncoder () to replace the categories in the categorical
features with the target mean, without smoothing:

encoder = MeanEncoder (
variables=['cabin', 'sex', 'embarked'],

)

encoder. fit(X_train, y_train)

With £fit() the encoder learns the target mean value for each category and
stores those values in the encoder_dict_ attribute:

encoder.encoder_dict_

The encoder_dict_ contains the mean value of the target per category, per
variable. We can use this dictionary to map the numbers in the encoded fea-
tures to the original categorical values.

{'cabin': {'A': 0.5294117647058824,
'B': 0.7619047619047619,

(continues on next page)

10.2. User Guide 85

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'C': 0.5633802816901409,
'D': 0.71875,

'E': 0.71875,

'F': 0.6666666666666666,
'G': 0.5,

'M': 0.30484330484330485,
'T': 0.0},

'sex': {'female
—"': 0.7283582089552239, 'male': 0.18760757314974183}%,
'embarked': {'C': 0.553072625698324,

'Missing': 1.0,

'Q': 0.37349397590361444,

'S': 0.3389570552147239}}

We can now go ahead and replace the categorical values with the numerical
values:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

Below we see the resulting dataframe, where the categorical values are now
replaced with the target mean values:

pclass sex.,
. age sibsp parch fare cabin embarked
501 2 0.728358.
— 13.000000 0 1 19.5000 0.304843 0.338957
588 2 0.728358.
< 4.000000 1 1 23.0000 0.304843 0.338957
402 2 0.728358.
— 30.000000 1 ® 13.8583 0.304843 0.553073
1193 3 0.187608.
< 29.881135 0 ® 7.7250 0.304843 0.373494
686 3 0.728358.
— 22.000000 0 ® 7.7250 0.304843 0.373494

Mean encoding with smoothing

By default, MeanEncoder () determines the mean target values without blend-
ing. If we want to apply smoothing to control the cardinality of the variable
and avoid overfitting, we set up the transformer as follows:

encoder = MeanEncoder (
variables=None,
smoothing="auto"

)

encoder. fit(X_train, y_train)

In this example, we did not indicate which variables to encode.

86 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

MeanEncoder () can automatically find the categorical variables, which
are stored in one of its attributes:

encoder.variables_

Below we see the categorical features found by MeanEncoder ():

['sex', 'cabin', 'embarked']

We can find the categorical mappings calculated by the mean encoder:

encoder.encoder_dict_

Note that these values are different to those determined without smoothing:

{'sex': {'female
—': 0.7275051072923914, 'male': 0©.18782635616273297},
'cabin': {'A': 0.5210189753697639,

'B': 0.755161569137655,

'C': 0.5608140829162441,
'D': 0.7100896537503179,
'E': 0.7100896537503179,
'"F': 0.6501082490288561,
'G': 0.47606795923242295,
'M': 0.3049458046855866,
'T': 0.03%,

embarked': {'C': 0.552100581239763,
'Missing': 1.0,

'Q': 0.3736336816011083,

'S'": 0.3390242994568531}}

We can now go ahead and replace the categorical values with the numerical
values:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

Below we see the resulting dataframe with the encoded features:

pclass sex.
< age sibsp parch fare cabin embarked
501 2 0.727505.
— 13.000000 0 1 19.5000 0.304946 0.339024
588 2 0.727505.
— 4.000000 1 1 23.0000 0.304946 0.339024
402 2 0.727505.
— 30.000000 1 ® 13.8583 0.304946 0.552101
1193 3 0.187826.
— 29.881135 0 ® 7.7250 0.304946 0.373634
686 3 0.727505.
— 22.000000 0 ® 7.7250 0.304946 0.373634

10.2. User Guide 87

feature_engine Documentation, Release 1.7.0

We can now use this dataframes to train machine learning models for regres-
sion or classification.

Mean encoding variables with numerical values

MeanEncoder (), and all Feature-engine encoders, have been designed to work
with variables of type object or categorical by default. If you want to encode
variables that are numeric, you need to instruct the transformer to ignore the
data type:

encoder = MeanEncoder(
variables=['cabin', 'pclass'],
ignore_format=True,

t_train = encoder.fit_transform(X_train, y_train)
t_test = encoder.transform(X_test)

After encoding the features we can use the data sets to train machine learning
algorithms.

Last thing to note before closing in is that mean encoding does not increase
the dimensionality of the resulting dataframes: from 1 categorical feature, we
obtain 1 encoded variable. Hence, this encoding method is suitable for pre-
dictive modeling that uses models that are sensitive to the size of the feature
space.

Additional resources

In the following notebook, you can find more details into the MeanEncoder ()
functionality and example plots with the encoded variables:

* Jupyter notebook

For tutorials about this and other feature engineering methods check out these
resources:

Fig. 22: Feature Engineering for Machine Learning

88 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/MeanEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 23: Feature Engineering for Time Series Forecasting

Both our book and courses are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

WoEEncoder

<packt>

—q“..
..-.-.‘

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

The WoEEncoder () replaces categories by the weight of evidence (WoE). The
WoE was used primarily in the financial sector to create credit risk scorecards.

The weight of evidence is given by:
log(p(X = xj|Y =1)/p(X = zj|Y =0))

The WoE is determined as follows:

We calculate the percentage positive cases in each category of the total of all
positive cases. For example 20 positive cases in category A out of 100 total
positive cases equals 20 %. Next, we calculate the percentage of negative cases
in each category respect to the total negative cases, for example 5 negative
cases in category A out of a total of 50 negative cases equals 10%. Then we
calculate the WoE by dividing the category percentages of positive cases by the
category percentage of negative cases, and take the logarithm, so for category
A in our example WoE = 1og(20/10).

10.2. User Guide

89

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Note
» If WoE values are negative, negative cases supersede the positive cases.
» If WoE values are positive, positive cases supersede the negative cases.

* And if WoE is 0, then there are equal number of positive and negative exam-
ples.

Encoding into WoE:
* Creates a monotonic relationship between the encoded variable and the target
* Returns variables in a similar scale

Note

This categorical encoding is exclusive for binary classification.

Let’s look at an example using the Titanic Dataset.

First, let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic

from feature_
—.engine.encoding import WoEEncoder, RareLabelEncoder

X, vy = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train

.head())

We see the resulting data below:

pclass..

< sex age sibsp parch fare cabin embarked

501 2.

— female 13.000000 0 1 19.5000 M S

588 2.

— female 4.000000 1 1 23.0000 M S

402 2.

— female 30.000000 1 ® 13.8583 M C

1193 3.

— male 29.881135 0 ® 7.7250 M Q

686 3.

— female 22.000000 0 ® 7.7250 M Q
Before we encode the variables, I would like to group infrequent categories into
one category, called ‘Rare’. For this, I will use the RareLabelEncoder() as
follows:

90 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

set up a rare label encoder
rare_encoder = RarelLabelEncoder (

tol=0.1,
n_categories=2,
variables=["'cabin', 'pclass', 'embarked'],

ignore_format=True,

)

fit and transform data
train_t = rare_encoder.fit_transform(X_train)
test_t = rare_encoder.transform(X_train)

Now, we set up the WoEEncoder () to replace the categories by the weight of
the evidence, only in the 3 indicated variables:

set up a weight of evidence encoder
woe_encoder = WoEEncoder(
variables=["'cabin', 'pclass', 'embarked'],
ignore_format=True,

)

fit the encoder
woe_encoder. fit(train_t, y_train)

With fit () the encoder learns the weight of the evidence for each category,
which are stored in its encoder_dict_ parameter:

woe_encoder.encoder_dict_

In the encoder_dict_ we find the WoE for each one of the categories of the
variables to encode. This way, we can map the original values to the new value.

{'cabin':_
<{'M': -0.35752781962490193, 'Rare': 1.083797390800775},
'pclass': {'1': 0.9453018143294478,

'2': 0.21009172435857942,

'3': -0.5841726684724614},

'embarked': {'C': 0.679904786667102,

'Rare': 0.012075414091446468,

'S': -0.20113381737960143}}

Now, we can go ahead and encode the variables:

train_t = woe_encoder.transform(train_t)
test_t = woe_encoder.transform(test_t)

print(train_t.head())

Below we see the resulting dataset with the weight of the evidence:

pclass sex.
< age sibsp parch fare cabin embarked
501 0.210092 female.
— 13.000000 0 1 19.5000 -0.357528 -0.201134

(continues on next page)

10.2. User Guide 91

feature_engine Documentation, Release 1.7.0

(continued from previous page)

588 0.210092 female.

< 4.000000 1 1 23.0000 -0.357528 -0.201134
402 0.210092 female.
— 30.000000 1 0 13.8583 -0.357528 0.679905
1193 -0.584173 male.,
— 29.881135 0 0 7.7250 -0.357528 0.012075
686 -0.584173 female.
— 22.000000 0 0 7.7250 -0.357528 0.012075

WoE for continuous variables

In credit scoring, continuous variables are also transformed using the WoE. To
do this, first variables are sorted into a discrete number of bins, and then these
bins are encoded with the WoE as explained here for categorical variables.
You can do this by combining the use of the equal width, equal frequency or
arbitrary discretisers.

Additional resources

In the following notebooks, you can find more details into the WoEEncoder ()
functionality and example plots with the encoded variables:

* WOE in categorical variables
* WOE in numerical variables

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Chapter 10. Table of Contents

Fig. 25: Feature Engineering for Machine Learning

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/WoEEncoder.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualFrequencyDiscretiser_plus_WoEEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

DecisionTreeEncoder

The DecisionTreeEncoder () replaces categories in the variable with the
predictions of a decision tree.

The transformer first encodes categorical variables into numerical variables
using OrdinalEncoder (). You have the option to have the integers assigned
to the categories as they appear in the variable, or ordered by the mean value
of the target per category. You can regulate this behaviour with the parameter
Feature encoding_method. As decision trees are able to pick non-linear relation-

ineerin g ships, replacing categories by arbitrary numbers should be enough in practice.
Cookbook After this, the transformer fits with this numerical variable a decision tree to
predict the target variable. Finally, the original categorical variable is replaced
creating, engineering, and
d meiching laarning models by the predictions of the decision tree.
SOLEDAD GALLI The motivation of the DecisionTreeEncoder() is to try and create mono-

tonic relationships between the categorical variables and the target.

Let’s look at an example using the Titanic Dataset.

ire Engineering

First, let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import DecisionTreeEncoder

X, v = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

print(X_train[['cabin', 'pclass', 'embarked']].head(10))

We will encode the following categorical variables:

10.2. User Guide 93

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

cabin pclass embarked

501 M 2 S
588 M 2 S
402 M 2 C
1193 M 3 Q
686 M 3 Q
971 M 3 Q
117 E 1 C
540 M 2 S
294 C 1 C
261 E 1 S

We set up the encoder to encode the variables above with 3 fold cross-
validation, using a grid search to find the optimal depth of the decision tree
(this is the default behaviour of the DecisionTreeEncoder()). In this ex-
ample, we optimize the tree using the roc-auc metric.

encoder = DecisionTreeEncoder/(
variables=['cabin', 'pclass', 'embarked'],
regression=False,
scoring="'roc_auc',
cv=3,
random_state=0,
ignore_format=True)

encoder.fit(X_train, y_train)

With fit() the DecisionTreeEncoder() fits 1 decision tree per variable.
Now we can go ahead and transform the categorical variables into numbers,
using the predictions of these trees:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

train_t[['cabin', 'pclass', 'embarked']].head(10)

We can see the encoded variables below:

cabin pclass embarked

501 0.304843 0.436170 0.338957
588 0.304843 0.436170 0.338957
402 0.304843 0.436170 0.553073
1193 0.304843 0.259036 0.373494
686 0.304843 0.259036 0.373494
971 0.304843 0.259036 0.373494
117 0.611650 0.617391 0.553073
540 0.304843 0.436170 0.338957
294 0.611650 0.617391 0.553073
261 0.611650 0.617391 0.338957

94 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Additional resources

In the following notebook, you can find more details into the
DecisionTreeEncoder () functionality and example plots with the en-
coded variables:

* Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Fig. 27: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

10.2. User Guide 95

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/DecisionTreeEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

<packt>

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

RareLabelEncoder

The RareLabelEncoder () groups infrequent categories into one new cat-
egory called ‘Rare’ or a different string indicated by the user. We need to
specify the minimum percentage of observations a category should have to be
preserved and the minimum number of unique categories a variable should
have to be re-grouped.

tol

In the parameter tol we indicate the minimum proportion of observations a
category should have, not to be grouped. In other words, categories which fre-
quency, or proportion of observations is <= tol will be grouped into a unique
term.

n_categories

In the parameter n_categories we indicate the minimum cardinality of the
categorical variable in order to group infrequent categories. For example, if
n_categories=5, categories will be grouped only in those categorical vari-
ables with more than 5 unique categories. The rest of the variables will be
ignored.

This parameter is useful when we have big datasets and do not have time to ex-
amine all categorical variables individually. This way, we ensure that variables
with low cardinality are not reduced any further.

max_n_categories

In the parameter max_n_categories we indicate the maximum num-
ber of unique categories that we want in the encoded variable. If
max_n_categories=5, then the most popular 5 categories will remain in the
variable after the encoding, all other will be grouped into a single category.

This parameter is useful if we are going to perform one hot encoding at the
back of it, to control the expansion of the feature space.

Example
Let’s look at an example using the Titanic Dataset.

First, let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import RareLabelEncoder

X, vy = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X["pclass"] = X["pclass"].astype("0")

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

(continues on next page)

96

Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

print(X_train.head())

We see the resulting data below:

pclass..
< sex age sibsp parch fare cabin embarked
501 2.
— female 13.000000 0 1 19.5000 M S
588 2.
— female 4.000000 1 1 23.0000 M S
402 2.
— female 30.000000 1 ® 13.8583 M C
1193 3.
— male 29.881135 0 0 7.7250 M Q
686 3.
- female 22.000000) ® 7.7250 M Q

Let’s explore the number of uniue categories in the variable "cabin".

X_train["cabin"].unique()

We see the number of unique categories in the output below:

array(['M'",
- 'E', 'Cc', 'D', 'B', "A", 'F', 'T"', 'G"'], dtype=object)

Now, we set up the RareLabelEncoder () to group categories shown by less
than 3% of the observations into a new group or category called ‘Rare’. We
will group the categories in the indicated variables if they have more than 2
unique categories each.

encoder = RareLabelEncoder(

t0l=0.03,
n_categories=2,
variables=['cabin', 'pclass', 'embarked'],

replace_with="Rare',

)

fit the encoder
encoder. fit(X_train)

With £it (), the RareLabelEncoder () finds the categories present in more
than 3% of the observations, that is, those that will not be grouped. These
categories can be found in the encoder_dict_ attribute.

encoder.encoder_dict_

In the encoder_dict_ we find the most frequent categories per variable to
encode. Any category that is not in this dictionary, will be grouped.

{'cabin': ['M', 'C', 'B', 'E', 'D'],
'pclass': [3, 1, 21,
"embarked': ['S', 'C', 'Q']}

10.2. User Guide 97

feature_engine Documentation, Release 1.7.0

Now we can go ahead and transform the variables:

transform the data
train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

Let’s now inspect the number of unique categories in the variable "cabin"
after the transformation:

train_t["cabin"].unique()

In the output below, we see that the infrequent categories have been replaced
by "Rare".

array(['M', 'E', 'C', 'D', 'B', 'Rare'], dtype=object)

We can also specify the maximum number of categories that can be considered
frequent using the max_n_categories parameter.

Let’s begin by creating a toy dataframe and count the values of observations
per category:

from feature_engine.encoding import RarelLabelEncoder
import pandas as pd

data = {'var_

SA': ['A'] 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
data = pd.DataFrame(data)

data['var_A'].value_counts()

10
10
2
1
Name: var_A, dtype: int64

O N w>

In this block of code, we group the categories only for variables with more
than 3 unique categories and then we plot the result:

rare_encoder = RarelabelEncoder(tol=0.05, n_categories=3)
rare_encoder.fit_transform(data)['var_A'].value_counts()

A 10
B 10
C 2
Rare 1

Name: var_A, dtype: int64

Now, we retain the 2 most frequent categories of the variable and group the
rest into the ‘Rare’ group:

rare_encoder = RarelLabelEncoder(tol=0.
05, n_categories=3, max_n_categories=2)
Xt = rare_encoder.fit_transform(data)
Xt['var_A'].value_counts()

98 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

A 10
B 10
Rare 3

Name: var_A, dtype: int64

Tips

Additional resources

The RareLabelEncoder () can be used to group infrequent categories and
like this control the expansion of the feature space if using one hot encoding.

Some categorical encodings will also return NAN if a category is present in
the test set, but was not seen in the train set. This inconvenient can usually be
avoided if we group rare labels before training the encoders.

Some categorical encoders will also return NAN if there is not enough ob-
servations for a certain category. For example the WoEEncoder () and the
PRatioEncoder (). This behaviour can be also prevented by grouping infre-
quent labels before the encoding with the RareLabelEncoder ().

In the following notebook, you can find more details into the
RareLabelEncoder() functionality and example plots with the encoded
variables:

Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

99

Fig. 29: Feature Engineering for Machine Learning

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/RareLabelEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

StringSimilarityEncoder

The StringSimilarityEncoder () replaces categorical variables with a set
of float variables that capture the similarity between the category names. The
new variables have values between 0 and 1, where O indicates no similarity
and 1 is an exact match between the names of the categories.

To calculate the similarity between the categories,
StringSimilarityEncoder() uses Gestalt pattern matching. Under
the hood, StringSimilarityEncoder () uses the quick_ratio method

ineering from the SequanceMatcher () from difflib.
Cookbook The similarity is calculated as:
Koot iicsbemifcin GPM =2M/T
SOLEDAD GALLT where T is the total number of elements in both sequences and M is the number
of matches.
ire Engineering For example, the similarity between the categories “dog” and “dig” is 0.66.

T is the total number of elements in both categories, that is 6. There are 2
matches between the words, the lettersd and g, so: 2*M/T=2*2/6=0.66.

Output of the StringSimilarityEncoder()

CE RT3

Let’s create a dataframe with the categories “dog”, “dig” and “cat’:

import pandas as pd
from..
- feature_engine.encoding import StringSimilarityEncoder

df = pd.DataFrame({"words": ["dog", "dig", "cat"]1})
df

We see the dataframe in the following output:

words

(continues on next page)

100 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

1 dig
2 cat
Let’s now encode the variable:
encoder = StringSimilarityEncoder()
dft = encoder.fit_transform(df)
dft

We see the encoded variables below:

words_dog words_dig words_cat

0 1.000000 0.666667 0.0
1 0.666667 1.000000 0.0
2 0.000000 0.000000 1.0

Note that StringSimilarityEncoder () replaces the original variables by
the distance variables.

StringSimilarityEncoder () vs One-hot encoding

String similarity encoding is similar to one-hot encoding, in the sense that each
category is encoded as a new variable. But the values, instead of 1 or 0, are
the similarity between the observation’s category and the dummy variable. It
is suitable for poorly defined (or ‘dirty’) categorical variables.

Encoding only popular categories

The StringSimilarityEncoder () can also create similarity variables for
the n most popular categories, n being determined by the user. For exam-
ple, if we encode only the 6 more popular categories, by setting the parameter
top_categories=6, the transformer will add variables only for the 6 most
frequent categories. The most frequent categories are those with the largest
number of observations. This behaviour is useful when the categorical vari-
ables are highly cardinal, to control the expansion of the feature space.

Specifying how StringSimilarityEncoder() should deal with missing values

The StringSimilarityEncoder () has three options for dealing with miss-
ing values, which can be specified with the parameter missing_values:

1. Ignore NaNs (option ignore) - will leave the NaN in the resulting dataframe
after transformation. Could be useful, if the next step in the pipeline is imputa-
tion or if the machine learning algorithm can handle missing data out-of-the-
box.

2. Impute NaNs (option impute) - will impute NaN with an empty string, and
then calculate the similarity between the empty string and the variable’s cate-
gories. Most of the time, the similarity value will be 0 in resulting dataframe.
This is the default option.

10.2. User Guide 101

feature_engine Documentation, Release 1.7.0

Important

Examples

3.

Raise an error (option raise) - will raise an error if NaN is present during fit,
transformor fit_transform. Could be useful for debugging and monitor-
ing purposes.

StringSimilarityEncoder () will encode unseen categories by out-of-the-
box, by measuring the string similarity to the seen categories.

No text preprocessing is applied by StringSimilarityEncoder(). Be
mindful of preparing string categorical variables if needed.

StringSimilarityEncoder () works with categorical variables by default.
And it has the option to encode numerical variables as well. This is useful,
when the values of the numerical variables are more useful as strings, than as
numbers. For example, for variables like barcode.

Let’s look at an example using the Titanic Dataset. First we load the data and
divide it into a train and a test set:

import string

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic

from,,

- feature_engine.encoding import StringSimilarityEncoder

def clean_titanic():
translate_

—table = str.maketrans(''
data = load_titanic(Q)
data['home.dest'] = (
data['home.dest']
.str.stripQ)

, string.punctuation)

.str.translate(translate_table)

.str.replace(' ', " ")
.str.lower()

)

data['name'] = (
data['name']
.str.stripQ)

.str.translate(translate_table)

.str.replace(' ', " ")
.str.lower()

)

data['ticket'] = (
data['ticket']
.str.stripQ)

.str.translate(translate_table)

.str.replace(’ ', " ")
.str.lower()

(continues on next page)

102

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

)

return data

data = clean_titanic()

Separate into train and test sets

X_train, X_test, y_train, y_test = train_test_split(
data.

—drop(['survived', 'sex', 'cabin', 'embarked'], axis=1),
data['survived'],
test_size=0.3,
random_state=0

X_train.head()

Below, we see the first rows of the dataset:

pclass.,
< name age sibsp parch \
501 o
. 2 mellinger miss madeleine violet 13 0 1
588 o
- 2 wells miss joan 4 1 1
402 o
< 2 duran y more miss florentina 30 1 0
1193 .
. 3 scanlan mr james NaN 0 0
686 o
. 3 bradley miss bridget delia 22 0 0
ticket fare boat body \
501 250644 19.5 14 NaN
588 29103 23 14 NaN
402 scparis 2148 13.8583 12 NaN
1193 36209 7.725 NaN NaN
686 334914 7.725 13 NaN
home.dest
501 england bennington vt
588 cornwall akron oh
402 barcelona spain havana cuba
1193 NaN

686 kingwilliamstown co cork ireland glens falls ny

Now, we set up the encoder to encode only the 2 most frequent categories of
each of the 3 indicated categorical variables:

set up the encoder

encoder = StringSimilarityEncoder(
top_categories=2,
variables=['name', 'home.dest', 'ticket'],
ignore_format=True

(continues on next page)

10.2. User Guide 103

feature_engine Documentation, Release 1.7.0

(continued from previous page)

)

fit the encoder
encoder.fit(X_train)

With £it () the encoder will learn the most popular categories of the variables,
which are stored in the attribute encoder_dict_.

encoder.encoder_dict_

{
'name': ['mellinger.

—miss madeleine violet', 'barbara mrs catherine david'],
'home.dest': ['', 'mew york ny'],
'ticket': ['ca 2343', 'ca 2144']

}

The encoder_dict_ contains the categories that will derive similarity vari-
ables for each categorical variable.

With transform, we go ahead and encode the variables. Note that the
StringSimilarityEncoder () will drop the original variables.

transform the data
train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

test_t.head()

Below, we see the resulting dataframe:

pclass age sibsp parch fare boat body \

1139 3 38 0 O 7.8958 NaN NaN
533 2 21 0 1 21 12 NaN
459 2 42 1 0 27 NaN NaN
1150 3 NaN 0 0 14.5 NaN NaN
393 2 25 0 0 31.5 NaN NaN

name_mellinger miss.
—madeleine violet mname_barbara mrs catherine david \
1139

- 0.454545 0.550000
533 o
- 0.615385 0.524590
459 o
- 0.596491 0.603774
1150 o
- 0.641509 0.693878
393 o
- 0.408163 0.666667

home.dest_nan..
<, home.dest_new york ny ticket_ca 2343 ticket_ca 2144

(continues on next page)

104 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

1139 1.

-0 0.000000 0.461538 0.461538
533 0.

-0 0.370370 0.307692 0.307692
459 0.

-0 0.352941 0.461538 0.461538
1150 1.

-0 0.000000 0.307692 0.307692
393 0.

-0 0.437500 0.666667 0.666667
More details

For more details into StringSimilarityEncoder()’s functionality visit:
* Jupyter notebook

All notebooks can be found in a dedicated repository.

Discretisation

Feature-engine’s variable discretisation transformers transform continuous nu-
merical variables into discrete variables. The discrete variables will contain
contiguous intervals in the case of the equal frequency and equal width trans-
formers. The Decision Tree discretiser will return a discrete variable, in the
sense that the new feature takes a finite number of values.

The following illustration shows the process of discretisation:

Skewed Improved value spread

With discretisation, sometimes we can obtain a more homogeneous value
spread from an originally skewed variable. But this is not always possible.

Discretisation plus encoding

Very often, after we discretise the numerical continuous variables into discrete
intervals we want to proceed their engineering as if they were categorical. This

10.2. User Guide 105

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/StringSimilarityEncoder.ipynb
https://github.com/feature-engine/feature-engine-examples

feature_engine Documentation, Release 1.7.0

EqualFrequencyDiscretiser

Advantages and Limitations

Advantages

Limitations

is common practice. Throughout the user guide, we point to jupyter notebooks
that showcase this functionality.

Discretisers

Equal frequency discretization consists of dividing continuous attributes into
equal-frequency bins. These bins contain roughly the same number of ob-
servations, with boundaries set at specific quantile values determined by the
desired number of bins.

Equal frequency discretization ensures a uniform distribution of data points
across the range of values, enhancing the handling of skewed data and outliers.

Discretization is a common data preprocessing technique used in data science.
It’s also known as binning data (or simply “binning”).

Equal frequency discretization has some advantages and shortcomings:

Some advantages of equal frequency binning:

Algorithm Efficiency: Enhances the performance of data mining and machine
learning algorithms by providing a simplified representation of the dataset.

Outlier Management: Efficiently mitigates the effect of outliers by grouping
them into the extreme bins.

Data Smoothing: Helps smooth the data, reduces noise, and improves the
model’s ability to generalize.

Improved value distribution: Returns an uniform distribution of values
across the value range.

Equal frequency discretization improves the data distribution, optimizing the
spread of values. This is particularly beneficial for datasets with skewed dis-
tributions (see the Python example code).

On the other hand, equal frequency binning can lead to a loss of information
by aggregating data into broader categories. This is particularly concerning if
the data in the same bin has predictive information about the target.

Let’s consider a binary classifier task using a decision tree model. A bin with a
high proportion of both target categories would potentially impact the model’s
performance in this scenario.

106

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

EqualFrequencyDiscretiser

Python code example

Load dataset

Feature-engine’s EqualFrequencyDiscretiser applies equal frequency
discretization to numerical variables. It uses the pandas.gcut() function
under the hood, to determine the interval limits.

You can specify the variables to be discretized by passing their
names in a list when you set up the transformer. Alternatively,
EqualFrequencyDiscretiser will automatically infer the data types
to compute the interval limits for all numeric variables.

Optimal number of intervals: With EqualFrequencyDiscretiser, the
user defines the number of bins. Smaller intervals may be required if the vari-
able is highly skewed or not continuous.

Integration with scikit-learn: EqualFrequencyDiscretiser and all other
feature-engine transformers seamlessly integrate with scikit-learn pipelines.

In this section, we’ll show the main functionality of
EqualFrequencyDiscretiser

In this example, we’ll use the Ames House Prices’ Dataset. First, let’s load the
dataset and split it into train and test sets:

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from feature_

—engine.discretisation import EqualFrequencyDiscretiser

Load dataset

X, y = fetch_openml (name="house_
—prices', version=1, return_X_y=True, as_frame=True)
X.set_index('Id', inplace=True)

Separate into train and test sets
X_train, X_test, y_train, y_test =.
< train_test_split(X, y, test_size=0.3, random_state=42)

10.2. User Guide

107

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

feature_engine Documentation, Release 1.7.0

Equal-frequency Discretization

In this example, let’s discretize two variables, LotArea and GrLivArea, into 10
intervals of approximately equal number of observations.

List the target numeric variables to be transformed
TARGET_NUMERIC_FEATURES= ['LotArea', 'GrLivArea']

Set up the discretization transformer
disc = EqualFrequencyDiscretiser(q=10,
< variables=TARGET_NUMERIC_FEATURES)

Fit the transformer
disc.fit(X_train)

Note that if we do not specify the variables (default="None"),
EqualFrequencyDiscretiser will automatically infer the data types
to compute the interval limits for all numeric variables.

With the £it() method, the discretizer learns the bin boundaries and saves
them into a dictionary so we can use them to transform unseen data:

Learned limits for each variable
disc.binner_dict_

{'LotArea': [-inf,

5000.0,

7105.6,

8099.200000000003,

8874.0,

9600.0,

10318.400000000001,

11173.5,

12208.2,

14570.699999999999,

inf],

'GrLivArea': [-inf,

918.5,

1080.4,

1218.0,

1348.4,

1476.5,
1601.6000000000001,
1717.6999999999998,
1893.0000000000005,
2166.3999999999996,
inf]}

Note that the lower and upper boundaries are set to -inf and inf, respectively.
his behavior ensures that the transformer will be able to allocate to the ex-
treme bins values that are smaller or greater than the observed minimum and
maximum values in the training set.

EqualFrequencyDiscretiser will not work in the presence of missing val-
ues. Therefore, we should either remove or impute missing values before fitting

108 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

the transformer.

Transform the data
train_t = disc.transform(X_train)
test_t = disc.transform(X_test)

Let’s visualize the first rows of the raw data and the transformed data:

Raw data
print (X_train[TARGET_NUMERIC_FEATURES] .head())

Here we see the original variables:

LotArea GrLivArea

Id

136 10400 1682
1453 3675 1072
763 8640 1547
933 11670 1905
436 10667 1661

Transformed data
print(train_t [TARGET_NUMERIC_FEATURES] .head())

Here we observe the variables after discretization:

LotArea GrLivArea

Id

136 6 6
1453 0 1
763 3 5
933 7 8
436 6 6

The transformed data now contains discrete values corresponding to the or-
dered computed buckets (0 being the first and g-1 the last).

Now, let’s visualize the plots for equal-width intervals with a histogram and
the transformed data with equal-frequency discretiser:

Instantiate a figure with two axes
fig, axes = plt.subplots(ncols=2, figsize=(10,5))

Plot raw distribution
X_train['GrLivArea'].plot.hist(bins=disc.q, ax=axes[0])
axes[0].set_title('Raw data with equal width binning')
axes[0].set_xlabel ('GrLivArea')

Plot transformed distribution

train_t['GrLivArea

—"'].value_counts().sort_index() .plot.bar(ax=axes[1])
axes[1].set_

—title('Transformed data with equal frequency binning')

(continues on next page)

10.2. User Guide 109

feature_engine Documentation, Release 1.7.0

(continued from previous page)

plt.tight_layout(w_pad=2)
plt.show()

As we see in the following image, the intervals contain approximately the same
number of observations:

Normal distributed data

Raw data Transformed
200
175 A
150 -
125 A
o
(=1
g 100
75 4
50 o
25 4
0 o
4 o — o~
featurel featurel

Finally, as the default value for the return_object parameter is False, the
transformer outputs integer variables:

train_t [TARGET_NUMERIC_FEATURES].dtypes

LotArea int64
GrLivArea int64
dtype: object

Return variables as object

Categorical encoders in Feature-engine are designed to work by default with
variables of type object. Therefore, to further encode the discretised output
with Feature-engine, we can set return_object=True instead. This will re-
turn the transformed variables as object.

Let’s say we want to obtain monotonic relationships between the variable and
the target. We can do that seamlessly by setting return_object to True. A
tutorial of how to use this functionality is available here.

110

Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualFrequencyDiscretiser_plus_WoEEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Return bin boundaries

If we want to output the intervals limits instead of integers, we can set
return_boundaries to True:

Set up the discretization transformer
disc = EqualFrequencyDiscretiser(

q=10,

variables=TARGET_NUMERIC_FEATURES,
return_boundaries=True)

Fit the transformer
disc.fit(X_train)

Transform test set & visualize limit
test_t = disc.transform(X_test)

Visualize output (boundaries)
print (test_t [TARGET_NUMERIC_FEATURES] .head())

The transformed variables now show the interval limits in the output. We can
immediately see that the bin width for these intervals varies. In other words,
they don’t have the same width, contrarily to what we see with equal width
discretization.

Unlike the variables discretized into integers, these variables cannot be used to
train machine learning models; however, they are still highly helpful for data
analysis in this format, and they may be sent to any Feature-engine encoder for
additional processing.

LotArea
Id
893 (8099.2, 8874.0]
1106 (12208.2, 14570.7]
414 (8874.0, 9600.0]
523 (-inf, 5000.0]
1037 (12208.2, 14570.7]

GrLivArea
(918.5, 1080.4]
(2166.4, inf]
(918.5, 1080.4]
(1601.6, 1717.7]
(1601.6, 1717.7]

Binning skewed data

Let’s now show the benefits of equal frequency discretization for skewed vari-
ables. We'll start by importing the libraries and classes:

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

from feature_

—.engine.discretisation import EqualFrequencyDiscretiser

Now, we’ll create a toy dataset with a variable that is normally distributed and
another one that is skewed:

10.2. User Guide

111

feature_engine Documentation, Release 1.7.0

Set seed for reproducibility
np.random. seed(42)

Generate a normally distributed data
normal_data = np.random.normal (loc=0, scale=1, size=1000)

Generate.
—a right-skewed data using exponential distribution
skewed_data = np.random.exponential(scale=1, size=1000)

Create dataframe with simulated data
X = pd.DataFrame(
—{'featurel': normal_data, 'feature2': skewed_data})

Let’s discretize both variables into 5 equal frequency bins:

Instantiate discretizer
disc = EqualFrequencyDiscretiser(qg=5)

Transform simulated data
X_transformed = disc.fit_transform(X)

Let’s plot the original distribution and the distribution after discretization for
the variable that was normally distributed:

fig, axes = plt.subplots(l, 2, figsize=(12, 4))

axes[0] .hist(X.featurel, bins=disc.q)
axes[0].
—set(xlabel="featurel', ylabel='count', title='Raw data')

X_transformed. featurel.
—value_counts() .sort_index() .plot.bar(ax=axes[1])

axes[1].set_title('Transformed data')

plt.suptitle('Normal,
—distributed data', weight='bold', size='large', y=1.05)

plt.show()

In the following image, we see that after the discretization there is an even
distribution of the values across the value range, hence, the variable does no
look normally distributed any more.

112 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Normal distributed data

Raw data Transformed
200
175 A
150 -
125 A
o
(=1
§ 100
75 4
s0 4
25 4
0 o
-3 -2 -1 0 1 2 3 4 o — ~
featurel featurel

Let’s now plot the original distribution and the distribution after discretization
for the variable that was skewed:

fig, axes = plt.subplots(l, 2, figsize=(12, 4))

axes[0] .hist(X. feature2, bins=disc.q)
axes[0].
—set(xlabel="feature2', ylabel='count', title='Raw data')

X_transformed. feature2.
—value_counts() .sort_index() .plot.bar(ax=axes[1])
axes[1].set_title('Transformed data')

plt.suptitle('Skewed.
—distributed data', weight="'bold', size='large', y=1.05)

plt.show()

In the following image, we see that after the discretization there is an even
distribution of the values across the value range.

10.2. User Guide 113

feature_engine Documentation, Release 1.7.0

See Also

Additional resources

Skewed distributed data

Raw data Transformed
200 -

800 A

175 4

150 A

125 A

count

100 4

75

0 1 2 3 4 5 6 7 =] — ™~
feature2 feature2

For alternative binning techniques, check out the following resources:
Further feature-engine discretizers / binning methods

Scikit-learn’s KBinsDiscretizer.

Check out also:

Pandas qcut.

Check also for more details on how to use this transformer:
Jupyter notebook
Jupyter notebook - Discretizer plus Weight of Evidence encoding

For more details about this and other feature engineering methods check out
these resources:

114

Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualFrequencyDiscretiser.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualFrequencyDiscretiser_plus_WoEEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 31: Feature Engineering for Machine Learning

packh

Python Feature

Engineering
Cookbook

SOLEDAD GALLI

AdvantagesandddmiationSring
Cookbook

Advantages

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

Equal width discretization consist of dividing continuous variables into inter-
vals of equal width, calculated using the following formula:

bingiarn = (mazx(X) — min(X))/bins

Here, bins is the number of intervals specified by the user and max (X) and
min(X) are the minimum and maximum values of the variable to discretize.

Discretization is a common data preprocessing technique used in data science.
It’s also known as data binning (or simply “binning”).

Equal binning discretization has some advantages and also shortcomings.

Some advantages of equal width binning:

* Algorithm Efficiency: Enhances the performance of data mining and
machine learning algorithms by providing a simplified representation of
the dataset.

* Qutlier Management: Efficiently mitigates the effect of outliers by

grouping them into the extreme bins, thus preserving the integrity of the main data distribution.

» Data Smoothing: Helps smooth the data, reduces noise, and improves
the model’s ability to generalize.

10.2. User Guide

115

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Limitations

On the other hand, equal width discretzation can lead to a loss of information by aggregating data into broader cate-
gories. This is particularly concerning if the data in the same bin has predictive information about the target.

Let’s consider a binary classifier task using a decision tree model. A bin with a high proportion of both target categories
would potentially impact the model’s performance in this scenario.

EqualWidthDiscretiser

Feture-engine’s EqualWidthDiscretiser () applies equal width discretization to numerical variables. It uses the
pandas. cut () function under the hood to find the interval limits and then sort the continuous variables into the bins.

You can specify the variables to be discretized by passing their names in a list when you set up the transformer. Al-
ternatively, EquallWidthDiscretiser () will automatically infer the data types to compute the interval limits for all
numeric variables.

Optimal number of intervals: With EqualWidthDiscretiser(), the user defines the number of bins. Smaller
intervals may be required if the variable is highly skewed or not continuous.

Integration with scikit-learn: EquallidthDiscretiser() and all other Feature-engine transformers seamlessly
integrate with scikit-learn pipelines.

Python code example

In this section, we’ll show the main functionality of EquallWidthDiscretiser().

Load dataset

In this example, we’ll use the Ames House Prices’ Dataset. First, let’s load the dataset and split it into train and test
sets:

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from feature_engine.discretisation import EqualFrequencyDiscretiser

Load dataset
X, y = fetch_openml (name="house_prices', version=1, return_X_y=True, as_frame=True)
X.set_index('Id', inplace=True)

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_
—.state=42)

116 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

feature_engine Documentation, Release 1.7.0

Equal-width Discretization

In this example, let’s discretize two variables, LotArea and GrLivArea, into 10 intervals of equal width:

List the target numeric variables for equal-width discretization
TARGET_NUMERIC_FEATURES= ['LotArea', 'GrLivArea']

Set up the discretization transformer
disc = EqualWidthDiscretiser(bins=10, variables=TARGET_NUMERIC_FEATURES)

Fit the transformer
disc.fit(X_train)

Note that if we do not specify the variables (default="None"), EqualliidthDiscretiser will automatically infer the
data types to compute the interval limits for all numeric variables.

With the £it () method, the discretizer learns the bin boundaries and saves them into a dictionary so we can use them
to transform unseen data:

Learned limits for each variable
disc.binner_dict_

{'LotArea': [-inf,
22694.5,
44089.0,
65483.5,
86878.0,
108272.5,
129667.0,
151061.5,
172456.0,
193850.5,
inf],
'GrLivArea': [-inf,
864.8,
1395.6,
1926.3999999999999,
2457.2,
2988.0,
3518.7999999999997,
4049.5999999999995,
4580.4,
5111.2,
inf]}

Note that the lower and upper boundaries are set to -inf and inf, respectively. This behavior ensures that the transformer
will be able to allocate to the extreme bins values that are smaller or greater than the observed minimum and maximum
values in the training set.

EquallWidthDiscretiser will not work in the presence of missing values. Therefore, we should either remove or
impute missing values before fitting the transformer.

Transform the data (data discretization)
train_t = disc.transform(X_train)
test_t = disc.transform(X_test)

10.2. User Guide 117

feature_engine Documentation, Release 1.7.0

Let’s visualize the first rows of the raw data and the transformed data:

Raw data
print(X_train[TARGET_NUMERIC_FEATURES] .head())

Here we see the original variables:

LotArea GrLivArea

Id

136 10400 1682
1453 3675 1072
763 8640 1547
933 11670 1905
436 10667 1661

Transformed data
print(train_t [TARGET_NUMERIC_FEATURES] .head())

Here we observe the variables after discretization:

LotArea GrLivArea

Id

136 0 2
1453 0 1
763 0 2
933 0 2
436 0 2

The transformed data now contains discrete values corresponding to the ordered computed buckets (0 being the first
and bins-1 the last).

Now, let’s check out the number of observations per bin by creating a bar plot:

train_t['GrLivArea'].value_counts().sort_index().plot.bar()
plt.ylabel ('Number of houses')
plt.show()

As we see in the following image, the intervals contain different number of observations. It’s a similar output to a
histogram:

118 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

400

350 A

300 A

250

200

150 +

Number of houses

100 +

30

0- — . — T T T
=] — [" =) A w M~ [a8] 3]
GrLivArea

Equal width discretization does not improve the spread of values over the value range. If the variable is skewed, it will
still be skewed after the discretization.

Finally, since the default value for the return_object parameter is False, the transformer outputs integer variables:

train_t [TARGET_NUMERIC_FEATURES].dtypes

LotArea int64
GrLivArea int64
dtype: object

Return variables as object

Categorical encoders in Feature-engine are designed to work by default with variables of type object. Therefore, to
further encode the discretized output with Feature-engine’s encoders, we can set return_object=True instead. This
will return the transformed variables as object.

Let’s say we want to obtain monotonic relationships between the variable and the target. We can do that seamlessly by
setting return_object to True. A tutorial of how to use this functionality is available here.

10.2. User Guide 119

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualWidthDiscretiser_plus_OrdinalEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Return bin boundaries

If we want to output the intervals limits instead of integers, we can set return_boundaries to True:

Set up the discretization transformer

disc = EqualFrequencyDiscretiser(
bins=10,
variables=TARGET_NUMERIC_FEATURES,
return_boundaries=True)

Fit the transformer
disc.fit(X_train)

Transform test set & visualize limit
test_t = disc.transform(X_test)

Visualize output (boundaries)
print(test_t [TARGET_NUMERIC_FEATURES] .head())

In the following output we see that the transformed variables now display the interval limits. While we can’t use these
variables to train machine learning models, as opposed to the variables discretized into integers, they are very useful
in this format for data analysis, and they can also be passed on to any Feature-engine encoder for further processing.

LotArea GrLivArea
Id
893 (-inf, 22694.5] (864.8, 1395.6]
1106 (-inf, 22694.5] (2457.2, 2988.0]
414 (-inf, 22694.5] (864.8, 1395.6]
523 (-inf, 22694.5] (1395.6, 1926.4]
1037 (-inf, 22694.5] (1395.6, 1926.4]

See Also

For alternative binning techniques, check out the following resources:
* Further feature-engine discretizers / binning methods
¢ Scikit-learn’s KBinsDiscretizer.

Check out also:

¢ Pandas cut.

Additional resources

Check also for more details on how to use this transformer:
* Jupyter notebook
* Jupyter notebook - Discretizer plus Ordinal encoding

For more details about this and other feature engineering methods check out these resources:

120 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualWidthDiscretiser.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualWidthDiscretiser_plus_OrdinalEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 33: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

ArbitraryDiscretiser

2np EprTIon

Feature

ineering
Cookbook

SOLEDAD GALLI

ire Engineering

The ArbitraryDiscretiser () sorts the variable values into contiguous in-
tervals which limits are arbitrarily defined by the user. Thus, you must provide
a dictionary with the variable names as keys and a list with the limits of the
intervals as values, when setting up the discretiser.

The ArbitraryDiscretiser() works only with numerical variables. The
discretiser will check that the variables entered by the user are present in the
train set and cast as numerical.

10.2. User Guide

121

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Example

Let’s take a look at how this transformer works. First, let’s load a dataset and
plot a histogram of a continuous variable. We use the california housing dataset
that comes with Scikit-learn.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing
from feature_

—.engine.discretisation import ArbitraryDiscretiser

X, v = fetch_
—california_housing(return_X_y=True, as_frame=True)

X['MedInc'] .hist(bins=20)
plt.xlabel('MedInc')

plt.ylabel ('Number of obs')
plt.title('Histogram of MedInc')
plt.show()

In the following plot we see a histogram of the variable median income:

122 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Histogram of MedInc

4000 A

3500 +

3000 -

2500 4

2000 A

Number of obs

1500 A

1000 -

500 A

0 2 4 6 8
Medinc

Now, let’s discretise the variable into arbitrarily determined intervals. We
want the intervals as integers in the resulting transformation, so we set
return_boundaries to False.

user_dict = {'MedInc': [0, 2, 4, 6, np.Inf]}
transformer = ArbitraryDiscretiser(
binning_dict=user_

—dict, return_object=False, return_boundaries=False)

X = transformer. fit_transform(X)

Now, we can go ahead and plot the variable after the transformation:

X['MedInc'].value_counts() .plot.bar(rot=0)
plt.xlabel('MedInc - bins')
plt.ylabel('Number of observations')
plt.title('Discretised MedInc')

plt.show()

In the following plot we see the number of observations per interval:

10.2. User Guide 123

10 12

feature_engine Documentation, Release 1.7.0

Discretised MedInc

10000 A

8000 A

6000 4

4000 A

Number of observations

2000 -

1 2 0
MediInc - bins

Note that in the above figure the intervals are represented by digits.

Alternatively, we can return the interval limits in the discretised variable by
setting return_boundaries to True.

X, y = fetch_
—~california_housing(return_X_y=True, as_frame=True)

user_dict = {'MedInc': [0, 2, 4, 6, np.Inf]}

transformer = ArbitraryDiscretiser(
binning_dict=user_

—dict, return_object=False, return_boundaries=True)

X = transformer. fit_transform(X)

X['MedInc'].value_counts() .plot.bar(rot=0)
plt.xlabel('MedInc - bins')

plt.ylabel ('Number of observations')
plt.title('Discretised MedInc')

plt.show()

In the following plot we see the number of observations per interval:

124 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Additional resources

Discretised MedInc

10000 A

8000 A

6000 A

4000 A

Number of observations

2000 -

(2.0, 4.0] (4.0, 6.0] (-0.001, 2.0]
MedInc - bins

Discretisation plus encoding

If we return the interval values as integers, the discretiser has the option to
return the transformed variable as integer or as object. Why would we want
the transformed variables as object?

Categorical encoders in Feature-engine are designed to work with variables of
type object by default. Thus, if you wish to encode the returned bins further,
say to try and obtain monotonic relationships between the variable and the
target, you can do so seamlessly by setting return_object to True. You can
find an example of how to use this functionality here.

Check also:
Jupyter notebook
Jupyter notebook - Discretiser plus Mean Encoding

For more details about this and other feature engineering methods check out
these resources:

10.2.

User Guide

125

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/ArbitraryDiscretiser_plus_MeanEncoder.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/ArbitraryDiscretiser.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/ArbitraryDiscretiser_plus_MeanEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 35: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

DecisionTreeDiscretiser

The DecisionTreeDiscretiser () replaces numerical variables by discrete,
i.e., finite variables, which values are the predictions of a decision tree. The
method is based on the winning solution of the KDD 2009 competition:

Niculescu-Mizil, et al. “Winning the KDD Cup Orange Challenge with En-
semble Selection”. JMLR: Workshop and Conference Proceedings 7: 23-34.
KDD 2009.

Feature

5 ; In the original article, each feature in the challenge dataset was re-coded by
ineering training a decision tree of limited depth (2, 3 or 4) using that feature alone,

Cookbook and letting the tree predict the target. The probabilistic predictions of this
decision tree were used as an additional feature, that was now linearly (or at
least monotonically) correlated with the target.

SOLEDAD GALLI According to the authors, the addition of these new features had a significant
impact on the performance of linear models.

ire Engineering

126 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf

feature_engine Documentation, Release 1.7.0

Example

In the following example, we re-code 2 numerical variables using decision
trees.

First we load the data and separate it into train and test:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from feature_
—.engine.discretisation import DecisionTreeDiscretiser

Load dataset
data = data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),

o data['SalePrice'], test_size=0.3, random_state=0)

Now we set up the discretiser. We will optimise the decision tree’s depth using
3 fold cross-validation.

set up the discretisation transformer
disc = DecisionTreeDiscretiser(cv=3,

]

. scoring='neg_mean_squared_error',

o variables=['LotArea', 'GrLivArea'l],
regression=True)

fit the transformer
disc.fit(X_train, y_train)

With £it () the transformer fits a decision tree per variable. Then, we can go
ahead replace the variable values by the predictions of the trees:

transform the data
train_t= disc.transform(X_train)
test_t= disc.transform(X_test)

The binner_dict_ stores the details of each decision tree.

disc.binner_dict_

{'LotArea

— "1 GridSearchCV(cv=3, error_score='raise-deprecating',
estimator=DecisionTreeRegressor(criterion=

< 'mse', max_depth=None,

o max_features=None,

(continues on next page)

10.2. User Guide 127

feature_engine Documentation, Release 1.7.0

(continued from previous page)

. max_leaf_nodes=None,
<) min_impurity_decrease=0.0,
.) min_impurity_split=None,
o ; min_samples_leaf=1,
<) min_samples_split=2,
o - min_weight_fraction_leaf=0.0,
< : presort=False, random_state=None,
. ; splitter="best'),
iid="warn

— "', n_jobs=None, param_grid={'max_depth': [1, 2, 3, 4]},
pre_dispatch=

. '2*n_jobs', refit=True, return_train_score=False,

o scoring='neg_mean_squared_error', verbose=0),

'GrLivArea

—": GridSearchCV(cv=3, error_score='raise-deprecating',
estimator=DecisionTreeRegressor(criterion=

— 'mse', max_depth=None,

[

. max_features=None,
. ; max_leaf_nodes=None,
.) min_impurity_decrease=0.0,
. } min_impurity_split=None,
< : min_samples_leaf=1,
.) min_samples_split=2,
o) min_weight_fraction_leaf=0.0,
. : presort=False, random_state=None,
. B splitter="best'),
iid="'warn

", n_jobs=None, param_grid={'max_depth': [1, 2, 3, 4]},
pre_dispatch=
- '2*n_jobs', refit=True, return_train_score=False,

—

. scoring="neg_mean_squared_error', verbose=0)}

With tree discretisation, each bin, that is, each prediction value, does not nec-
essarily contain the same number of observations.

128 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

with tree.

—discretisation, each bin does not necessarily contain
the same number of observations.

train_

—t.groupby('GrLivArea') ['GrLivArea'].count().plot.bar()
plt.ylabel ('Number of houses')

300 4
= 4
EES{I
b
a
w200 -
il
[Fi]
3
E:I_":'{I
s
e
2
E:LD[I'
3
=
ED- l ——
4]_
L =t ™ o =t [l L un
= — o =] ™ ™ |:| ["1
[} - [Te} [2g =t = o =
=] L Lo I — L & iy
! & — o = r ™ =)
— ™ m —
a " L = o
: & & g§ g & " °®
& =] 4 = ¥:] -
m k. r - ™
" =
g 3 £ B 5
I L — E 2
™ o L
™
= = =
GrlivArea_binned
Note

Our implementation of the DecisionTreeDiscretiser() will replace the
original values of the variable by the predictions of the trees. This is not strictly
identical to what the winners of the KDD competition did. They added the
predictions of the features as new variables, while keeping the original ones.

10.2. User Guide 129

feature_engine Documentation, Release 1.7.0

More details

GeometricWidthDiscretiser

Check also for more details on how to use this transformer:
Jupyter notebook
tree_pipe in cell 21 of this Kaggle kernel

For more details about this and other feature engineering methods check out
these resources:

Feature engineering for machine learning, online course.

Python Feature Engineering Cookbook, book.

The GeometricWidthDiscretiser() divides continuous numerical vari-
ables into intervals of increasing width. The width of each succeeding interval
is larger than the previous interval by a constant amount (cw).

The constant amount is calculated as:

cw = (Max — Min)'/™

were Max and Min are the variable’s maximum and minimum value, and n is
the number of intervals.

The sizes of the intervals themselves are calculated with a geometric progres-
sion:

ai4+1 = a;CW

Thus, the first interval’s width equals cw, the second interval’s width equals 2
* cw, and so on.

Note that the proportion of observations per interval may vary.

This discretisation technique is great when the distribution of the variable is
right skewed.

Note: The width of some bins might be very small. Thus, to allow this trans-
former to work properly, it might help to increase the precision value, that is,
the number of decimal values allowed to define each bin. If the variable has a
narrow range or you are sorting into several bins, allow greater precision (i.e.,
if precision = 3, then 0.001; if precision = 7, then 0.0001).

The GeometriclWidthDiscretiser () works only with numerical variables.
A list of variables to discretise can be indicated, or the discretiser will auto-
matically select all numerical variables in the train set.

Example

Let’s look at an example using the house prices dataset (more details about the
dataset Jiere).

Let’s load the house prices dataset and separate it into train and test sets:

130

Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/DecisionTreeDiscretiser.ipynb
https://www.kaggle.com/solegalli/feature-engineering-and-model-stacking
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.amazon.com/Python-Feature-Engineering-Cookbook-transforming-dp-1804611301/dp/1804611301

feature_engine Documentation, Release 1.7.0

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from feature_
—engine.discretisation import GeometricWidthDiscretiser

Load dataset
data = pd.read_csv('houseprice.csv"')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
data.drop(['Id', 'SalePrice'], axis=1),

. data['SalePrice'], test_size=0.3, random_state=0)

Now, we want to discretise the 2 variables indicated below into 10 intervals of
increasing width:

set up the discretisation transformer
disc = GeometricWidthDiscretiser(bins=10,
— variables=['LotArea', 'GrLivArea'])

fit the transformer
disc.fit(X_train)

With £fit () the transformer learns the boundaries of each interval. Then, we
can go ahead and sort the values into the intervals:

transform the data
train_t= disc.transform(X_train)
test_t= disc.transform(X_test)

The binner_dict_ stores the interval limits identified for each variable.

disc.binner_dict_

'LotArea': [-inf,
1303.412,
1311.643,
1339.727,
1435.557,
1762.542,
2878.27,

6685.32,
19675.608,
64000.633,

inf],
'GrLivArea': [-inf,
336.311,

339.34,

346.34,

(continues on next page)

10.2. User Guide 131

feature_engine Documentation, Release 1.7.0

(continued from previous page)

362.515,
399.894,
486.27,
685.871,
1147.115,
2212.974,
inf]}

With increasing width discretisation, each bin does not necessarily contain the
same number of observations. This transformer is suitable for variables with
right skewed distributions.

Let’s compare the variable distribution before and after the discretization:

fig, ax = plt.subplots(l, 2)
X_train['LotArea'].hist(ax=ax[0], bins=10);
train_t['LotArea'].hist(ax=ax[1], bins=10);

We can see below that the intervals contain different number of observations.
We can also see that the shape from the distribution changed from skewed to
a more “bell shaped” distribution.

1000 - 800 4
I 700
800 -
I 600 -
600 4 500 -
I 400
400
300 -
200 -
200 -
I 100 -
0 = I T T T 0_
0 5000010000Q15000@00000 0o 2 4

Discretisation plus encoding

132 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Additional resources

If we return the interval values as integers, the discretiser has the option to
return the transformed variable as integer or as object. Why would we want
the transformed variables as object?

Categorical encoders in Feature-engine are designed to work with variables of
type object by default. Thus, if you wish to encode the returned bins further,
say to try and obtain monotonic relationships between the variable and the
target, you can do so seamlessly by setting return_object to True. You can
find an example of how to use this functionality here.

Check also for more details on how to use this transformer:
Jupyter notebook - Geometric Discretiser
Jupyter notebook - Geometric Discretiser plus Mean encoding

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Fig. 37: Feature Engineering for Machine Learning

10.2. User Guide

133

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/GeometricWidthDiscretiser_plus_MeanEncoder.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/GeometricWidthDiscretiser.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/GeometricWidthDiscretiser_plus_MeanEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

Outlier Handling

Feature-engine’s outlier cappers cap maximum or minimum values of a vari-
able at an arbitrary or derived value. The OutlierTrimmer removes outliers

from the dataset.

Winsorizer

The Winsorizer() caps maximum and/or minimum values of a variable at
automatically determined values. The minimum and maximum values can be

calculated in 1 of 3 different ways:

Gaussian limits:
* right tail: mean + 3* std
e left tail: mean - 3* std

IQR limits:

* right tail: 75th quantile + 3* IQR
e left tail: 25th quantile - 3* IQR

where IQR is the inter-quartile range: 75th quantile - 25th quantile.

MAD limits:

* right tail: median + 3* MAD

e left tail: median - 3* MAD

where MAD is the median absolute deviation from the median.

percentiles or quantiles:
* right tail: 95th percentile
o left tail: Sth percentile

Example

Let’s cap some outliers in the Titanic Dataset. First, let’s load the data and

separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.outliers import Winsorizer

X, v = load_titanic(
return_X_y_frame=True,
predictors_only=True,
handle_missing=True,

(continues on next page)

134

Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting data below:

pclass .

< sex age sibsp parch fare cabin embarked
501 2 female.

— 13.000000 0 1 19.5000 Missing S

588 2 female.

— 4.000000 1 1 23.0000 Missing S

402 2 female.

- 30.000000 1 ® 13.8583 Missing C

1193 3 o

—male 29.881135 0 0 7.7250 Missing Q
686 3 female.

— 22.000000 0 ® 7.7250 Missing Q

Now, we will set the Winsorizer () to cap outliers at the right side of the dis-
tribution only (param tail). We want the maximum values to be determined
using the mean value of the variable (param capping_method) plus 3 times
the standard deviation (param fold). And we only want to cap outliers in 2
variables, which we indicate in a list.

capper = Winsorizer(capping_method='gaussian',
tail="right'",
fold=3,
variables=['age', 'fare'])

capper. fit(X_train)

With £fit (), the Winsorizer () finds the values at which it should cap the
variables. These values are stored in its attribute:

capper.right_tail_caps_

{'age': 67.73951212364803, 'fare': 174.70395336846678}

We can now go ahead and censor the outliers:

transform the data
train_t = capper.transform(X_train)
test_t = capper.transform(X_test)

If we evaluate now the maximum of the variables in the transformed
datasets, they should coincide with the values observed in the attribute
right_tail_caps_:

train_t[['fare', 'age']].max()

10.2. User Guide 135

feature_engine Documentation, Release 1.7.0

fare 174.703953
age 67.739512
dtype: float64

Additional resources

You can find more details about the Winsorizer () functionality in the fol-
lowing notebook:

* Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Fig. 39: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

136 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/outliers/Winsorizer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

enn Eprrron

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

ArbitraryOutlierCapper

The ArbitraryOutlierCapper () caps the maximum or minimum values of
a variable at an arbitrary value indicated by the user. The maximum or mini-
mum values should be entered in a dictionary with the form {feature:capping
value}.

Let’s look at this in an example. First we load the Titanic dataset, and separate
it into a train and a test set:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.outliers import ArbitraryOutlierCapper

X, y = load_titanic(
return_X_y_frame=True,
predictors_only=True,
handle_missing=True,

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting data below:

pclass .

< sex age sibsp parch fare cabin embarked
501 2 female.

— 13.000000 0 1 19.5000 Missing S

588 2 female.

< 4.000000 1 1 23.0000 Missing S

402 2 female.,

< 30.000000 1 ® 13.8583 Missing C

1193 3 4

—male 29.881135 0 0 7.7250 Missing Q
686 3 female.

— 22.000000 0 ® 7.7250 Missing Q

Now, we set up the ArbitraryOutlierCapper () indicating that we want to
cap the variable ‘age’ at 50 and the variable ‘Fare’ at 200. We do not want to
cap these variables on the left side of their distribution.

capper = ArbitraryOutlierCapper(
max_capping_dict={"'age': 50,
min_capping_dict=None,

'fare': 200},

)

capper. fit(X_train)

With £it () the transformer does not learn any parameter. It just reassigns the
entered dictionary to the attribute that will be used in the transformation:

10.2. User Guide 137

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

capper.right_tail_caps_

{'age': 50, 'fare': 200}

Now, we can go ahead and cap the variables:

train_t = capper.transform(X_train)
test_t = capper.transform(X_test)

If we now check the maximum values in the transformed data, they should be
those entered in the dictionary:

train_t[['fare', 'age']].max()
fare 200.0
age 50.0

dtype: float64

Additional resources

You can find more details about the ArbitraryOutlierCapper () function-
ality in the following notebook:

* Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

138 Chapter 10. Table of Contents
Fig. 41: Feature Engineering for Machine Learning

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/outliers/ArbitraryOutlierCapper.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

OutlierTrimmer

<packt>

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

Identifying outliers

Outliers are data points that significantly deviate from the rest of the dataset,
potentially indicating errors or rare occurrences. Outliers can distort the learn-
ing process of machine learning models by skewing parameter estimates and
reducing predictive accuracy. To prevent this, if you suspect that the outliers
are errors or rare occurrences, you can remove them from the training data.

In this guide, we show how to remove outliers in Python using the
OutlierTrimmer().

The first step to removing outliers consists of identifying those outliers. Out-
liers can be identified through various statistical methods, such as box plots,
z-scores, the interquartile range (IQR), or the median absolute deviation. Ad-
ditionally, visual inspection of the data using scatter plots or histograms is
common practice in data science, and can help detect observations that signif-
icantly deviate from the overall pattern of the dataset.

The OutlierTrimmer () can identify outliers by using all of these meth-
ods and then remove them automatically. Hence, we’ll begin this guide with
data analysis, showing how we can identify outliers through these statisti-
cal methods and boxplots, and then we will remove outliers by using the
OutlierTrimmer().

Outliers are data points that are usually far greater, or far smaller than some
value that determines where most of the values in the distribution lie. These
minimum and maximum values, that delimit the data distribution, can be cal-
culated in 4 ways: by using the z-score if the variable is normally distributed,
by using the interquartile range proximity rule or the median absolute deviation
if the variables are skewed, or by using percentiles.

10.2. User Guide

139

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Gaussian limits or z-score

If the variable shows a normal distribution, most of its values lie between the
mean minus 3 times the standard deviation and the mean plus 3 times the stan-
dard deviation. Hence, we can determine the limits of the distribution as fol-
lows:

* right tail (upper_bound): mean + 3* std
e left tail (lower_bound): mean - 3* std

We can consider outliers those data points that lie beyond these limits.

Interquartile range proximity rule

Maximum absolute deviation

The interquartile range proximity rule can be used to detect outliers both in
variables that show a normal distribution and in variables with a skew. When
using the IQR, we detect outliers as those values that lie before the 25th per-
centile times a factor of the IQR, or after the 75th percentile times a factor of
the IQR. This factor is normally 1.5, or 3 if we want to be more stringent. With
the IQR method, the limits are calculated as follows:

IQR limits:
* right tail (upper_limit): 75th quantile + 3* IQR
o left tail (lower_limit): 25th quantile - 3* IQR
where IQR is the inter-quartile range:
* IQR = 75th quantile - 25th quantile = third quartile - first quartile.

Observations found beyond those limits can be considered extreme values.

Parameters like the mean and the standard deviation are strongly affected by the
presence of outliers. Therefore, it might be a better solution to use a metric that
is robust against outliers, like the median absolute deviation from the median,
commonly shortened to the median absolute deviation (MAD), to delimit the
normal data distribution.

When we use MAD, we determine the limits of the distribution as follows:
MAD limits:

* right tail (upper_limit): median + 3* MAD

e left tail (lower_limit): median - 3* MAD

MAD is the median absolute deviation from the median. In other words, MAD
is the median value of the absolute difference between each observation and
its median.

¢ MAD = median(abs(X-median(X))

140

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Percentiles

Remove outliers in Python

A simpler way to determine the values that delimit the data distribution is by
using percentiles. Like this, outlier values would be those that lie before or
after a certain percentile or quantiles:

* right tail: 95th percentile
o left tail: Sth percentile

The number of outliers identified by any of these methods will vary. These
methods detect outliers, but they can’t decide if they are true outliers or faithful
data points. That required further examination and domain knowledge.

Let’s move on to removing outliers in Python.

In this demo, we’1l identify and remove outliers from the Titanic Dataset. First,
let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.outliers import OutlierTrimmer

X, y = load_titanic(
return_X_y_frame=True,
predictors_only=True,
handle_missing=True,

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting pandas dataframe below:

pclass .

< sex age sibsp parch fare cabin embarked
501 2 female.

— 13.000000 0 1 19.5000 Missing S

588 2 female.

< 4.000000 1 1 23.0000 Missing S

402 2 female.

< 30.000000 1 ® 13.8583 Missing C

1193 3 4

—male 29.881135 0 0 7.7250 Missing Q
686 3 female.

— 22.000000 0 ® 7.7250 Missing Q

10.2. User Guide

141

feature_engine Documentation, Release 1.7.0

Identifying outliers

Let’s now identify potential extreme values in the training set by using box-
plots.

X_train.boxplot(column=["'age', 'fare', 'sibsp'])
plt.title("Box plot - outliers")
plt.ylabel("variable values™)

plt.show()
In the following boxplots, we see that all three variables have data points that
are significantly greater than the majority of the data distribution. The variable
age also shows outlier values towards the lower values.
Box plot - outliers
500 ~ @
400 ~
()]
v
= 300 -
S
2 8
=]
@ 8
s 200 A
=
100 A
0 - _—e—_
T T T
age fare sibsp

The variables have different scales, so let’s plot them individually for better
visualization. Let’s start by making a boxplot of the variable fare:

X_train.boxplot(column=["'fare'])
plt.title("Box plot - outliers")
plt.ylabel("variable values™)
plt.show()

We see the boxplot in the following image:

Next, we plot the variable age:

142 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Box plot - outliers

500 - @
400 -
()]
v
2 300 A
2
E 8
L
@ 8
5 200 1
=
100 -
0 —

fare

X_train.boxplot(column=["'age'])
plt.title("Box plot - outliers™)
plt.ylabel("variable values™)
plt.show()

We see the boxplot in the following image:

And finally, we make a boxplot of the variable sibsp:

X_train.boxplot(column=["'sibsp'])
plt.title("Box plot - outliers")
plt.ylabel("variable values")
plt.show()

We see the boxplot and the outlier values in the following image:

10.2. User Guide 143

feature_engine Documentation, Release 1.7.0

variable values

variable values

Box plot - outliers

0
70 - o
60
50
40 -
30 1
20 -
10 -
0 8
a{_;]e
Box plot - outliers

8 o
74
6 -
5 o
4 o
31 o
5 4 —
14
0

QESp

144

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Outlier removal

Now, we will use the OutlierTrimmer () to remove outliers. We’ll start by
using the IQR as outlier detection method.

IQR

We want to remove outliers at the right side of the distribution only (param
tail). We want the maximum values to be determined using the 75th quan-
tile of the variable (param capping_method) plus 1.5 times the IQR (param
fold). And we only want to cap outliers in 2 variables, which we indicate in
a list.

ot = OutlierTrimmer(capping_method="iqgr',
tail="right"',
fold=1.5,
variables=['sibsp', 'fare'],

)

ot.fit(X_train)

With £fit (), the OutlierTrimmer () finds the values at which it should cap
the variables. These values are stored in one of its attributes:

ot.right_tail_caps_

{'sibsp': 2.5, 'fare': 66.34379999999999}

We can now go ahead and remove the outliers:

train_t = ot.transform(X_train)
test_t = ot.transform(X_test)

We can compare the sizes of the original and transformed datasets to check
that the outliers were removed:

X_train.shape, train_t.shape

We see that the transformed dataset contains less rows:

(916, 8), (764, 8))

If we evaluate now the maximum of the variables in the transformed datasets,
they should be <= the values observed in the attribute right_tail_caps_:

train_t[['fare', 'age']].max()
fare 65.0
age 53.0

dtype: float64

Finally, we can check the boxplots of the transformed variables to corroborate
the effect on their distribution.

10.2. User Guide 145

feature_engine Documentation, Release 1.7.0

train_t.boxplot(column=["'sibsp', "fare"])
plt.title("Box plot - outliers™)
plt.ylabel("variable values")

plt.show()
We see the boxplot and the sibsp does no longer have outliers, but as fare
was very skewed, when removing outliers, the parameters of the IQR change,
and we continue to see outliers:
Box plot - outliers
(0]
60 1
30 A
o
E 40
1)
-
L
o 30
=
[
M
=
20 1
10
0 - .I:_!_:I l
T T
sibsp fare

We’ll come back to this later, but now let’s continue showing the functionality
of the OutlierTrimmer().

When we remove outliers from the datasets, we then need to re-align the target
variables. We can do this with pandas loc. But the OutlierTrimmer () can
do that automatically as follows:

train_t, y_train_t = ot.transform_x_y(X_train, y_train)
test_t, y_test_t = ot.transform_x_y(X_test, y_test)

The method transform_x_y will remove outliers from the predictor datasets
and then align the target variable. That means, it will remove from the target
those rows corresponding to the outlier values.

We can corroborate the size adjustment in the target as follows:

y_train.shape, y_train_t.shape,

The previous command returns the following output:

146 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

((916,), (764,))

We can obtain the names of the fetaures in the transformed dataset as follows:

ot.get_feature_names_out()

That returns the following variable namesL.

['pclass', 'sex
~"', 'age', 'sibsp', 'parch', 'fare', 'cabin', 'embarked']
MAD

We saw that the IQR did not work amazingly for the variable fare, because its
skew is too big. So let’s remove outliers by using the MAD instead:

ot = OutlierTrimmer (capping_method='mad",
tail="right',
fold=3,
variables=["'fare'],

)
ot.fit(X_train)

train_t, y_train_t = ot.transform_x_y(X_train, y_train)
test_t, y_test_t = ot.transform_x_y(X_test, y_test)

train_t.boxplot(column=["fare"])
plt.title("Box plot - outliers")
plt.ylabel("variable values™)
plt.show()

In the following image, we see that after this transformation, the variable fare
no longer shows outlier values:

Z-score

The variable age is more homogeneously distributed across its value range,
so let’s use the z-score or gaussian approximation to detect outliers. We saw
in the boxplot that it has outliers at both ends, so we’ll cap both ends of the
distribution:

ot_age = OutlierTrimmer(capping_method="'gaussian',
tail="both",
fold=3,
variables=['age'],

)

ot_age.fit(X_train)

10.2. User Guide 147

feature_engine Documentation, Release 1.7.0

Box plot - outliers

40

30 +

20 +

variable values

10 ~

fare

Let’s inspect the maximum values beyond which data points will be considered
outliers:

ot_age.right_tail_caps_

{'age': 67.73951212364803}

And the lower values beyond which data points will be considered outliers:

ot_age.left_tail_caps_

{'age': -7.410476010820627}

The minimum value does not make sense, because age can’t be negative. So,
we’ll try capping this variable with percentiles instead.

148

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Percentiles

We’ll cap age at the bottom 5 and top 95 percentile:

ot = OutlierTrimmer(capping_method='mad',
tail="right',
fold=3,
variables=['fare'],

)

ot.fit(X_train)

Let’s inspect the maximum values beyond which data points will be considered
outliers:

ot_age.right_tail_caps_

{'age': 54.0}

And the lower values beyond which data points will be considered outliers:

ot_age.left_tail_caps_

{'age': 9.0}

Let’s tranform the dataset and target:

train_
—t, y_train_t = ot_age.transform_x_y(X_train, y_train)
test_t, y_test_t = ot_age.transform_x_y(X_test, y_test)

And plot the resulting variable:

train_t.boxplot(column=["age'])
plt.title("Box plot - outliers")
plt.ylabel("variable values™)

plt.show()
In the following image, we see that after this transformation, the variable age
still shows some outlier values towards its higher values, so we should be more
stringent with the percentiles or use MAD:

Pipeline

The OutlierTrimmer () removes observations from the predictor data sets.
If we want to use this transformer within a Pipeline, we can’t use Scikit-learn’s
pipeline because it can’t readjust the target. But we can use Feature-engine’s
pipeline instead.

Let’s start by creating a pipeline that removes outliers and then encodes cate-
gorical variables:

10.2. User Guide 149

feature_engine Documentation, Release 1.7.0

Box plot - outliers

:

40

30 +

variable values

20 +

10 ~

age

from feature_engine.encoding import OneHotEncoder
from feature_engine.pipeline import Pipeline

pipe = Pipeline(
[

("outliers", ot),
("enc", OneHotEncoder()),

)

pipe.fit(X_train, y_train)

The transform method will transform only the dataset with the predictors,
just like scikit-learn’s pipeline:

train_t = pipe.transform(X_train)

X_train.shape, train_t.shape

We see the adjusted data size compared to the original size here:

(916, 8), (736, 76))

Feature-engine’s pipeline can also adjust the target:

150 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

train_t, y_train_t = pipe.transform_x_y(X_train, y_train)

y_train.shape, y_train_t.shape

We see the adjusted data size compared to the original size here:

(C916,), (736,))

To wrap up, let’s add a machine learning algorithm to the pipeline. We’ll use
logistic regression to predict survival:

from sklearn.linear_model import LogisticRegression

pipe = Pipeline(

[

("outliers", ot),

("enc", OneHotEncoder()),

("logit", LogisticRegression(random_state=10)),
]

)

pipe.fit(X_train, y_train)

Now, we can predict survival:

preds = pipe.predict(X_train)

preds[0:10]

We see the following output:

array([1, 1, 1, 0, 1, ®, 1, 1, 0, 1], dtype=int64)

We can obtain the probability of survival:

preds = pipe.predict_proba(X_train)

preds[0:10]

We see the following output:

array([[0.13027536, 0.86972464],
[0.14982143, 0.85017857],
[0.2783799 , 0.7216201 1],
[0.86907159, 0.13092841],
[0.31794531, 0.68205469],
[0.86905145, 0.13094855],
[0.1396715 , 0.8603285 1],
[0.48403632, 0.51596368],
[0.6299007 , 0.3700993],
[0.49712853, 0.50287147]11)

We can obtain the accuracy of the predictions over the test set:

10.2. User Guide 151

feature_engine Documentation, Release 1.7.0

pipe.score(X_test, y_test)

That returns the following accuracy:

0.7823343848580442

We can obtain the names of the features after the trasnformation:

pipel[:-1].get_feature_names_out()

That returns the following names:

['pclass’,
'age',
'sibsp’,
'parch’,
'fare',
'sex_female',
'sex_male',
'cabin_Missing',

And finally, we can obtain the transformed dataset and target as follows:

X_test_
~t, y_test_t = pipe[:-1].transform_x_y(X_test, y_test)

X_test.shape, X_test_t.shape

We see the resulting sizes here:

(393, 8, (317, 76))

Tutorials, books and courses

In the following Jupyter notebook, in our accompanying Github repository,
you will find more examples using OutlierTrimmer().

* Jupyter notebook

For tutorials about this and other feature engineering methods check out our
online course:

152 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/outliers/OutlierTrimmer.ipynb

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 43: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Variance Stabilizing Transformations

Feature-engine’s variable transformers transform numerical variables with var-
ious mathematical transformations.

Variable transformations are commonly used to spread the values of the orig-
inal variables over a wider value range. See the following illustration:

Article

Feature

ineering We added a lot of information about variance stabilizing transformations in
Cookbook this article.

Note

Note however, that improving the value spread is not always possible and it
depends on the nature of the variable.

SOLEDAD GALLI

. . Transformers
ire Engineering

10.2. User Guide 153

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo
https://www.blog.trainindata.com/variance-stabilizing-transformations-in-machine-learning/

feature_engine Documentation, Release 1.7.0

Variable Transformation

Skewed

LogTransformer

Variable transformation

Logarithmic = In(x)
Exponential = x Exp (any power)
Reciprocal = (1/x)
Box-Cox = (x Exp (A)— 1)/ A
* Avaries from-5to 5

Gaussian

The log transformation is used to transform skewed data so that the values are
more evenly distributed across the value range.

Some regression models, like linear regression, t-test and ANOVA, make as-
sumptions about the data. When the assumptions are not met, we can’t trust the
results. Applying data transformations is common practice during regression
analysis because it can help make the data meet those assumptions and hence
obtain more reliable results.

The logarithm function is helpful for dealing with positive data with a right-
skewed distribution. That is, those variables whose observations accumulate
towards lower values. A common example is the variable income, with a heavy
accumulation of values toward lower salaries.

More generally, when data follows a log-normal distribution, then its log-
transformed version approximates a normal distribution.

Other useful transformations are the square root transformation, power trans-
formations and the box cox transformation.

In statistical analysis, we can apply the logarithmic transformation to both the
dependent variable (that is, the target) and the independent variables (that is,
the predictors). These can help meet the linear regression model assumptions
and unmask a linear relationship between predictors and response variable.

With Feature-engine, we can only log transform input features. You can easily
transform the target variable by applying np.log(y).

154

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

The LogTransformer

The LogTransformer () applies the natural logarithm or the logarithm in base
10 to numerical variables. Note that the logarithm can only be applied to pos-
itive values. Thus, if the variable contains O or negative variables, this trans-
former will return and error.

To transform non-positive variables you can add a constant to shift the data
points towards positive values. You can do this from within the transformer by
using LogCpTransformer().

Python implementation

In this section, we will apply the logarithmic transformation to some indepen-
dent variables from the Ames house prices dataset.

Let’s start by importing the required libraries and transformers for data analysis
and then load the dataset and separate it into train and test sets.

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from feature_engine.transformation import LogTransformer

data fetch_openml (name="house_prices', as_frame=True)
data = data.frame

X data.drop(['SalePrice', 'Id'], axis=1)
y = data['SalePrice']

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

print(X_train.head())

In the following output we see the predictor variables of the house prices

dataset:
MSSubClass..
—MSZoning LotFrontage LotArea Street Alley LotShape \
254 o
- 20 RL 70.0 8400 Pave NaN Reg
1066 o
- 60 RL 59.0 7837 Pave NaN IR1
638 o
- 30 RL 67.0 8777 Pave NaN Reg
799 o
- 50 RL 60.0 7200 Pave NaN Reg
380 o
- 50 RL 50.0 5000 Pave Pave Reg

LandContour Utilities.

(continues on next page)

10.2. User Guide 155

feature_engine Documentation, Release 1.7.0

(continued from previous page)

—LotConfig . ScreenPorch PoolArea PoolQC Fence

254 Lvl o

—Al11Pub Inside 0 0 NaN

1066 Lvl .

—Al11Pub Inside 0 0 NaN

638 Lvl .

—Al11Pub Inside 0 0 NaN

799 Lvl .

—Al11Pub Corner 0 0 NaN

380 Lvl .

—Al11Pub Inside 0 0 NaN
MiscFeature..

—MiscVal MoSold YrSold SaleType SaleCondition

254 o

. NaN 0 6 2010 WD

1066 o

. NaN 0 5 2009 WD

638 o

. NaN 0 5 2008 WD

799 o

. NaN 0 6 2007 WD

380 o

. NaN 0 5 2010 WD

[5 rows x 79 columns]

NaN

NaN

MnPrv

MnPrv

NaN

Normal

Normal

Normal

Normal

Normal

Let’s inspect the distribution of 2 variables from the original data with his-
tograms.

X_train[['LotArea',

'GrLivArea']].hist(figsize=(10,5))

plt.show()
In the following plots we see that the variables show a right-skewed distribu-
tion, so they are good candidates for the log transformation:

156 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

LotArea GrLivAr

1000 A

800

600

400 A

200 A

F—--

T T T
0 50000 100000 150000 200000 1000 2000 3000

We want to apply the natural logarithm to these 2 variables in the dataset using
the LogTransformer (). We set up the transformer as follows:

logt..
.= LogTransformer(variables = ['LotArea', 'GrLivArea'])

logt.fit(X_train)

With £it (), this transformer does not learn any parameters, but it checks that
the variables you entered are numerical, or if no variable was entered, it will
automatically find all numerical variables.

To apply the logarithm in base 10, pass '10' to the base parameter when
setting up the transformer.

Now, we can go ahead and transform the data:

train_t = logt.transform(X_train)
test_t = logt.transform(X_test)

Let’s now examine the variable distribution in the log-transformed data with
histograms:

train_t[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following histograms we see that the natural log transformation helped
make the variables better approximate a normal distribution.

10.2. User Guide 157

feature_engine Documentation, Release 1.7.0

LotArea GrLivAr

N I
350 A

300 A

250 A

200 A

150 +

100 +

.
C
L
L
L
l

50 -
0 J
7 8 9 10 11 12 6.0 6.5 7.0 '

Note that the transformed variable has a more Gaussian looking distribution.

If we want to recover the original data representation, with the method
inverse_transform, the LogTransformer () will apply the exponential
function to obtain the variable in its original scale:

train_unt = logt.inverse_transform(train_t)
test_unt = logt.inverse_transform(test_t)

train_unt[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following plots we see histograms showing the variables in their original
scale:

158 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Tutorials, books and courses

LotArea

GrLivAr

400

1000 A

800

600

200 A

0 50000 100000 150000 200000 1000 2000

Following the transformations with scatter plots and residual analysis of the
regression models helps understand if the transformations are useful in our
regression analysis.

You can find more details about the LogTransformer () here:
Jupyter notebook

For tutorials about this and other data transformation methods, like the square
root transformation, power transformations, the box cox transformation, check
out our online course:

Or read our book:

159

3000

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/LogTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

2np EprTron

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

LogCpTransformer
The LogCpTransformer () applies the transformation log(x + C), where C is
a positive constant.
You can enter the positive quantity to add to the variable. Alternatively, the
transformer will find the necessary quantity to make all values of the variable
positive.

Example

Let’s load the California housing dataset that comes with Scikit-learn and sep-
arate it into train and test sets.

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing

from feature_engine.transformation import LogCpTransformer

Load dataset
X, y = fetch_
—»california_housing(return_X_y=True, as_frame=True)

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0)

Now we want to apply the logarithm to 2 of the variables in the dataset using
the LogCpTransformer (). We want the transformer to detect automatically
the quantity “C” that needs to be added to the variable:

160 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

set up the variable transformer
tf = LogCpTransformer(variables..
<= ["MedInc", "HouseAge"], C="auto")

fit the transformer
tf.fit(X_train)

With fit () the LogCpTransformer () learns the quantity “C” and stores it
as an attribute. We can visualise the learned parameters as follows:

learned constant C
tf.C_

{'MedInc': 1.4999, 'HouseAge': 2.0}

Applying the log of a variable plus a constant in this dataset does not make
much sense because all variables are positive, that is why the constant values
C for the former variables are possible.

We will carry on with the demo anyways.

We can now go ahead and transform the variables:

transform the data
train_t= tf.transform(X_train)
test_t= tf.transform(X_test)

Then we can plot the original variable distribution:

un-transformed variable
X_train["MedInc"].hist(bins=20)
plt.title("MedInc - original distribution")
plt.ylabel ("Number of observations")

10.2. User Guide 161

feature_engine Documentation, Release 1.7.0

MedInc - original distribution

2500 7

N
o
o
o
I

1500 +

1000 A

Number of observations

500 A

0 2 4 6 8 10 12

And the distribution of the transformed variable:

transformed variable
train_t["MedInc"].hist(bins=20)
plt.title("MedInc - transformed distribution")
plt.ylabel ("Number of observations")

162 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

MedInc - transformed distribution

2000

1750 A

1500 A

1250 +

1000 A

750 A

Number of observations

S
o

250 A

Tutorials, books and courses

You can find more details about the LogCpTransformer () here:
* Jupyter notebook

For tutorials about this and other data transformation methods, like the square
root transformation, power transformations, the box cox transformation, check
out our online course:

10.2. User Guide 163

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/LogCpTransformer.ipynb

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 47: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike.

The ReciprocalTransformer () applies the reciprocal transformation 1/ x
to numerical variables.

The ReciprocalTransformer () only works with numerical variables with
non-zero values. If a variable contains the value 0, the transformer will raise
an error.

Python Feature

Engineering
Cookbook

Let’s load the house prices dataset and separate it into train and test sets (more
details about the dataset here).

SOLEDAD GALLI import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Fig. 48: Python Feature Engineering | from sklearn.model_selection import train_test_split
Cookbook

from feature_engine import transformation as vt

Load dataset
data = data = pd.read_csv('houseprice.csv')

Separate into train and test sets

X_train, X_test, y_train, y_test = train_test_split(
data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'], test_size=0.3, random_

—state=0)

Now we want to apply the reciprocal transformation to 2 variables in the dataframe:

164 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

set up the variable transformer
tf = vt.ReciprocalTransformer(variables = ['LotArea', 'GrLivArea'])

fit the transformer
tf. fit(X_train)

The transformer does not learn any parameters. So we can go ahead and transform the variables:

transform the data
train_t= tf.transform(X_train)
test_t= tf.transform(X_test)

Finally, we can plot the original variable distribution:

un-transformed variable
X_train['LotArea’] .hist(bins=50)

400 4

300 1

200 1

100 4

|] N
D 50000 100000 150000 200000

And now the distribution after the transformation:

transformed variable
train_t['LotArea'].hist(bins=50)

10.2. User Guide 165

feature_engine Documentation, Release 1.7.0

200

175

150

125

100

75

50

25

0
0.0000 00001 0.0002 0.0003 00004 00005 0.000e 00007 00008

Additional resources

You can find more details about the Reciprocal Transformer () here:
e Jupyter notebook

For more details about this and other feature engineering methods check out these resources:

Or read our book:

Chapter 10. Table of Contents

Fig. 49: Feature Engineering for Machine Learning

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/ReciprocalTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

ArcsinTransformer

Example

The ArcsinTransformer () applies the arcsin transformation to numerical
variables.

The arcsine transformation, also called arcsin square root transformation, or
angular transformation, takes the form of arcsin(sqrt(x)) where x is a real num-
ber between 0 and 1.

The arcsin square root transformation helps in dealing with probabilities, per-
centages, and proportions.

The ArcsinTransformer () only works with numerical variables with values
between O and 1. If the variable contains a value outside of this range, the
transformer will raise an error.

Let’s load the breast cancer dataset from scikit-learn and separate it into train
and test sets.

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer

from,,

- feature_engine.transformation import ArcsinTransformer

#Load dataset

breast_cancer = load_breast_cancer()

X = pd.DataFrame(breast_

—.cancer.data, columns=breast_cancer.feature_names)

y = breast_cancer.target

Separate data into train and test sets

X_train, X_test,.

~y_train, y_test = train_test_split(X, y, random_state=0)

10.2. User Guide

167

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Now we want to apply the arcsin transformation to some of the variables in
the dataframe. These variables values are in the range 0-1, as we will see in
coming histograms.

First, let’s make a list with the variable names:

vars_ = [
'mean compactness',
'mean concavity',
'mean concave points',
'mean fractal dimension',
'smoothness error',
'compactness error',
'concavity error',
'concave points error',
'symmetry error',
'fractal dimension error',
'worst symmetry',
'worst fractal dimension']

Now, let’s set up the arscin transformer to modify only the previous variables:

set up the arcsin transformer
tf = ArcsinTransformer(variables = vars_)

fit the transformer
tf.fit(X_train)

The transformer does not learn any parameters when applying the fit method.
It does check however that the variables are numericals and with the correct
value range.

We can now go ahead and transform the variables:

transform the data
train_t = tf.transform(X_train)
test_t = tf.transform(X_test)

And that’s it, now the variables have been transformed with the arscin formula.

Finally, let’s make a histogram for each of the original variables to examine
their distribution:

original variables
X_train[vars_].hist(figsize=(20,20))

168 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

100 +

-
50 4 |..

N =-
100 =

mean compactness

mean concavity

005010, 015 020 025 030
mean fractal dimension

0.1 ﬁ.Z 0.3
smoothness error

0.4

0.005 0010 .0

015 0.020
toncave points error

T T .
0. .02 . 03 0.4
fractal dimznsion effor

01 002 003 004
worst symmetry

0.05

0.000 0.005 0.010 0.015 0.020 0.025 0.030

150 +

100

50 4

You can see in the previous image that many of the variables are skewed. Note
however, that all variables had values between O and 1.

Now, let’s examine the distribution after the transformation:

mean concave

150 +

100 +

50 4

0.01

150

100

50 4

0.050 0.075 0.100 0.125 0.

transformed variable
train_t[vars_] .hist(figsize=(20,20))

10.2. User Guide

169

feature_engine Documentation, Release 1.7.0

mean compactness mean concavity mean concave

Ff S -

0.2 lFi %4 0.5 0.6 Zt
mean fractal dimension smonthness error EDITIPEC nes:

| : i
. L vi . . . X X , A . . . 5

0.0

0.6

oo “worst symme]try © worst frictal di

N

You can see in the previous image that many variables have after the transfor-
mation a more Gaussian looking shape.

.20 0.4 0.6
fractal dimenSion error

150

100 1

o4
0.025 0.050 0.075 0.100 0.125 0.150 0.175

Additional resources

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

enp eprtIon

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

PowerTransformer

The PowerTransformer () applies power or exponential transformations to
numerical variables.

Let’s load the house prices dataset and separate it into train and test sets (more
details about the dataset siere).

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from feature_engine import transformation as vt

Load dataset
data = data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),

o data['SalePrice'], test_size=0.3, random_state=0)

Now we want to apply the square root to 2 variables in the dataframe:

set up the variable transformer
tf = vt.PowerTransformer (variables.
<= ['LotArea', 'GrLivArea'], exp=0.5)

fit the transformer
tf.fit(X_train)

The transformer does not learn any parameters. So we can go ahead and trans-
form the variables:

10.2. User Guide 171

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

transform the data
train_t= tf.transform(X_train)
test_t= tf.transform(X_test)

Finally, we can plot the original variable distribution:

un-transformed variable
X_train['LotArea’] .hist(bins=50)

400 4

300 1

200 1

100 4

0 -

0

50000

100000 150000

And now the distribution after the transformation:

transformed variable
train_t['LotArea'].hist(bins=50)

172

Chapter 10. Table of Contents

200000

feature_engine Documentation, Release 1.7.0

200

200 300 400

Additional resources

You can find more details about the PowerTransformer () here:
* Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

173

Fig. 53: Feature Engineering for Machine Learning

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/PowerTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

<packt>

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

BoxCoxTransformer
The Box-Cox transformation is a generalization of the power transformations
family and is defined as follows:

y = @** -1/, for =0

y = log(x), for =0

Here, y is the transformed data, x is the variable to transform and is the trans-
formation parameter.

The Box Cox transformation is used to reduce or eliminate variable skewness
and obtain features that better approximate a normal distribution.

The Box Cox transformation evaluates commonly used transformations. When
= 1 then we have the original variable, when = 0, we have the logarithm trans-
formation, when =- 1 we have the reciprocal transformation, and when = 0.5
we have the square root.

The Box-Cox transformation evaluates several values of using the maximum
likelihood, and selects the optimal value of the parameter, which is the one
that returns the best transformation. The best transformation occurs when the
transformed data better approximates a normal distribution.

The Box Cox transformation is defined for strictly positive variables. If your
variables are not strictly positive, you can add a constant or use the Yeo-
Johnson transformation instead.

Uses of the Box Cox Transformation

Many statistical methods that we use for data analysis make assumptions about
the data. For example, the linear regression model assumes that the values of
the dependent variable are independent, that there is a linear relationship be-
tween the response variable and the independent variables, and that the resid-
uals are normally distributed and centered at 0.

When these assumptions are not met, we can’t fully trust the results of our
regression analyses. To make data meet the assumptions and improve the trust
in the models, it is common practice in data science projects to transform the
variables before the analysis.

174 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

References

BoxCoxTransformer

Python code examples

In time series forecasting, we use the Box Cox transformation to make non-
stationary time series stationary.

George Box and David Cox. “An Analysis of Transformations”. Read at a
RESEARCH MEETING, 1964. https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/j.2517-6161.1964.tb00553.x

The BoxCoxTransformer () applies the BoxCox transformation to numerical
variables. It uses SciPy.stats under the hood to apply the transformation.

The BoxCox transformation works only for strictly positive variables (>=0).
If the variable contains O or negative values, the BoxCoxTransformer () will
return an error. To apply this transformation to non-positive variables, you can
add a constant value. Alternatively, you can apply the Yeo-Johnson transfor-
mation with the YeoJohnsonTransformer().

In this section, we will apply this data transformation to 2 variables of the
Ames house prices dataset.

Let’s start by importing the modules, classes and functions and then loading
the house prices dataset and separating it into train and test sets.

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from,,

—.feature_engine.transformation import BoxCoxTransformer

data = fetch_openml (name='house_prices', as_frame=True)

data = data.frame

X = data.drop(['SalePrice’,
data['SalePrice']

y

'Id'], axis=1)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

print(X_train.head())

In the following output we see the predictor variables of the house prices
dataset:

10.2. User Guide

175

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html

feature_engine Documentation, Release 1.7.0

MSSubClass..
—MSZoning LotFrontage LotArea Street Alley LotShape \
254 o
- 20 RL 70.0 8400 Pave NaN Reg
1066 o
- 60 RL 59.0 7837 Pave NaN IR1
638 o
- 30 RL 67.0 8777 Pave NaN Reg
799 o
- 50 RL 60.0 7200 Pave NaN Reg
380 o
- 50 RL 50.0 5000 Pave Pave Reg

LandContour Utilities.

—LotConfig ... ScreenPorch PoolArea PoolQC Fence \

254 Lvl o

—Al11Pub Inside ... 0 0 NaN NaN

1066 Lvl .

—A11Pub Inside ... 0 0 NaN NaN

638 Lvl .

—Al11Pub Inside ... 0 0 NaN MnPrv

799 Lvl .

—Al11Pub Corner ... 0 0 NaN MnPrv

380 Lvl .

—A11Pub Inside ... 0 0 NaN NaN
MiscFeature..

—MiscVal MoSold YrSold SaleType SaleCondition

254 o

. NaN 0 6 2010 WD Normal

1066 o

< NaN 0 5 2009 WD Normal

638 o

- NaN 0 5 2008 WD Normal

799 o

< NaN 0 6 2007 WD Normal

380 o

. NaN 0 5 2010 WD Normal

[5 rows x 79 columns]

Let’s inspect the distribution of 2 variables in the original data with histograms.

X_train[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following plots we see that the variables are non-normally distributed:

176 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

LotArea

1000 A

800

600

400 A

200 A

r---

0- T T T T
0 50000 100000 150000 200000 1000

Now we apply the BoxCox transformation to the 2 indicated variables. First,
we set up the transformer and fit it to the train set, so that it finds the optimal
lambda value.

boxcox =,
—.BoxCoxTransformer (variables = ['LotArea', 'GrLivArea'])
boxcox.fit(X_train)

With £it (), the BoxCoxTransformer () learns the optimal lambda for the
transformation. We can inspect these values as follows:

boxcox.lambda_dict_

We see the optimal lambda values below:

{'LotArea': 0.
—0028222323212918547, 'GrLivArea': -0.006312580181375803}

Now, we can go ahead and transform the data:

train_t = boxcox.transform(X_train)
test_t = boxcox.transform(X_test)

Let’s now examine the variable distribution after the transformation with his-
tograms:

train_t[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following histograms we see that the variables approximate better the
normal distribution.

10.2. User Guide 177

feature_engine Documentation, Release 1.7.0

GrLivAre

400

350 +

300 ~

250 +

200 ~

150 +

100 +

7 8 9 10 11 12

If we want to recover the original data representation, we can also do so as
follows:

train_unt = boxcox.inverse_transform(train_t)
test_unt = boxcox.inverse_transform(test_t)

train_unt[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following plots we see that the variables are non-normally distributed,
because they contain the original values, prior to the data transformation:

LotArea GrLivAr

1000 A

800 A

600

400 A

200 A

r-—--

0_ T T T T
0 50000 100000 150000 200000 1000 2000 3000

178 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Tutorials, books and courses

You can find more details about the Box Cox transformation technique with
the BoxCoxTransformer () here:

* Jupyter notebook

For tutorials about this and other data transformation techniques and feature
engineering methods check out our online courses:

Fig. 55: Feature Engineering for Machine Learning

Or read our book:

Fig. 56: Feature Engineering for Time Series Forecasting

10.2. User Guide 179

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/BoxCoxTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-engineering-for-forecasting

2np EprTron

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Our book and courses are suitable for beginners and more
advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-engine.

YeoJohnsonTransformer

The YeoJohnsonTransformer () applies the Yeo-Johnson transformation to
the numerical variables.

The Yeo-Johnson transformation is defined as:

((y +D* = 1)/A iITA#0,y>0

_) logly+1) ifA=0,y>0
VA= Sy)2 — 0 iTA# 2y <0
—log(-y +1) ifA=29y<0

where Y is the response variable and is the transformation parameter.

The Yeo-Johnson transformation implemented by this transformer is that of
SciPy.stats.

Example

Let’s load the house prices dataset and separate it into train and test sets (more
details about the dataset /ere).

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from feature_engine import transformation as vt

Load dataset
data = data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),

. data['SalePrice'], test_size=0.3, random_state=0)

Now we apply the Yeo-Johnson transformation to the 2 indicated variables:

set up the variable transformer
tf = vt.YeoJohnsonTransformer(variables,,
—= ['LotArea', 'GrLivArea'])

fit the transformer
tf. fit(X_train)

With £fit (), the YeoJohnsonTransformer () learns the optimal lambda for
the transformation. Now we can go ahead and trasnform the data:

180 Chapter 10. Table of Contents

https://packt.link/0ewSo
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html

feature_engine Documentation, Release 1.7.0

transform the data
train_t= tf.transform(X_train)
test_t= tf.transform(X_test)

Next, we make a histogram of the original variable distribution:

un-transformed variable
X_train['LotArea’] .hist(bins=50)

400 4

300 1

200 1

100 4

0 -

And now, we can explore the distribution of the variable after the transforma-

tion:

0

50000

100000

150000

transformed variable
train_t['LotArea'].hist(bins=50)

10.2. User Guide

181

200000

feature_engine Documentation, Release 1.7.0

160

1440

120

100

5 & 8 B

=

Additional resources

You can find more details about the YeoJohnsonTrans former () here:
* Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Chapter 10. Table of Contents

Fig. 58: Feature Engineering for Machine Learning

14

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/YeoJohnsonTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and

more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-

engine.

Feature Creation

10.2.2 Creation

Feature creation, is a common step during data preprocessing, and consists
of constructing new variables from the dataset’s original features. By com-
bining two or more variables, we develop new features that can improve the
performance of a machine learning model, capture additional information or
relationships among variables, or simply make more sense within the domain
we are working on.

One of the most common feature creation methods in data science is one-hot
encoding, which is a feature engineering technique used to transform a cate-
gorical feature into multiple binary variables that represent each category.

Another common feature extraction procedure consist of creating new features
from past values of time series data, for example through the use of lags and
windows.

In general, creating features requires a dose of domain knowledge and signif-
icant time invested in analyzing the raw data, including evaluating the rela-
tionship between the independent or predictor variables and the dependent or
target variable in the dataset.

Feature creation can be one of the more creative aspects of feature engineering,
and the new features can help improve a predictive model’s performance.

Lastly, a data scientist should be mindful that creating new features may in-
crease the dimensionality of the dataset quite dramatically. For example, one
hot encoding of highly cardinal categorical features results in lots of binary
variables, and so does polynomial combinations of high powers. This may
have downstream effects depending on the machine learning algorithm being
used. For example, decision trees are known for not being able to cope with
huge number of features.

10.2. User Guide

183

https://www.blog.trainindata.com/one-hot-encoding-categorical-variables/
https://www.blog.trainindata.com/one-hot-encoding-categorical-variables/

feature_engine Documentation, Release 1.7.0

Creating New Features with Feature-engine

Feature creation module

CyclicalFeatures

Feature-engine has several transformers that create and add new features to
the dataset. One of the most popular ones is the OneHotEncoder that creates
dummy variables from categorical features.

With Feature-engine we can also create new features from time series data
through lags and windows by using LagFeatures or WindowFeatures.

Feature-engine’s creation module, supports transformers that create and add
new features to a pandas dataframe by either combining existing features
through different mathematical or statistical operations, or through feature
transformations. These transformers operate with numerical variables, that
is, those with integer and float data types.

Summary of Feature-engine’s feature-creation transformers:

CyclicalFeatures - Creates two new features per variable by applying the
trigonometric operations sine and cosine to the original feature.

MathFeatures - Combines a set of features into new variables by applying
basic mathematical functions like the sum, mean, maximum or standard devi-
ation.

RelativeFeatures - Utilizes basic mathematical functions between a group of
variables and one or more reference features, appending the new features to
the pandas dataframe.

Some features are inherently cyclical. Clear examples are time features, i.c.,
those features derived from datetime variables like the hours of the day, the
days of the week, or the months of the year.

But that’s not the end of it. Many variables related to natural processes are
also cyclical, like, for example, tides, moon cycles, or solar energy generation
(which coincides with light periods, which are cyclical).

In cyclical features, higher values of the variable are closer to lower values.
For example, December (12) is closer to January (1) than to June (6).

How can we convey to machine learning models like linear regression the cycli-
cal nature of the features?

In the article “Advanced machine learning techniques for building performance
simulation,” the authors engineered cyclical variables by representing them as
(x,y) coordinates on a circle. The idea was that, after preprocessing the cyclical
data, the lowest value of every cyclical feature would appear right next to the
largest value.

To represent cyclical features in (X, y) coordinates, the authors created two new
features, deriving the sine and cosine components of the cyclical variable. We
can call this procedure “cyclical encoding.”

184

Chapter 10. Table of Contents

https://feature-engine.trainindata.com/en/latest/user_guide/encoding/OneHotEncoder.html
https://feature-engine.trainindata.com/en/latest/user_guide/timeseries/forecasting/LagFeatures.html
https://feature-engine.trainindata.com/en/latest/user_guide/timeseries/forecasting/WindowFeatures.html

feature_engine Documentation, Release 1.7.0

Cyclical encoding

The trigonometric functions sine and cosine are periodic and repeat their val-
ues every 2 pi radians. Thus, to transform cyclical variables into (x, y) coor-
dinates using these functions, first we need to normalize them to 2 pi radians.

We achieve this by dividing the variables’ values by their maximum value.
Thus, the two new features are derived as follows:

e var_sin = sin(variable * (2. * pi / max_value))
* var_cos = cos(variable * (2. * pi / max_value))

In Python, we can encode cyclical features by using the Numpy functions sin
and cos:

import numpy as np

X[f"{variable}_sin"] = np.
—sin(X["variable"] * (2.0 * np.pi / X["variable"]).max())
X[f"{variable}_cos"] = np.
—cos(X["variable"] * (2.0 * np.pi / X["variable"]).max(Q))

We can also use Feature-Engine to automate this process.

Cyclical encoding with Feature-engine

CyclicalFeatures() creates two new features from numerical vari-
ables to better capture the cyclical nature of the original variable.
CyclicalFeatures () returns two new features per variable, according to:

* var_sin = sin(variable * (2. * pi / max_value))
* var_cos = cos(variable * (2. * pi / max_value))

where max_value is the maximum value in the variable, and pi is 3.14...

Example

In this example, we obtain cyclical features from the variables days of the week
and months. We first create a toy dataframe with the variables “days” and
“months”:

import pandas as pd
from feature_engine.creation import CyclicalFeatures

df = pd.DataFrame({
'day': [6, 7, 5, 3
'months': [3, 7, 9, 12, 4, 6, 12],
b

Now we set up the transformer to find the maximum value of each variable
automatically:

10.2. User Guide 185

feature_engine Documentation, Release 1.7.0

cyclical.,
<= CyclicalFeatures(variables=None, drop_original=False)

X = cyclical.fit_transform(df)

The maximum values used for the transformation are stored in the attribute
max_values_:

print(cyclical.max_values_)

{'day': 7, 'months': 12}

Let’s have a look at the transformed dataframe:

print(X.head())

We can see that the new variables were added at the right of our dataframe.

day months..

. day_sin day_cos months_sin months_cos

§ﬂ g —7?818315e—®1 0.623490 1.000000e+00 6.123234e-17
{ﬁ ; —2?449294e—16 1.000000 -5.000000e-01 -8.660254e-01
%% 3 —9?749279e—®1 -0.222521 -1.000000e+00 -1.836970e-16
%ﬁ 1; 4?338837e—®1 -0.900969 -2.449294e-16 1.000000e+00
%ﬂ i 7?818315e—®1 0.623490 8.660254e-01 -5.000000e-01

We set the parameter drop_original to False, which means that we keep
the original variables. If we want them dropped after the feature creation, we
can set the parameter to True.

We can now use the new features, which convey the cyclical nature of the data,
to train machine learning algorithms, like linear or logistic regression, among
others.

Finally, we can obtain the names of the variables of the transformed dataset as
follows:

cyclical.get_feature_names_out()

This returns the name of all the variables in the final output, original and and
new:

['day', 'months

—"', 'day_sin', 'day_cos', 'months_sin', 'months_cos']

186 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Cyclical feature visualization

We now know how to convert cyclical variables into (X, y) coordinates of a
circle by using the sine and cosine functions. Let’s now carry out some visu-
alizations to better understand the effect of this transformation.

Let’s create a toy dataframe:

import pandas as pd
import matplotlib.pyplot as plt

df..
<= pd.DataFrame([i for i in range(24)], columns=['hour'])

Our dataframe looks like this:

df.head()

hour

A wNn R
w2

Let’s now compute the sine and cosine features:

cyclical = CyclicalFeatures(variables=None)
df = cyclical.fit_transform(df)

print(df.head())

These are the sine and cosine features that represent the hour:

hour hour_sin hour_cos
0.000000 1.000000
0.269797 0.962917
0.519584 0.854419
0.730836 0.682553
0.887885 0.460065

B w2
B W N =R

Let’s now plot the hour variable against its sine transformation. We add per-
pendicular lines to flag the hours 0 and 22.

plt.scatter(df["hour"], df["hour_sin"])

Axis labels

plt.ylabel('Sine of hour')
plt.xlabel('Hour")
plt.title('Sine transformation')

plt.vlines(x=0,
— ymin=-1, ymax=0, color="g', linestyles='dashed")

(continues on next page)

10.2. User Guide 187

feature_engine Documentation, Release 1.7.0

(continued from previous page)

plt.vlines(x=22,
< ymin=-1, ymax=-0.25, color="g', linestyles='dashed')

After the transformation using the sine function, we see that the new values
for the hours 0 and 22 are closer to each other (follow the dashed lines), which

was the expectation:

Sine transformation

100 -

0.75 - ®

0.50 ®

0.25 - e

0.00

Sine of hour

—0.25

-0.50

-0.75

-1.00

10 15
Hour

The problem with trigonometric transformations, is that, because they are pe-
riodic, 2 different observations can also return similar values after the trans-

formation. Let’s explore that:

plt.scatter(df["hour"], df["hour_sin"])

Axis labels

plt.ylabel('Sine of hour')
plt.xlabel('Hour")
plt.title('Sine transformation')

plt.hlines(y=0,
< xmin=0, xmax=11.5, color='r', linestyles='dashed')

plt.vlines(x=0,

— ymin=-1, ymax=0, color="'g', linestyles='dashed')
plt.vlines(x=11.

5, ymin=-1, ymax=0, color="'g', linestyles='dashed')

188

Chapter 10. Table of Contents

| " |

feature_engine Documentation, Release 1.7.0

In the plot below, we see that the hours 0 and 11.5 obtain very similar values
after the sine transformation. So how can we differentiate them?

Sine transformation

100 - o0
0.75 1 ®
0.50 - °

0.25 - ¢
L

0.00

Sine of hour

—0.25 1
—0.50 H

-0.75 -

-1.00 -

0 5 10 15
Hour

To fully code the information of the hour, we must use the sine and cosine
trigonometric transformations together. Adding the cosine function, which is
out of phase with the sine function, breaks the symmetry and assigns a unique
codification to each hour.

Let’s explore that:

plt.scatter(df["hour"], df["hour_sin"])
plt.scatter(df["hour"], df["hour_cos"])

Axis labels

plt.ylabel('Sine and cosine of hour')
plt.xlabel('Hour")

plt.title('Sine and Cosine transformation')

plt.hlines(y=0,
< xmin=0, xmax=11.5, color="'r', linestyles='dashed')

plt.vlines(x=0,

— ymin=-1, ymax=1, color="'g', linestyles='dashed')
plt.vlines(x=11.

5, ymin=-1, ymax=1, color="'g', linestyles='dashed')

The hour 0, after the transformation, takes the values of sine 0 and cosine 1,

10.2. User Guide 189

| " I |

feature_engine Documentation, Release 1.7.0

which makes it different from the hour 11.5, which takes the values of sine 0
and cosine -1. In other words, with the two functions together, we are able to
distinguish all observations within our original variable.

Sine and cosine of hour

100 1
0.75 -
0.50 1
0.25 1
0.00 -
-0.25 1
—0.50 -
-0.75 1

-1.00 1

Sine and Cosine transformation

, & ...) i ..
: ® ° | .
! . ’

o
I * ° |
i i
1 @) ! @
I °,
P-———mmmmemc——————— i]
I ® I ®
1 |.
: . | ° '
1 1
| ® : o
1 1
| . .
1 1
! ¢ ole ..l
0 5 10 20

Hour

Finally, let’s vizualise the (X, y) circle coordinates generated by the sine and
cosine features.

fig, ax = plt.subplots(figsize=(7, 5))

Sp =

—ax.scatter(df["hour_sin"], df["hour_cos"], c=df["hour"])

ax.set(
xlabel="sinChour)",
ylabel="cos (hour)",

)

_ = fig.colorbar(sp)

190

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

1.00 - ® 4
0.75 -
0501
0.25 -

0.00 -

cos{hour)

-0.25 -
-0.50 -
-0.75 - ® °

® -
-1.00 - ® *

-1.00 -0.75 -0.50 -0.25 000 025 050 075
sin{hour)

That’s it, you now know how to represent cyclical data through the use of
trigonometric functions and cyclical encoding.

Additional resources

For tutorials on how to create cyclical features, check out the following courses:

Fig. 60: Feature Engineering for Machine Learning

10.2. User Guide 191

]

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

For a comparison between one-hot encoding, ordinal en-
coding, cyclical encoding and spline encoding of cyclical
features check out the following sklearn demo.

Check also these Kaggle demo on the use of cyclical en-
coding with neural networks:

* Encoding Cyclical Features for Deep Learning.

MathFeatures

MathFeatures () applies basic functions to groups of fea-
tures, returning one or more additional variables as a re-
sult. It uses pandas.agg() to create the features, so in
essence, you can pass any function that is accepted by this
method. One exception is that MathFeatures () does not
accept dictionaries for the parameter func.

The functions can be passed as strings, numpy methods,
i.e., np.mean, or any function that you create, as long as, it
returns a scalar from a vector.

Fig. 61

For supported aggregation functions, see pandas documentation.

As an example, if we have the variables:
* number_payments_first_quarter
* number_payments_second_quarter
¢ number_payments_third_quarter

¢ number_payments_fourth_quarter

: Feature Engineering for Time Series Forecasting

we can use MathFeatures () to calculate the total number of payments and mean number of payments as follows:

transformer = MathFeatures(

variables=[
'number_payments_first_quarter',
'number_payments_second_quarter',
'number_payments_third_quarter',
'"number_payments_fourth_quarter'

1,

func=["'sum', 'mean'],

new_variables_name=[
'total_number_payments',

(continues on next page)

192

Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://www.kaggle.com/code/avanwyk/encoding-cyclical-features-for-deep-learning
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.agg.html

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'mean_number_payments'

)

Xt = transformer.fit_transform(X)

The transformed dataset, Xt, will contain the additional features total_number_payments and
mean_number_payments, plus the original set of variables.

The variable total_number_payments is obtained by adding up the features indicated in variables, whereas the
variable mean_number_payments is the mean of those 4 features.

Examples

Let’s dive into how we can use MathFeatures() in more details. Let’s first create a toy dataset:

import numpy as np
import pandas as pd
from feature_engine.creation import MathFeatures

df = pd.DataFrame.from_dict(

{
"Name": ["tom", "nick", "krish", "jack"],
"City": ["London", "Manchester", "Liverpool", "Bristol"],
"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],
"dob": pd.date_range("2020-02-24", periods=4, freq="T"),
b
print(df)

The dataset looks like this:

Name City Age Marks dob

tom London 20 0.9 2020-02-24 00:00:00
nick Manchester 21 0.8 2020-02-24 00:01:00
krish Liverpool 19 0.7 2020-02-24 00:02:00
jack Bristol 18 0.6 2020-02-24 00:03:00

w N~

We can now apply several functions over the numerical variables Age and Marks using strings to indicate the functions:

transformer = MathFeatures(
variables=["Age", "Marks"],
func = ["sum", "prod”, "min", "max", "std"],

)
df_t = transformer.fit_transform(df)

print(df_t)

And we obtain the following dataset, where the new variables are named after the function used to obtain them, plus
the group of variables that were used in the computation:

10.2. User Guide 193

feature_engine Documentation, Release 1.7.0

Name City Age Marks dob sum_Age_Marks \
0 tom London 20 0.9 2020-02-24 00:00:00 20.9
1 nick Manchester 21 0.8 2020-02-24 00:01:00 21.8
2 krish Liverpool 19 0.7 2020-02-24 00:02:00 19.7
3 jack Bristol 18 0.6 2020-02-24 00:03:00 18.6

prod_Age_Marks min_Age_Marks max_Age_Marks std_Age_Marks

0 18.0 0.9 20.0 13.505740
1 16.8 0.8 21.0 14.283557
2 13.3 0.7 19.0 12.940054
3 10.8 0.6 18.0 12.303658

For more flexibility, we can pass existing functions to the func argument as follows:

transformer = MathFeatures(
variables=["Age", "Marks"],
func = [np.sum, np.prod, np.min, np.max, np.std],

)
df_t = transformer.fit_transform(df)

print(df_t)

And we obtain the following dataframe:

Name City Age Marks dob sum_Age_Marks \

0 tom London 20 0.9 2020-02-24 00:00:00 20.9

1 nick Manchester 21 0.8 2020-02-24 00:01:00 21.8

2 krish Liverpool 19 0.7 2020-02-24 00:02:00 19.7

3 jack Bristol 18 0.6 2020-02-24 00:03:00 18.6
prod_Age_Marks amin_Age_Marks amax_Age_Marks std_Age_Marks

0 18.0 0.9 20.0 13.505740

1 16.8 0.8 21.0 14.283557

2 13.3 0.7 19.0 12.940054

3 10.8 0.6 18.0 12.303658

We have the option to set the parameter drop_original to True to drop the variables after performing the calculations.

‘We can obtain the names of all the features in the transformed data as follows:

transformer.get_feature_names_out (input_features=None)

Which will return the names of all the variables in the transformed data:

['Name',
'City',
'Age’,
'Marks',
'dob',
'sum_Age_Marks',
'prod_Age_Marks',
'amin_Age_Marks',

(continues on next page)

194 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'amax_Age_Marks',
'std_Age_Marks']

New variables names

Even though the transfomer allows to combine variables automatically, its use is intended to combine variables with
domain knowledge. In this case, we normally want to give meaningful names to the variables. We can do so through
the parameter new_variables_names.

new_variables_names takes a list of strings, with the new variable names. In this parameter, you need to enter a list
of names for the newly created features. You must enter one name for each function indicated in the func parameter.
That is, if you want to perform mean and sum of features, you should enter 2 new variable names. If you compute only
the mean of features, enter 1 variable name.

The name of the variables should coincide with the order of the functions in func. Thatis, if you set func = ['mean’',
'prod'], the first new variable name will be assigned to the mean of the variables and the second variable name to the
product of the variables.

Let’s look at an example. In the following code snippet, we add up, and find the maximum and minimum value of 2
variables, which results in 3 new features. We add the names for the new features in a list:

transformer = MathFeatures(

variables=["Age", "Marks"],
func = ["sum", "min", "max"],
new_variables_names = ["sum_vars", "min_vars", "max_vars'"]

)
df_t = transformer.fit_transform(df)

print(df_t)

The resulting dataframe contains the new features under the variable names that we provided:

Name City Age Marks dob sum_vars min_vars \
0 tom London 20 0.9 2020-02-24 00:00:00 20.9 0.9
1 nick Manchester 21 0.8 2020-02-24 00:01:00 21.8 0.8
2 krish Liverpool 19 0.7 2020-02-24 00:02:00 19.7 0.7
3 jack Bristol 18 0.6 2020-02-24 00:03:00 18.6 0.6
max_vars
0 20.0
1 21.0
2 19.0
3 18.0

10.2. User Guide 195

Feature

ineering
Cookbook

SOLEDAD GALLI

feature_engine Documentation, Release 1.7.0

Additional resources

For more details about this and other feature engineering methods check out these resources:

Or read our book:

Fig. 62: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

RelativeFeatures

RelativeFeatures() applies basic mathematical operations between a
group of variables and one or more reference features, adding the resulting
features to the dataframe.

RelativeFeatures() uses the pandas methods pd.DataFrame.add(), pd.
DataFrame.sub(), pd.DataFrame.mul(), pd.DataFrame.div(), pd.
DataFrame.truediv(), pd.DataFrame.floordiv(), pd.DataFrame.
mod() and pd.DataFrame.pow() to transform a group of variables by a
group of reference variables.

196 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

For example, if we have the variables:
* number_payments_first_quarter
* number_payments_second_quarter
¢ number_payments_third_quarter
* number_payments_fourth_quarter
* total_payments,

we can use RelativeFeatures () to determine the percentage of payments
per quarter as follows:

transformer = RelativeFeatures(

variables=[
'number_payments_first_quarter',
'number_payments_second_quarter',
'number_payments_third_quarter',
'number_payments_fourth_quarter',

1,

reference=["'total_payments'],

func=['div'],

Xt = transformer.fit_transform(X)

The precedent code block will return a new dataframe, Xt, with 4 new variables
that are calculated as the division of each one of the variables in variables
and ‘total_payments’.

Examples

Let’s dive into how we can use RelativeFeatures() in more details. Let’s
first create a toy dataset:

import pandas as pd
from feature_engine.creation import RelativeFeatures

df = pd.DataFrame. from_dict(

{
"Name": ["tom", "nick", "krish", "jack"],
"City
—": ["London", "Manchester", "Liverpool", "Bristol"],

"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],
—"dob": pd.date_range("2020-02-24", periods=4, freq="T"),
b

print(df)

The dataset looks like this:

10.2. User Guide 197

feature_engine Documentation, Release 1.7.0

Name City Age Marks dob
0 tom London 20 0.9 2020-02-24 00:00:00
1 nick Manchester 21 0.8 2020-02-24 00:01:00
2 krish Liverpool 19 0.7 2020-02-24 00:02:00
3 jack Bristol 18 0.6 2020-02-24 00:03:00

We can now apply several functions between the numerical variables Age and
Marks and Age as follows:

transformer = RelativeFeatures(
variables=["Age", "Marks"],
reference=["Age"],
func = ["sub", "div", "mod", "pow"],
)

df_t transformer. fit_transform(df)

print(df_t)

And we obtain the following dataset, where the new variables are named after
the variables that were used for the calculation and the function in the middle of
their names. Thus, Mark_sub_Age means Mark - Age, and Marks_mod_Age
means Mark % Age.

Name u
. City Age Marks dob Age_sub_Age \
0 tom.,
. London 20 0.9 2020-02-24 00:00:00 0
1 nick.
— Manchester 21 0.8 2020-02-24 00:01:00 0
2 krish.
— Liverpool 19 0.7 2020-02-24 00:02:00 0
3 jack.
. Bristol 18 0.6 2020-02-24 00:03:00 0
Marks_sub_Age Age_

—div_Age Marks_div_Age Age_mod_Age Marks_mod_Age \
0 -19.1.
. 1.0 0.045000 0 0.9
1 -20.2.
o 1.0 0.038095) 0.8
2 -18.3.
. 1.0 0.036842 0 0.7
3 -17.4,
. 1.0 0.033333 0 0.6

Age_pow_Age Marks_pow_Age
0 -2101438300051996672 0.121577
1 -1595931050845505211 0.009223
2 6353754964178307979 0.001140
3 -497033925936021504 0.000102

We can obtain the names of all the features in the transformed data as follows:

198 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

transformer.get_feature_names_out (input_features=None)

Which will return the names of all the variables in the transformed data:

['Name',
'City',
'Age',
'Marks',
'dob',
'Age_sub_Age',
'Marks_sub_Age"',
'Age_div_Age',
'Marks_div_Age',
'Age_mod_Age"',
'Marks_mod_Age',
'Age_pow_Age',
'Marks_pow_Age']

Additional resources

For more details about this and other feature engineering methods check out
these resources:

Or read our book:

Fig. 64: Feature Engineering for Machine Learning

10.2. User Guide 199

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Feature-engine in Practice

Here, you’ll get a taste of the transformers from the feature creation mod-
ule from Feature-engine. We’ll use the wine quality dataset. The dataset is
comprised of 11 features, including alcohol, ash, and flavonoids, and has
quality as its target variable.

Through exploratory data analysis and our domain knowledge which includes
real-world experimentation, i.e., drinking various brands/types of wine, we
Feature believe that we can create better features to train our algorithm by combining
in eering original features with various mathematical operations.
Cookbook Let’s load the dataset from Scikit-learn.

S machine arming modei import pandas as pd
from sklearn.datasets import load_wine
SOLEDAD GALLI from feature_
—.engine.creation import RelativeFeatures, MathFeatures

ire Engineering |y y = load_wine(return_X_y=True, as_frame=True)

print(X.head())

Below we see the wine quality dataset:

alcohol malic_acid.
-~ ash alcalinity_of_ash magnesium total_phenols \

0 14.23 o
-~ 1.71 2.43 15.6 127.90 2.80
1 13.20 o
-~ 1.78 2.14 11.2 100.0 2.65
2 13.16 o
-~ 2.36 2.67 18.6 101.0 2.80
3 14.37 o
— 1.95 2.50 16.8 113.0 3.85
4 13.24 o
-~ 2.59 2.87 21.0 118.0 2.80

flavanoids nonflavanoid_
—phenols proanthocyanins color_intensity hue \

0 3.06 o
- 0.28 2.29 5.64 1.04
1 2.76 o
- 0.26 1.28 4.38 1.05
2 3.24 o

(continues on next page)

200 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

. 0.30 2.
3 3.49 o
. 0.24 2.
4 2.69 o
- 0.39 1.

0d280/0d315_of_diluted_wines

0 3.92
1 3.40
2 3.17
3 3.45
4 2.93

81
18
82

proline
1065.0
1050.0
1185.0
1480.0
735.0

5.68 1.03
7.80 0.86
4.32 1.04

Now, we create a new feature by removing non-flavonoid phenols from the
total phenols to obtain the phenols that are not flavonoid.

rf = RelativeFeatures(
variables=["total_phenols"],

reference=["nonflavanoid_phenols"],

func=["sub"],

)
rf. fit(X)
X_tr = rf.transform(X)

print (X_tr.head())

We see the new feature and its data points at the right of the pandas dataframe:

alcohol malic_acid.

-~ ash alcalinity_of_ash magnesium total_phenols \

0 14.23 o

— 1.71 2.43 15.6 127.0 2.80

1 13.20 o

— 1.78 2.14 11.2 100.0 2.65

2 13.16 o

-~ 2.36 2.67 18.6 101.0 2.80

3 14.37 o

— 1.95 2.50 16.8 113.0 3.85

4 13.24 "

- 2.59 2.87 21.0 118.0 2.80
flavanoids nonflavanoid_

—phenols proanthocyanins color_intensity hue \

0 3.06 o

o 0.28 2.29 5.64 1.04

1 2.76 o

o 0.26 1.28 4.38 1.05

2 3.24 o

. 0.30 2.81 5.68 1.03

3 3.49 o

. 0.24 2.18 7.80 0.86

(continues on next page)
10.2. User Guide 201

feature_engine Documentation, Release 1.7.0

(continued from previous page)

4 2.69 o
- 0.39 1.82 4.32 1.04

0d280/0d315_of_diluted_wines proline \

0 3.92 1065.0
1 3.40 1050.0
2 3.17 1185.0
3 3.45 1480.0
4 2.93 735.0

total_phenols_sub_nonflavanoid_phenols
0 2.52
1 2.39
2 2.50
3 3.61
4 2.41

Let’s now create new features by combining a subset of 3 existing variables:

mf = MathFeatures(

< variables=["flavanoids", "proanthocyanins", "proline"],
func=["sum", "mean"],

)

mf.fit(X_tr)
X_tr = mf.transform(X_tr)

print(X_tr.head())

We see the new features at the right of the resulting pandas dataframe:

alcohol malic_acid.
< ash alcalinity_of_ash magnesium total_phenols \

0 14.23 o
-~ 1.71 2.43 15.6 127.0 2.80
1 13.20 o
-~ 1.78 2.14 11.2 100.0 2.65
2 13.16 o
-~ 2.36 2.67 18.6 101.0 2.80
3 14.37 o
-~ 1.95 2.50 16.8 113.0 3.85
4 13.24 o
-~ 2.59 2.87 21.0 118.0 2.80

flavanoids nonflavanoid_
—phenols proanthocyanins color_intensity hue \

0 3.06 o
- 0.28 2.29 5.64 1.04
1 2.76 o
. 0.26 1.28 4.38 1.05
2 3.24 o

(continues on next page)

202 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

- 0.30 2.81 5.68 1.03
3 3.49 o
. 0.24 2.18 7.80 0.86
4 2.69 o
. 0.39 1.82 4.32 1.04
0d280/0d315_of_diluted_wines proline \
0 3.92 1065.0
1 3.40 1050.0
2 3.17 1185.0
3 3.45 1480.0
4 2.93 735.0
total_phenols_sub_nonflavanoid_phenols \
0 2.52
1 2.39
2 2.50
3 3.61
4 2.41
sum_flavanoids_proanthocyanins_proline \
0 1070.35
1 1054.04
2 1191.05
3 1485.67
4 739.51
mean_flavanoids_proanthocyanins_proline
0 356.783333
1 351.346667
2 397.016667
3 495.223333
4 246.503333
In the above examples, we used RelativeFeature() and MathFeatures
to perform automated feature engineering on the input data by applying the
transformations defined in the func parameter on the features identified in
variables and reference parameters.
The original and new features can now be used to train a regression model, or
a multiclass classification algorithm, to predict the quality of the wine.
Summary

Through feature engineering and feature creation, we can optimize the machine
learning algorithm’s learning process and improve its performance metrics.

We’d strongly recommend the creation of features based on domain knowl-
edge, exploratory data analysis and thorough data mining. We also understand
that this is not always possible, particularly with big datasets and limited time
allocated to each project. In this situation, we can combine the creation of
features with feature selection procedures to let machine learning algorithms
select what works best for them.

10.2. User Guide

203

feature_engine Documentation, Release 1.7.0

Good luck with your models!

Tutorials, books and courses

For tutorials about this and other feature engineering for machine learning
methods check out our online course:

Or read our book:

Fig. 66: Feature Engineering for Machine Learning

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

204 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

<packt>

enn Eprrron

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

Transformers in other Libraries

Datetime Features

DatetimeFeatures

Datetime features with pandas

Check also the following transformer from Scikit-learn:
PolynomialFeatures

SplineTransformer

Feature-engine’s datetime transformers are able to extract a wide variety of
datetime features from existing datetime or object-like data.

In datasets commonly used in data science and machine learning projects, the
variables very often contain information about date and time. Date of birth
and time of purchase are two examples of these variables. They are commonly
referred to as “datetime features”, that is, data whose data type is date and time.

We don’t normally use datetime variables in their raw format to train machine
learning models, like those for regression, classification, or clustering. In-
stead, we can extract a lot of information from these variables by extracting
the different date and time components of the datetime variable.

Examples of date and time components are the year, the month, the
week_of_year, the day of the week, the hour, the minutes, and the seconds.

In Python, we can extract date and time components through the dt module of
the open-source library pandas. For example, by executing the following:

data = pd.DataFrame({"date

—'": pd.date_range("2019-03-05", periods=20, freq="D")1})

data["year"] = data["date"].dt.year
data["quarter"] = data["date"].dt.quarter
data["month"] = data["date"].dt.month

In the former code block we created 3 features from the timestamp variable:
the year, the quarter and the month.

10.2. User Guide

205

https://packt.link/0ewSo
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.SplineTransformer.html

feature_engine Documentation, Release 1.7.0

Datetime features with Feature-engine

DatetimeFeatures () automatically extracts several date and time features
from datetime variables. It works with variables whose dtype is datetime, as
well as with object-like and categorical variables, provided that they can be
parsed into datetime format. It cannot extract features from numerical vari-
ables.

DatetimeFeatures() uses the pandas dt module under the hood, therefore
automating datetime feature engineering. In two lines of code and by speci-
fying which features we want to create with DatetimeFeatures(), we can
create multiple date and time variables from various variables simultaneously.

DatetimeFeatures () can automatically create all features supported by pan-
das dt and a few more, like, for example, a binary feature indicating if the event
occurred on a weekend and also the semester.

With DatetimeFeatures () we can choose which date and time features to
extract from the datetime variables. We can also extract date and time features
from one or more datetime variables at the same time.

Through the following examples we highlight the functionality and versatility
of DatetimeFeatures () for tabular data.

Extract date features

In this example, we are going to extract three date features from a specific
variable in the dataframe. In particular, we are interested in the month, the day
of the year, and whether that day was the last day the month.

First, we will create a toy dataframe with 2 date variables:

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({
"var_datel
<"1 ['May-1989', 'Dec-2020', 'Jan-1999', 'Feb-2002'],
"var_date2": [
- '06/21/2012', '02/10/1998', '08/03/2010', '10/31/2020'],
9]

Now, we will extract the variables month, month-end and the day of the year
from the second datetime variable in our dataset.

dtfs = DatetimeFeatures(
variables="var_date2",
features_
—to_extract=["month", "month_end", "day_of_year"]

)
df_transf = dtfs.fit_transform(toy_df)

df_transf

206 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

With transform(), the features extracted from the datetime variable are
added to the dataframe.

We see the new features in the following output:

var_datel var_
—date2_month var_date2_month_end var_date2_day_of_year
® May-1989 o

< 6 0 173
1 Dec-2020 o
. 2 0 41
2 Jan-1999 o
o 8 0 215
3 Feb-2002 o
. 10 1 305

By default, DatetimeFeatures() drops the variable from which the date
and time features were extracted, in this case, var_date2. To keep the vari-
able, we just need to indicate drop_original=False when initializing the
transformer.

Finally, we can obtain the name of the variables in the returned data as follows:

dtfs.get_feature_names_out()

['var_datel’,
'var_date2_month',
'var_date2_month_end',
'var_date2_day_of_year']

Extract time features

In this example, we are going to extract the feature minute from the two time
variables in our dataset.

First, let’s create a toy dataset with 2 time variables and an object variable.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame ({

"not_a_dt": ['not', 'a', 'date', 'time'],
"var_timel

<"y ['12:34:45", '23:01:02', '11:59:21', '08:44:23'],
"var_time2

<" ['02:27:26', '10:10:55', '17:30:00', '18:11:18'],

D)

DatetimeFeatures () automatically finds all variables that can be parsed to
datetime. So if we want to extract time features from all our datetime variables,
we don’t need to specify them.

Note that from version 2.0.0 pandas deprecated the parameter
infer_datetime_format. Hence, if you want pandas to infer the

10.2. User Guide 207

feature_engine Documentation, Release 1.7.0

datetime format and you have different formats, you need to explicitly say so
by passing "mixed" to the format parameter as shown below.

dfts = DatetimeFeatures(features_
—to_extract=["minute"], format="mixed")

df_transf = dfts.fit_transform(toy_df)

df_transf

We see the new features in the following output:

not_a_dt var_timel_minute var_time2_minute

0 not 34 27
1 a 1 10
2 date 59 30
3 time 44 11

The transformer found two variables in the dataframe that can be cast to date-
time and proceeded to extract the requested feature from them.

The variables detected as datetime are stored in the transformer’s variables_
attribute:

dfts.variables_

['var_timel', 'var_time2']

The original datetime variables are dropped from the data by default. This
leaves the dataset ready to train machine learning algorithms like linear re-
gression or random forests.

If we want to keep the datetime variables, we just need to indicate
drop_original=False when initializing the transformer.

Finally, if we want to obtain the names of the variables in the output data, we
can use:

dfts.get_feature_names_out ()

['not_a_dt', 'var_timel_minute', 'var_time2_minute']

Extract date and time features

In this example, we will combine what we have seen in the previous two ex-
amples and extract a date feature - year - and time feature - hour - from two
variables that contain both date and time information.

Let’s go ahead and create a toy dataset with 3 datetime variables.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({

(continues on next page)

208 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

var

—dtl": pd.date_range("2018-01-01", periods=3, freqg="H"),
"var_dt2": ['08/31/

00 12:34:45"', '12/01/90 23:01:02', '0®4/25/01 11:59:21'],
"var_dt3": ['03/02/

15 02:27:26"', '02/28/97 10:10:55', '11/11/03 17:30:00'],

)

Now, we set up the DatetimeFeatures () to extract features from 2 of the
datetime variables. In this case, we do not want to drop the datetime variable
after extracting the features.

dfts = DatetimeFeatures(
variables=["var_dtl", "var_dt3"],
features_to_extract=["year", "hour"],
drop_original=False,
format="mixed",

)
df_transf = dfts.fit_transform(toy_df)
df_transf
We can see the resulting dataframe in the following output:
var_dtl,
o var_dt2 var_dt3 var_dtl_year \
® 2018-01-01 00:00:00.
— 08/31/00 12:34:45 03/02/15 02:27:26 2018
1 2018-01-01 01:00:00.,
- 12/01/90 23:01:02 02/28/97 10:10:55 2018
2 2018-01-01 02:00:00.
- 04/25/01 11:59:21 11/11/03 17:30:00 2018

var_dtl_hour var_dt3_year var_dt3_hour

0 0 2015 2
1 1 1997 10
2 2 2003 17

And that is it. The new features are now added to the dataframe.

Time series

Time series data consists of datapoints indexed in time order. The time is usu-
ally in the index of the dataframe. We can extract features from the timestamp
index and use them for time series regression or classification, as well as for
time series forecasting.

With DatetimeFeatures () we can also create date and time features from
the dataframe index.

Let’s create a toy dataframe with datetime in the index.

10.2. User Guide 209

feature_engine Documentation, Release 1.7.0

import pandas as pd

X = {"ambient_temp":.

—~[31.31, 31.51, 32.15, 32.39, 32.62, 32.5, 32.52, 32.68],
"module_temp": [49.

18, 49.84, 52.35, 50.63, 49.61, 47.01, 46.67, 47.52],
"irradiation

~": [0.51, 0.79, 0.65, 0.76, 0.42, 0.49, 0.57, 0.56],
"color": ["green"] * 4 + ["blue"] * 4,

}

X = pd.DataFrame(X)
X.index = pd.date_
—range("2020-05-15 12:00:00", periods=8, freg="15min")

X.head(O
Below we see the output of our toy dataframe:

< ambient_temp module_temp irradiation color
2020-05-15.,

—12:00:00 31.31 49.18 0.51 green
2020-05-15.,

—12:15:00 31.51 49.84 0.79 green
2020-05-15.,

—12:30:00 32.15 52.35 0.65 green
2020-05-15.,

—12:45:00 32.39 50.63 0.76 green
2020-05-15.,

—13:00:00 32.62 49.61 0.42 blue

We can extract features from the index as follows:

from feature_engine.datetime import DatetimeFeatures

dtf = DatetimeFeatures(variables="index")

Xtr

dtf.fit_transform(X)

Xtr

We can see that the transformer created the default time features and added
them at the end of the dataframe.

< ambient_temp module_temp irradiation color month \
2020-05-15 12:00:00.

. 31.31 49.18 0.51 green 5
2020-05-15 12:15:00.,
. 31.51 49.84 0.79 green 5
2020-05-15 12:30:00.
. 32.15 52.35 0.65 green 5

(continues on next page)

210 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:45:00.

—

32.39

2020-05-15 13:00:00.

—

32.62

2020-05-15 13:15:00.

—

32.50

2020-05-15 13:30:00.

—

32.52

2020-05-15 13:45:00.

—

< year
2020-05-15
- 2020
2020-05-15
— 2020
2020-05-15
- 2020
2020-05-15
- 2020
2020-05-15
— 2020
2020-05-15
- 2020
2020-05-15
— 2020
2020-05-15
— 2020

day_of_week day_of_month hour
:00:

12

12:

12:

12:

13:

13:

13:

13:

32.68

15

30:

45

00:

15

30:

45

—

00,
4

:00.

4
00,
4

:00.

4
00,

:00.

00

:00.

50.63

49.61

47.01

46.67

47.52

15

15

15

15

15

15

15

15

0.76

0.42

0.49

12

12

12

12

13

13

13

13

green 5
blue 5
blue 5
blue 5
blue 5

minute second

0 0
15 0
30 0
45 0

0 0
15 0
30 0
45 0

We can obtain the name of all the variables in the output dataframe as follows:

dtf.get_feature_names_out()

['ambient_temp',
'module_temp',
'irradiation’',

'color',
'month',
'year',

'day_of_week',
'day_of_month',

'hour',
'minute’,
'second']

10.2. User Guide

211

feature_engine Documentation, Release 1.7.0

Important

We highly recommend specifying the date and time features that you would
like to extract from your datetime variables.

If you have too many time variables, this might not be possible. In this case,
keep in mind that if you extract date features from variables that have only
time, or time features from variables that have only dates, your features will be
meaningless.

Let’s explore the outcome with an example. We create a dataset with only time
variables.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame ({

"not_a_dt": ['not', 'a', 'date', 'time'],
"var_timel

"y ['12:34:45", '23:01:02', '11:59:21', '08:44:23'],
"var_time2

<" ['02:27:26', '10:10:55', '17:30:00', '18:11:18'],

i)

And now we mistakenly extract only date features:

dfts = DatetimeFeatures(
features_to_extract=["year", "month", "day_of_week"],
format="mixed",

)
df_transf = dfts.fit_transform(toy_df)

df_transf

not_a_dt var_timel_year .
—var_timel_month var_timel_day_of week var_time2_year \

0 not 2021,
o 12 2 2021
1 a 2021,
. 12 2 2021
2 date 2021,
. 12 2 2021
3 time 2021,
. 12 2 2021

var_time2_month var_time2_day_of_week

0 12 2
1 12 2
2 12 2
3 12 2

The transformer will still create features derived from today’s date (the date of
creating the docs).

If instead we have a dataframe with only date variables:

212 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame ({

"var_datel

"1 ['May-1989', 'Dec-2020', 'Jan-1999', 'Feb-2002'],
"var_date2

<" ['06/21/12", '02/10/98', '08/03/10', '10/31/20'],

D)

And we mistakenly extract the hour and the minute:

dfts = DatetimeFeatures(
features_to_extract=["hour", "minute"],
format="mixed",

)

df_transf = dfts.fit_transform(toy_df)

print (df_transf)

var_datel_
—hour var_datel_minute var_date2_hour var_date2_minute
0 o
- 0 0 0 0
1 o
- 0 0 0 0
2 o
- 0 0 0 0
3 o
- 0 0 0 0

The new features will contain the value O.

Automating feature extraction

We can indicate which features we want to extract from the datetime variables
as we did in the previous examples, by passing the feature names in lists.

Alternatively, DatetimeFeatures () has default options to extract a group of
commonly used features, or all supported features.

Let’s first create a toy dataframe:

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({

var_

—dtl": pd.date_range("2018-01-01", periods=3, freq="H"),
"var_dt2": ['08/31/

00 12:34:45', '12/01/90 23:01:02', '04/25/01 11:59:21'],

"var_dt3": ['03/02/

(continues on next page)

10.2. User Guide 213

feature_engine Documentation, Release 1.7.0

(continued from previous page)

—15 02:27:26', '02/28/97 10:10:55', '11/11/03 17:30:00'],
D

Most common features

Now, we will extract the most common date and time features from one of
the variables. To do this, we leave the parameter features_to_extract to
None.

dfts = DatetimeFeatures(
variables=["var_dtl"],
features_to_extract=None,
drop_original=False,

)

df_transf = dfts.fit_transform(toy_df)

df_transf
var_dtl.
o var_dt2 var_dt3 var_dtl_month \
0 2018-01-01 00:00:00.
- 08/31/00 12:34:45 03/02/15 02:27:26 1
1 2018-01-01 01:00:00.
— 12/01/90 23:01:02 02/28/97 10:10:55 1
2 2018-01-01 02:00:00.
— 04/25/01 11:59:21 11/11/03 17:30:00 1

var_dtl_year var_
—dtl_day_of_week var_dtl_day_of_month var_dtl_hour \

0 2018,

N 0 1 0

1 2018,

. 0 1

2 2018,

s 0 1 2
var_dtl_minute var_dtl_second

0 0 0

1 0 0

2 0 0

Our new dataset contains the original features plus the new variables extracted
from them.

We can find the group of features extracted by the transformer in its attribute:

dfts.features_to_extract_

['month',
'year',

(continues on next page)

214 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'day_of_week',
'day_of_month',
'hour',
'minute’,
'second']

All supported features

We can also extract all supported features automatically, by setting the param-
eter features_to_extract to "all"

dfts = DatetimeFeatures(
variables=["var_dtl"],
features_to_extract="'all",
drop_original=False,

)
df_transf = dfts.fit_transform(toy_df)

print(df_transf)

var_dtl.
o var_dt2 var_dt3 var_dtl_month \
0 2018-01-01 00:00:00.
— 08/31/00 12:34:45 03/02/15 02:27:26 1
1 2018-01-01 01:00:00.
— 12/01/90 23:01:02 02/28/97 10:10:55 1
2 2018-01-01 02:00:00.
< 04/25/01 11:59:21 11/11/03 17:30:00 1

var_dtl_quarter var_dtl_semester var_dtl_year \

0 1 1 2018
1 1 1 2018
2 1 1 2018

var_dtl_week var_dtl_day_of_

—week ... var_dtl_month_end var_dtl_quarter_start \

0 1 o

N o ... 0 1

1 1 o

. o ... 0 1

2 1 o

o 0 0 1
var_

—dtl_quarter_end var_dtl_year_start var_dtl_year_end \

0 .

N 0 1 0

1 .

N 0 1 0

(continues on next page)

10.2. User Guide 215

feature_engine Documentation, Release 1.7.0

(continued from previous page)

. 0

var_dtl_leap_year.,
< var_dtl_days_in_month

0 o
- 0
1 o
- 0
2 o
- 0

var_dtl_second

0 0
1 0
2 0

var_dtl_hour var_dtl_minute

31 0
31 1
31 2

\

We can find the group of features extracted by the transformer in its attribute:

dfts.features_to_extract_

['month',
'quarter',
'semester’',
'year',

'week',
'day_of_week',
'day_of_month',
'day_of_year',
'weekend',
'month_start',
'month_end',
'quarter_start',
'quarter_end',
'year_start',
'year_end',
'leap_year',
'days_in_month',
'hour',
'minute’,
'second']

216

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Extract and select features automatically

If we have a dataframe with date variables, time variables and date and time
variables, we can extract all features, or the most common features from all
the variables, and then go ahead and remove the irrelevant features with the
DropConstantFeatures() class.

Let’s create a dataframe with a mix of datetime variables.

import pandas as pd

from sklearn.pipeline import Pipeline

from feature_engine.datetime import DatetimeFeatures
from feature_engine.selection import DropConstantFeatures

toy_df = pd.DataFrame({
"var_

—~date": ['06/21/12", '02/10/98', '08/03/10', '10/31/20'],
"var_timel

" ['12:34:45", '23:01:02', '11:59:21', '08:44:23'],
"var_dt": ['08/31/00 12:34:45', '12/01/

90 23:01:02', '04/25/01 11:59:21', '04/25/01 11:59:21'],

i)

Now, we line up in a Scikit-learn pipeline the DatetimeFeatures and the
DropConstantFeatures(). The DatetimeFeatures will create date fea-
tures derived from today for the time variable, and time features with the value
0 for the date only variable. DropConstantFeatures() will identify and
remove these features from the dataset.

pipe = Pipeline([
('datetime', DatetimeFeatures(format="mixed")),
('drop_constant', DropConstantFeatures()),

D

pipe.fit(toy_df)

Pipeline(steps=[('datetime', DatetimeFeatures()),

. ('drop_constant', DropConstantFeatures())])

df_transf = pipe.transform(toy_df)

print (df_transf)

var_date_month var_date_
—year var_date_day_of_week var_date_day_of_month \

0 6 .
- 2012 3 21
1 2 .
- 1998 1 10
2 8 .
. 2010 1 3
3 10 .

(continues on next page)

10.2. User Guide 217

feature_engine Documentation, Release 1.7.0

(continued from previous page)

. 2020 5 31

var_timel_hour.,
- var_timel_minute var_timel_second var_dt_month \

0 o
- 12 34 45 8
1 o
- 23 1 2 12
2 o
. 11 59 21 4
3 o
o 8 44 23 4

var_dt_year.,
— var_dt_day_of_week var_dt_day_of month var_dt_hour \

0 2000,
< 3 31 12
1 1990,
. 5 1 23
2 2001,
- 2 25 11
3 2001,
< 2 25 11

var_dt_minute var_dt_second

0 34 45
1 1 2
2 59 21
3 59 21

As you can see, we do not have the constant features in the transformed dataset.

Working with different timezones

Time-aware datetime variables can be particularly cumbersome to work with
as far as the format goes. We will briefly show how DatetimeFeatures()
deals with such variables in three different scenarios.

Case 1: our dataset contains a time-aware variable in object format, with po-
tentially different timezones across different observations. We pass utc=True
when initializing the transformer to make sure it converts all data to UTC time-
zone.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({

"var_tz":.
~['12:34:45+3"', '23:01:02-6"', '11:59:21-8', '08:44:23Z']
b

dfts = DatetimeFeatures(

(continues on next page)

218 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

features_to_extract=["hour", "minute"],
drop_original=False,

utc=True,

format="mixed",

)
df_transf = dfts.fit_transform(toy_df)

df_transf

var_tz var_tz_hour var_tz_minute

0 12:34:45+3 9 34
1 23:01:02-6 5 1
2 11:59:21-8 19 59
3 08:44:23Z 8 44

Case 2: our dataset contains a variable that is cast as a localized datetime in a
particular timezone. However, we decide that we want to get all the datetime
information extracted as if it were in UTC timezone.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

var_tz = pd.Series(['08/31/

00 12:34:45"', '12/01/90 23:01:02', '04/25/01 11:59:21'])
var_tz = pd.to_datetime(var_tz, format="mixed")

var_tz = var_tz.dt.tz_localize("US/eastern')

var_tz

® 2000-08-31 12:34:45-04:00
1 1990-12-01 23:01:02-05:00
2 2001-04-25 11:59:21-04:00
dtype: datetime64[ns, US/Eastern]

We need to pass utc=True when initializing the transformer to revert back to
the UTC timezone.

toy_df = pd.DataFrame({"var_tz": var_tz})

dfts = DatetimeFeatures(
features_to_extract=["day_of_month", "hour"],
drop_original=False,
utc=True,

df_transf = dfts.fit_transform(toy_df)

df_transf

. var_tz var_tz_day_of_month var_tz_hour
0 2000-

(continues on next page)

10.2. User Guide 219

feature_engine Documentation, Release 1.7.0

(continued from previous page)

—08-31 12:34:45-04:00 31 16
1 1990-
—12-01 23:01:02-05:00 2 4
2 2001-
—04-25 11:59:21-04:00 25 15

Case 3: given a variable like var_tz in the example above, we now want to
extract the features keeping the original timezone localization, therefore we
pass utc=False or None. In this case, we leave it to None which is the default

option.
dfts = DatetimeFeatures(
features_to_extract=["day_of_month", "hour"],
drop_original=False,
utc=None,

)
df_transf = dfts.fit_transform(toy_df)

print (df_transf)

. var_tz var_tz_day_of_month var_tz_hour
0 2000-

08-31 12:34:45-04:00 31 12

1 1990-

—~12-01 23:01:02-05:00 1 23

2 2001-

~04-25 11:59:21-04:00 25 11

Note that the hour extracted from the variable differ in this dataframe respect
to the one obtained in Case 2.

Missing timestamps

DatetimeFeatures has the option to ignore missing timestamps, or raise an
error when a missing value is encountered in a datetime variable.

Additional resources

You can find an example of how to use DatetimeFeatures() with a real
dataset in the following Jupyter notebook

For tutorials on how to create and use features from datetime columns, check
the following courses:

220 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/datetime/DatetimeFeatures.ipynb

feature_engine Documentation, Release 1.7.0

Fig. 68: Feature Engineering for Machine Learning

Or read our book:

Fig. 69: Feature Engineering for Time Series Forecasting

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

10.2. User Guide 221

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-engineering-for-forecasting

<packt>

—q“..
..-.-.‘

Feature

ineering
Cookbook

creating, engineering, and
d machine learning models

SOLEDAD GALLI

ire Engineering

feature_engine Documentation, Release 1.7.0

DatetimeSubtraction

Very often, we have datetime variables in our datasets, and we want to deter-
mine the time difference between them. For example, if we work with financial
data, we may have the variable date of loan application, with the date and time
when the customer applied for a loan, and also the variable date of birth, with
the customer’s date of birth. With those two variables, we want to infer the
age of the customer at the time of application. In order to do this, we can
compute the difference in years between date_of_loan_application and
date_of_birth and capture it in a new variable.

In a different example, if we are trying to predict the price of the house and
we have information about the year in which the house was built, we can infer
the age of the house at the point of sale. Generally, older houses cost less. To
calculate the age of the house, we’d simply compute the difference in years
between the sale date and the date at which it was built.

The Python program offers many options for making operations between date-
time objects, like, for example, the datetime module. Since most likely you
will be working with Pandas dataframes, we will focus this guide on pandas
and then how we can automate the procedure with Feature-engine.

Subtracting datetime features with pandas

In Python, we can subtract datetime objects with pandas. To work with date-
time variables in pandas, we need to make sure that the timestamp, which can
be represented in various formats, like strings (str), objects ("0"), or datetime,
is cast as a datetime. If not, we can convert strings to datetime objects by
executing pd.to_datetime(df[variable_of_interest]).

Let’s create a toy dataframe with 2 datetime variables for a short demo:

import numpy as np

import pandas as pd

data = pd.DataFrame({

"datel

—": pd.date_range("2019-03-05", periods=5, freq="D"),

"date2

—": pd.date_range("2018-03-05", periods=5, freq="W")})

print(data)

This is the data that we created, containing two datetime variables:

datel

date2

0 2019-03-05 2018-03-11
1 2019-03-06 2018-03-18
2 2019-03-07 2018-03-25
3 2019-03-08 2018-04-01
4 2019-03-09 2018-04-08

Now, we can subtract date2 from datel and capture the difference in a new
variable by utilizing the pandas subtraction operator:

222

Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

data["diff"] = data["datel"].sub(data["date2"])

print(data)

The new variable, which expresses the difference in number of days, is at the
right of the dataframe:

datel

A wNn R

date2

2019-03-05 2018-03-11
2019-03-06 2018-03-18
2019-03-07 2018-03-25
2019-03-08 2018-04-01
2019-03-09 2018-04-08

diff
359 days
353 days
347 days
341 days
335 days

If we want the units in something other than days, we can use numpy’s
timedelta. The following example shows how to use this syntax:

datal

"diff"] = data["datel"].sub(data["date2"], axis=0).div(
np.timedelta64(l, "Y").astype("timedelta64[ns]"))

print(data)
We see the new variable now expressing the difference in years, at the right of
the dataframe:

datel date2 diff

0 2019-03-05 2018-03-11 0.982909

1 2019-03-06 2018-03-18 0.966481

2 2019-03-07 2018-03-25 0.950054

3 2019-03-08 2018-04-01 0.933626

4 2019-03-09 2018-04-08 0.917199

If you wanted to subtract various datetime variables, you would have to write
lines of code for every subtraction. Fortunately, we can automate this proce-
dure with DatetimeSubstraction().

Datetime subtraction with Feature-engine

DatetimeSubstraction() automatically subtracts several date and time fea-
tures from each other. You just need to indicate the features at the right of the
subtraction operation in the variables parameters and those on the left in
the reference parameter. You can also change the output unit through the
output_unit parameter.

DatetimeSubstraction() works with variables whose dtype is datetime,
as well as with object-like and categorical variables, provided that they can be
parsed into datetime format. This will be done under the hood by the trans-
former.

Following up with the former example, here is how we obtain the difference in
number of days using DatetimeSubstraction():

10.2. User Guide

223

feature_engine Documentation, Release 1.7.0

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"datel

—'": pd.date_range("2019-03-05", periods=5, freg="D"),
"date2

—'": pd.date_range("'2018-03-05", periods=5, freq="W")})

dtf = DatetimeSubtraction(
variables="datel",
reference="date2",
output_unit="Y")

data = dtf.fit_transform(data)

print(data)
With transform(), DatetimeSubstraction() returns a new dataframe
containing the original variables and also the new variables with the time dif-
ference:

datel date2 datel_sub_date2

® 2019-03-05 2018-03-11 0.982909

1 2019-03-06 2018-03-18 0.966481

2 2019-03-07 2018-03-25 0.950054

3 2019-03-08 2018-04-01 0.933626

4 2019-03-09 2018-04-08 0.917199

Drop original variables after computation

We have the option to drop the original datetime variables after the computa-

tion:

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"datel

—'": pd.date_range("2019-03-05", periods=5, fregq="D"),
"date2

—'": pd.date_range("'2018-03-05", periods=5, freq="W")})

dtf = DatetimeSubtraction(
variables="datel",
reference="date2",
output_unit="M",
drop_original=True

)

data = dtf.fit_transform(data)

(continues on next page)

224

Chapter 10

. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

print(data)

In this case, the resulting dataframe contains only the time difference between
the two original variables:

datel_sub_date2

0 11.794903
1 11.597774
2 11.400645
3 11.203515
4 11.006386

Subtract multiple variables simultaneously

We can perform multiple subtractions at the same time. In this example, we
will add new datetime variables to the toy dataframe as strings. The idea is to
show that DatetimeSubstraction() will convert those strings to datetime
under the hood to carry out the subtraction operation.

import pandas as pd
from feature_engine.datetime

data = pd.DataFrame({

import DatetimeSubtraction

"datel" ["2022-09-01", "2022-10-01", "2022-12-01"],
"date2" ["2022-09-15", "2022-10-15", "2022-12-15"],
"date3" ["2022-08-01", "2022-09-01", "2022-11-01"],
"date4" ["2022-08-15", "2022-09-15", "2022-11-15"],

D)

dtf = DatetimeSubtraction(variables=[

~"datel", "date2"], reference=["date3", "date4"])

data = dtf.fit_transform(data)

print(data)
The resulting dataframe contains the original variables plus the new variables
expressing the time difference between the date objects.

datel.

. date2 date3 date4 datel_sub_date3 \

® 2022-09-

—~01 2022-09-15 2022-08-01 2022-08-15 31.0

1 2022-10-

01 2022-10-15 2022-09-01 2022-09-15 30.0

2 2022-12-

—~01 2022-12-15 2022-11-01 2022-11-15 30.0

date2_sub_date3
0 45.0

datel_sub_date4 date2_sub_date4

17.0 31.0

(continues on next page)

10.2. User Guide

225

feature_engine Documentation, Release 1.7.0

(continued from previous page)

w
(==
(==

Working with missing values

By default, DatetimeSubstraction() will raise an error if the dataframe
passed to the fit () or transform() methods contains NA in the variables
to subtract. We can override this behaviour and allow computations between
variables with nan by setting the parameter missing_values to "ignore".
Here is a code example:

import numpy as np
import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({

"datel" ["2022-09-01", "2022-10-01", "2022-12-01"],
"date2" ["2022-09-15", np.nan, "2022-12-15"],
"date3" ["2022-08-01", "2022-09-01", "2022-11-01"],
"date4" ["2022-08-15", "2022-09-15", np.nan],

b

dtf = DatetimeSubtraction(
variables=["datel", "date2"],
reference=["date3", "date4"],

missing_values="ignore")

data = dtf.fit_transform(data)

print(data)
When any of the variables contains NAN, the new features with the time dif-
ference will also display NANs:
datel.,
o date2 date3 date4 datel_sub_date3 \
® 2022-09-
01 2022-09-15 2022-08-01 2022-08-15 31.0
1 2022-10-
01 NaN 2022-09-01 2022-09-15 30.0
2 2022-12-
—01 2022-12-15 2022-11-01 NaN 30.0

date2_sub_date3 datel_sub_date4 date2_sub_date4

0 45.0 17.0 31.0
1 NaN 16.0 NaN
2 44.0 NaN NaN
226 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Working with different timezones

If we have timestamps in different timezones or variables in dif-
ferent timezones, we can still perform subtraction operations with
DatetimeSubstraction() by first setting all timestamps to the uni-
versal central time zone. Here is a code example, were we return the time
difference in microseconds:

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"datel":.

—["'12:34:45+3", '23:01:02-6"', '11:59:21-8', '08:44:23Z'],
"date2": ['09:34:45+1

"', '23:01:02-6+1", '11:59:21-8-2"', '08:44:23+3']

b

dfts = DatetimeSubtraction(
variables="datel",
reference="date2",
utc=True,
output_unit="ms",
format="mixed"

new = dfts.fit_transform(data)

print (new)
We see the resulting dataframe with the time difference in microseconds:
datel date2 datel_sub_date2
® 12:34:45+3 09:34:45+1 3600000.0
1 23:01:02-6 23:01:02-6+1 25200000.0
2 11:59:21-8 11:59:21-8-2 21600000.0
3 08:44:23Z 08:44:23+3 10800000.0

Adding arbitrary names to the new variables

Often, we want to compute just a few time differences. In this case, we may
want as well to assign the new variables specific names. In this code example,
we do so:

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"datel

—'": pd.date_range("2019-03-05", periods=5, freg="D"),
"date2

—'": pd.date_range("'2018-03-05", periods=5, freq="W")})

(continues on next page)

10.2. User Guide 227

feature_engine Documentation, Release 1.7.0

(continued from previous page)

dtf = DatetimeSubtraction(
variables="datel",
reference="date2",
new_variables_names=["my_new_var"]

)

data = dtf.fit_transform(data)

print(data)
In the resulting dataframe, we see that the time difference was captured in a
variable called my_new_var:

datel date2 my_new_var

0 2019-03-05 2018-03-11 359.0

1 2019-03-06 2018-03-18 353.0

2 2019-03-07 2018-03-25 347.0

3 2019-03-08 2018-04-01 341.0

4 2019-03-09 2018-04-08 335.0

We should be mindful to pass a list of variales containing as many names as
new variables. The number of variables that will be created is obtained by mul-
tiplying the number of variables in the parameter variables by the number
of variables in the parameter reference.

get_feature_names_out()

Finally, we can extract the names of the transformed dataframe for compatibil-
ity with the Scikit-learn pipeline:

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"datel" : ["2022-09-01", "2022-10-01", "2022-12-01"],
"date2" : ["2022-09-15", "2022-10-15", "2022-12-15"],
"date3" : ["2022-08-01", "2022-09-01", "2022-11-01"],
"date4" : ["2022-08-15", "2022-09-15", "2022-11-15"7,
b

dtf = DatetimeSubtraction(variables=[
—"datel", "date2"], reference=["date3", "date4"])
dtf.fit(data)

dtf.get_feature_names_out()

Below the name of the variables that will appear in any dataframe resulting
from applying the transform() method:

['datel',
'date2’,

(continues on next page)

228 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'date3’,
'dated’,
'datel_sub_date3',
'date2_sub_date3',
'datel_sub_date4',
'date2_sub_dated']

Combining extraction and subtraction of datetime features

We can also combine the creation of numerical variables from datetime fea-
tures with the creation of new features by subtraction of datetime variables:

import pandas as pd

from sklearn.pipeline import Pipeline

from feature_engine.

—.datetime import DatetimeFeatures, DatetimeSubtraction

data = pd.DataFrame({
"datel" : ["2022-09-01", "2022-10-01", "2022-12-01"],
"date2" : ["2022-09-15", "2022-10-15", "2022-12-15"],
"date3" : ["2022-08-01", "2022-09-01", "2022-11-01"],
"dated4" : ["2022-08-15", "2022-09-15", "2022-11-15"],
b

dtf = DatetimeFeatures(variables=[

—'"datel", "date2"], drop_original=False)

dts = DatetimeSubtraction(
variables=["datel", "date2"],
reference=["date3", "date4"],
drop_original=True,

)

pipe = Pipeline([
("features", dtf),("subtraction", dts)

D
data = pipe.fit_transform(data)

print(data)

In the following output we see the new dataframe contaning the features that
were extracted from the different datetime variables followed by those created
by capturing the time difference:

datel_month datel_year.
—, datel_day_of_week datel_day_of_month datel_hour \

0 9 o
- 2022 3 1 0
1 10 o
— 2022 5 1 0
2 12 o

(continues on next page)

10.2. User Guide 229

feature_engine Documentation, Release 1.7.0

(continued from previous page)

— 2022 3 1 0

datel_minute datel_
—,second date2_month date2_year date2_day_of_week \

0 (VI

o 0 9 2022 3

1 0 .

o 0 10 2022 5

2 0 .

. 0 12 2022 3
date2_

—.day_of_month date2_hour date2_minute date2_second \

0 .

o 15 0 0 0

1 o

o 15 0 0 0

2 .

. 15 0 0 0
datel_sub_

—.date3 date2_sub_date3 datel_sub_date4 date2_sub_date4

0 o

- 31.0 45.0 17.0 31.0

1 o

- 30.0 44.0 16.0 30.0

2 o

- 30.0 44.0 16.0 30.0

Additional resources

For tutorials on how to create and use features from datetime columns, check
the following courses:

Fig. 71: Feature Engineering for Machine Learning

230 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 72: Feature Engineering for Time Series Forecasting

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

10.2.3 Selection

Feature Selection

Feature-engine’s feature selection transformers identify features with low pre-
dictive performance and drop them from the dataset. Most of the feature se-
lection algorithms supported by Feature-engine are not yet available in other
libraries. These algorithms have been gathered from data science competitions
or used in the industry.

10.2. User Guide 231

https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Selection Mechanism Overview

Feature-engine’s transformers select features based on different strategies.

The first strategy evaluates the features intrinsic characteristics, like their dis-
tributions. For example, we can remove constant or quasi-constant features.
Or we can remove features whose distribution in unstable in time by using the
Population Stability Index.

A second strategy consists in determining the relationships between features.
Among these, we can remove features that are duplicated or correlated.

We can also select features based on their relationship with the target. To assess
this, we can replace the feature values by the target mean, or calculate the
information value.

Some feature selection procedures involve training machine learning mod-
els. We can assess features individually, or collectively, through various al-
gorithms, as shown in the following diagram:

Feature
selection

Feature
Characteristics

Model

performance

s Relation to other Relation to the ndividug] Group
Distribution feature)
features target . evaluation
evaluation
Constant and . Target Mean Single Feature Betuisie
. Duplicated . Feature
Quasi-constant Encoding Performance L
Elimination
Population Correlated Information Recursive
Stability Index Value Feature Addition

Fig. 74: Selection mechanisms - Overview

Feature Shuffling

Algorithms that select features based on their performance within a group of
variables, will normally train a model with all the features, and then remove
or add or shuffle a feature and re-evaluate the model performance.

These methods are normally geared towards improving the overall perfor-
mance of the final machine learning model as well as reducing the feature
space.

232

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Selectors Characteristics Overview

Some Feature-engine’s selectors work with categorical variables off-the-shelf
and/or allow missing data in the variables. These gives you the opportunity to
quickly screen features before jumping into any feature engineering.

In the following tables, we highlight the main Feature-engine selectors char-
acteristics:

Selection based on feature characteristics

Transformer Categorical vari- | Allows Description

ables NA
DropFeatures() Drops arbitrary features determined by user
DropConstantFeatures() Drops constant and quasi-constant features
DropDuplicateFeatures () Drops features that are duplicated
DropCorrelatedFeatures|(x Drops features that are correlated
SmartCorrelatedSelectipmn() From a correlated feature group drops the less use-

ful features

Methods that determine duplication or the number of unique values, can work
with both numerical and categorical variables and support missing data as well.

Selection procedures based on correlation work only with numerical variables
but allow missing data.

Selection based on a machine learning model

Transformer Categorical Allows | Description
variables NA
SelectBySingleFeaturePerformance () x Selects features based on single feature model
performance
RecursiveFeatureElimination &) x Removes features recursively by evaluating
model performance
RecursiveFeatureAddition()| x x Adds features recursively by evaluating model
performance

Selection procedures that require training a machine learning model from
Scikit-learn require numerical variables without missing data.

Selection methods commonly used in finance

Transformer Categorical vari- | Allows Description
ables NA
DropHighPSIFeatures() x Drops features with high Population Stability
Index
SelectByInformationValudg() X Drops features with low information value

10.2. User Guide 233

feature_engine Documentation, Release 1.7.0

DropHighPSIFeatures() allows to remove features with changes in their
distribution. This is done by splitting the input dataframe in two parts and
comparing the distribution of each feature in the two parts. The metric used
to assess distribution shift is the Population Stability Index (PSI). Removing
unstable features may lead to more robust models. In fields like Credit Risk
Modelling, the Regulator often requires the PSI of the final feature set to be
below are given threshold.

Alternative feature selection methods

Transformer Categorical Allows | Description
variables NA
SelectByShuffling() x x Selects features if shuffling their values causes a drop

in model performance

SelectByTargetMeanPerformance () x Using the target mean as performance proxy, selects

high performing features

ProbeFeatureSelection() x

x Selects features whose importance is greater than
those of random variables

Feature Selection Algorithms

DropFeatures

The SelectByTargetMeanPerformance() uses the target mean value as
proxy for prediction, replacing categories or variable intervals by these val-
ues and then determining a performance metric. Thus, it is suitable for both
categorical and numerical variables. In its current implementation, it does not
support missing data.

The ProbeFeatureSelection() introduces random variables to the dataset,
then creates a model and derives the feature importance. It selects all variables
whose importance is grater than the mean importance of the random features.

Throughout the rest of user guide, you will find more details about each of the
feature selection procedures.

Click below to find more details on how to use each one of the transformers.

The DropFeatures () drops a list of variables indicated by the user from the
original dataframe. The user can pass a single variable as a string or list of
variables to be dropped.

DropFeatures () offers similar functionality to pandas.dataframe.drop, but
the difference is that DropFeatures() can be integrated into a Scikit-learn
pipeline.

When is this transformer useful?

Sometimes, we create new variables combining other variables in
the dataset, for example, we obtain the variable age by subtracting
date_of_application from date_of_birth. After we obtained our

234

Chapter 10. Table of Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html

feature_engine Documentation, Release 1.7.0

new variable, we do not need the date variables in the dataset any more. Thus,
we can add DropFeatures () in the Pipeline to have these removed.

Example

Let’s see how to use DropFeatures () in an example with the Titanic dataset.
We first load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.selection import DropFeatures

X, vy = load_titanic(

return_X_y_frame=True,
handle_missing=True,

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

print(X_train.head())

Now, we go ahead and print the dataset column names:

X_train.columns

Index(['pclass', 'name
~', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare',
'cabin', 'embarked', 'boat', 'body', 'home.dest'],
dtype="object')

Now, with DropFeatures() we can very easily drop a group of variables.
Below we set up the transformer to drop a list of 6 variables:

set up the transformer
transformer = DropFeatures(
features_to_drop=[
—'sibsp', 'parch', 'ticket', 'fare', 'body', 'home.dest']
)

fit the transformer
transformer. fit (X_train)

With £fit () this transformer does not learn any parameter. We can go ahead
and remove the variables as follows:

train_t = transformer.transform(X_train)
test_t = transformer.transform(X_test)

And now, if we print the variable names of the transformed dataset, we see that
it has been reduced:

train_t.columns

10.2. User Guide 235

feature_engine Documentation, Release 1.7.0

Index(['pclass', 'name', 'sex
—', 'age', 'cabin', 'embarked', 'boat'], dtype='object')

Additional resources

In this Kaggle kernel we feature 3 different end-to-end machine learning
pipelines using DropFeatures():

» Kaggle Kernel
All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these
resources:

Or read our book:

Fig. 75: Feature Selection for Machine Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

Feature Selection .
Machine Learning &}

236 Chapter 10. Table of Contents

https://www.kaggle.com/solegalli/feature-engineering-and-model-stacking
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

DropConstantFeatures

Constant features are variables that show zero variability, or, in other words,
have the same value in all rows. A key step towards training a machine learning
model is to identify and remove constant features.

Features with no or low variability rarely constitute useful predictors. Hence,
removing them right at the beginning of the data science project is a good way
of simplifying your dataset and subsequent data preprocessing pipelines.

Filter methods are selection algorithms that select or remove features based
solely on their characteristics. In this light, removing constant features could
be considered part of the filter group of selection algorithms.

In Python, we can find constant features by using pandas std or unique meth-
ods, and then remove them with drop.

With Scikit-learn, we can find and remove constant variables with
VarianceThreshold to quickly reduce the number of features.
VarianceThreshold is part of sklearn. feature_selection’s API.

VarianceThreshold, however, would only work with numerical variables.
Hence, we could only evaluate categorical variables after encoding them,
which requires a prior step of data preprocessing just to remove redundant
variables.

Feature-engine introduces DropConstantFeatures () to find and remove constant and quasi-constant features from a
dataframe. DropConstantFeatures () works with numerical, categorical, or datetime variables. It is therefore more
versatile than Scikit-learn’s transformer because it allows us to drop all duplicate variables without the need for prior
data transformations.

By default, DropConstantFeatures () drops constant variables. We also have the option to drop quasi-constant
features, which are those that show mostly constant values and some other values in a very small percentage of rows.

Because DropConstantFeatures () works with numerical and categorical variables alike, it offers a straightforward
way of reducing the feature subset.

Be mindful, though, that depending on the context, quasi-constant variables could be useful.
Example

Let’s see how to use DropConstantFeatures () by using the Titanic dataset. This dataset does not contain constant
or quasi-constant variables, so for the sake of the demonstration, we will consider quasi-constant those features that
show the same value in more than 70% of the rows.

We first load the data and separate it into a training set and a test set:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.selection import DropConstantFeatures

X, vy = load_titanic(

return_X_y_frame=True,
handle_missing=True,

X_train, X_test, y_train, y_test = train_test_split(

(continues on next page)

10.2. User Guide 237

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X, y, test_size=0.3, random_state=0,

Now, we set up the DropConstantFeatures () to remove features that show the same value in more than 70% of the
observations. We do this through the parameter tol. The default value for this parameter is zero, in which case it will
remove constant features.

set up the transformer
transformer = DropConstantFeatures(tol=0.7)

With £fit () the transformer finds the variables to drop:

fit the transformer
transformer. fit(X_train)

The variables to drop are stored in the attribute features_to_drop_:

transformer. features_to_drop_

['parch', 'cabin', 'embarked', 'body']

We can check that the variables parch and embarked show the same value in more than 70% of the observations as
follows:

X_train['embarked'].value_counts(normalize = True)

S 0.711790
C 0.195415
Q 0.090611

Missing 0.002183
Name: embarked, dtype: float64

Based on the previous results, 71% of the passengers embarked in S.

Let’s now evaluate parch:

X_train['parch'].value_counts(normalize = True)

.771834
.125546
.086245
.005459
.004367
.003275
.002183
.001092
Name: parch, dtype: float64

OOV WN RS
(== — I — I — I — I — =]

Based on the previous results, 77% of the passengers had 0 parent or child. Because of this, these features were deemed
quasi-constant and will be removed in the next step.

We can also identify quasi-constant variables as follows:

238 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

import pandas

X_train["embarked"].value_counts(normalize=True).plot.bar()

After executing the previous code, we observe the following plot, with more than 70% of passengers embarking in S:

0.7 1

0.6 1

0.5 1

0.4 1

0.3 A

0.2 1

0.1 1

0.0 -

Missing -

embarked

With transform(), we drop the quasi-constant variables from the dataset:

train_t = transformer.transform(X_train)
test_t = transformer.transform(X_test)

print(train_t.head())

We see the resulting dataframe below:

pclass name sex age sibsp \
501 2 Mellinger, Miss. Madeleine Violet female 13.000000 0
588 2 Wells, Miss. Joan female 4.000000 1
402 2 Duran y More, Miss. Florentina female 30.000000 1

(continues on next page)

10.2. User Guide 239

feature_engine Documentation, Release 1.7.0

(continued from previous page)

1193 3 Scanlan, Mr. James male 29.881135 0
686 3 Bradley, Miss. Bridget Delia female 22.000000 0
ticket fare boat \
501 250644 19.5000 14
588 29103 23.0000 14
402 SC/PARIS 2148 13.8583 12
1193 36209 7.7250 Missing
686 334914 7.7250 13
home.dest
501 England / Bennington, VT
588 Cornwall / Akron, OH
402 Barcelona, Spain / Havana, Cuba
1193 Missing

686 Kingwilliamstown, Co Cork, Ireland Glens Falls...

Like sklearn, Feature-engine transformers have the fit_transform method that allows us to find and remove constant
or quasi-constant variables in a single line of code for convenience.

Like sklearn as well, DropConstantFeatures () has the get_support () method, which returns a vector with values
True for features that will be retained and False for those that will be dropped.

transformer.get_support()

[True, True, True, True, True, False, True, True, False, False,
True, False, True]

This and other feature selection methods may not necessarily avoid overfitting, but they contribute to simplifying our
machine learning pipelines and creating more interpretable machine learning models.

Additional resources

In this Kaggle kernel we use DropConstantFeatures () together with other feature selection algorithms and then
train a Logistic regression estimator:

» Kaggle kernel

For more details about this and other feature selection methods check out these resources:

240 Chapter 10. Table of Contents

https://www.kaggle.com/solegalli/feature-selection-with-feature-engine

feature_engine Documentation, Release 1.7.0

41 Or read our book:

Fig. 77: Feature Selection for Machine Learning

Feature Selection
Machine Learning

Soledad Galli, PhD

Fig. 78: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

Duplicate features are columns in a dataset that are identical, or, in other words,
that contain exactly the same values. Duplicate features can be introduced
accidentally, either through poor data management processes or during data
manipulation.

For example, duplicated new records can be created by one-hot encoding a
categorical variable or by adding missing data indicators. We can also acci-
dentally generate duplicate records when we merge different data sources that
show some variable overlap.

Checking for and removing duplicate features is a standard procedure in any
data analysis workflow that helps us reduce the dimension of the dataset
quickly and ensure data quality. In Python, we can find duplicate values in
an attribute table very easily with Pandas. Dropping those duplicate features,
however, requires a few more lines of code.

Feature-engine aims to accelerate the process of data validation by finding
and removing duplicate features with the DropDuplicateFeatures() class,
which is part of the selection API.

DropDuplicateFeatures() does exactly that; it finds and removes dupli-
cated variables from a dataframe. DropDuplicateFeatures() will automatically

evaluate all variables, or alternatively, you can pass a list with the variables you wish to have examined. And it works
with numerical and categorical features alike.

So let’s see how to set up DropDuplicateFeatures().

Example

10.2. User Guide

241

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

In this demo, we will use the Titanic dataset and introduce a few duplicated features manually:

import pandas as pd

from sklearn.model_selection import train_test_split

from feature_engine.datasets import load_titanic

from feature_engine.selection import DropDuplicateFeatures

data = load_titanic(
handle_missing=True,
predictors_only=True,
)
Lets duplicate some columns
data = pd.concat([data, data[['sex', 'age', 'sibsp']]], axis=1)
data.columns = ['pclass', 'survived', 'sex', 'age',
'sibsp', 'parch', 'fare', 'cabin', 'embarked',
'sex_dup', 'age_dup', 'sibsp_dup']

We then split the data into a training and a testing set:

Separate into train and test sets

X_train, X_test, y_train, y_test = train_test_split(
data.drop(['survived'], axis=1),
data['survived'],
test_size=0.3,
random_state=0,

)

print(X_train.head())

Below we see the resulting data:

pclass sex age sibsp parch fare cabin embarked \
501 2 female 13.000000 0 1 19.5000 Missing S
588 2 female 4.000000 1 1 23.0000 Missing S
402 2 female 30.000000 1 O 13.8583 Missing C
1193 3 male 29.881135 0 ® 7.7250 Missing Q
686 3 female 22.000000 0 0 7.7250 Missing Q

sex_dup age_dup sibsp_dup
501 female 13.000000
588 female 4.000000
402 female 30.000000
1193 male 29.881135
686 female 22.000000

S DR =k

As expected, the variables sex and sex_dup have duplicate field values throughout all the rows. The same is true for
the variables age and age_dup

Now, we set up DropDuplicateFeatures() to find the duplicate features:

transformer = DropDuplicateFeatures()

With £it () the transformer finds the duplicated features:

242 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

transformer. fit(X_train)

The features that are duplicated and will be removed are stored in the features_to_drop_ attribute:

transformer. features_to_drop_

{'age_dup', 'sex_dup', 'sibsp_dup'}

With transform() we remove the duplicated variables:

train_t = transformer.transform(X_train)
test_t = transformer.transform(X_test)

We can go ahead and check the variables in the transformed dataset, and we will see that the duplicated features are
not there any more:

train_t.columns

Index(['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare', 'cabin', 'embarked'], dtype=
—'object')

The transformer also stores the groups of duplicated features, which is useful for data analysis and validation.

transformer.duplicated_feature_sets_

[{'sex', 'sex_dup'}, {'age', 'age_dup'}, {'sibsp', 'sibsp_dup'}]

Additional resources

In this Kaggle kernel we use DropDuplicateFeatures () in a pipeline with other feature selection algorithms:
» Kaggle kernel

For more details about this and other feature selection methods check out these resources:

Or read our book:

243

https://www.kaggle.com/solegalli/feature-selection-with-feature-engine
https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Feature Selection
Machine Learning

DropCorreIatedFetu re

Soledad Galli, PhD

Fig. 80: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

The DropCorrelatedFeatures() finds and removes correlated variables
from a dataframe. Correlation is calculated with pandas.corr(). All cor-
relation methods supported by pandas.corr() can be used in the selection,
including Spearman, Kendall, or Spearman. You can also pass a bespoke cor-
relation function, provided it returns a value between -1 and 1.

Features are removed on first found first removed basis, without any further
insight. That is, the first feature will be retained an all subsequent features that
are correlated with this, will be removed.

The transformer will examine all numerical variables automatically. Note that
you could pass a dataframe with categorical and datetime variables, and these
will be ignored automatically. Alternatively, you can pass a list with the vari-
ables you wish to evaluate.

Example

Let’s create a toy dataframe where 4 of the features are correlated:

import pandas as pd

from sklearn.datasets import make_classification

from,,

- feature_engine.selection import DropCorrelatedFeatures

make dataframe with some correlated variables
def make_data():

X, y = make_classification(n_samples=1000,
n_features=12,
n_redundant=4,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,

(continues on next page)

244

Chapter 10. Table of Contents

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

(continued from previous page)

random_state=1)

trasform arrays into pandas df and series
colnames = ['var_'+str(i) for i in range(12)]
X = pd.DataFrame(X, columns =colnames)
return X

X = make_data()

Now, we set up DropCorrelatedFeatures () to find and remove variables which (absolute) correlation coefficient is
bigger than 0.8:

tr = DropCorrelatedFeatures(variables=None, method='pearson', threshold=0.8)

With £it () the transformer finds the correlated variables and with transform() it drops them from the dataset:

Xt = tr.fit_transform(X)

The correlated feature groups are stored in the transformer’s attributes:

tr.correlated_feature_sets_

[{'var_0', 'var_8'}, {'var_4', 'var_6', 'var_7', 'var_9'}]

We can identify from each group which feature will be retained and which ones removed by inspecting the dictionary:

tr.correlated_feature_dict_

In the dictionary below we see that from the first correlated group, var_@0 is a key, hence it will be retained, whereas
var_8 is a value, which means that it is correlated to var_0 and will therefore be removed.

{'var_0': {'var_8'}, 'var_4': {'var_6', 'var_7', 'var_9'}}

Similarly, var_4 is a key and will be retained, whereas the variables 6, 7 and 8 were found correlated to var_4 and
will therefore be removed.

The features that will be removed from the dataset are stored in a different attribute as well:

tr. features_to_drop_

['var_8', 'var_6', 'var_7', 'var_9']

If we now go ahead and print the transformed data, we see that the correlated features have been removed.

print (print (Xt.head()))

var_0 var_1 var_2 var_3 var_4 var_5 var_10 \
.471061 -2.376400 -0.247208 1.210290 -3.247521 0.091527 2.070526
.819196 1.969326 -0.126894 0.034598 -2.910112 -0.186802 1.184820
.625024 1.499174 0.334123 -2.233844 -3.399345 -0.313881 -0.066448
.939212 0.075341 1.627132 0.943132 -4.783124 -0.468041 0.713558
.579307 0.372213 0.338141 0.951526 -3.199285 0.729005 0.398790

A wNn R
e

(continues on next page)

10.2. User Guide 245

feature_engine Documentation, Release 1.7.0

(continued from previous page)

var_11
0 -1.989335
1 -1.309524
2 -0.852703
3 0.484649
4 -0.186530

Additional resources

In this notebook, we show how to use DropCorrelatedFeatures () with a different relation metric:
* Jupyter notebook
All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these resources:

Or read our book:

Fig. 81: Feature Selection for Machine Learning

246 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Drop-Correlated-Features.ipynb
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

Feature Selection .o
Machine Learning &t

When dealing with datasets containing numerous features, it’'s common for
more than two features to exhibit correlations with each other. This correla-
tion might manifest among three, four, or even more features within the dataset.
Consequently, determining which features to retain and which ones to elimi-
nate becomes a crucial consideration.

Deciding which features to retain from a correlated group involves several
strategies, such us:

Soledad 6alli. PiD L 1. Model Performance: Some features returns model with higher perfor-
. mance than others.

Fig. 82: Feature Selection in Machine 2. Variability and Cardinality: Features with higher variability or cardi-
Learning nality often provide more information about the target variable.

3. Missing Data: Features with less missing data are generally more reli-
able and informative.

We can apply this selection strategies out of the box with the
SmartCorrelatedSelection.

From a group of correlated variables, the SmartCorrelatedSelection will
retain the variable with:

* the highest variance
* the highest cardinality
¢ the least missing data
* the best performing model (based on a single feature)
The remaining features within each correlated group will be dropped.

Features with higher diversity of values (higher variance or cardinality), tend to be more predictive, whereas features
with least missing data, tend to be more useful.

Alternatively, directly training a model using each feature within the group and retaining the one that trains the best
performing model, directly evaluates the influence of the feature on the target.

Procedure

SmartCorrelatedSelection first finds correlated feature groups using any correlation method supported by
pandas.corr(), or a user defined function that returns a value between -1 and 1.

Then, from each group of correlated features, it will try and identify the best candidate based on the above criteria.

If the criteria is based on model performance, SmartCorrelatedSelection will train a single feature machine learn-
ing model, using each one of the features in a correlated group, calculate the model’s performance, and select the feature
that returned the highest performing model. In simpler words, it trains single feature models, and retains the feature of
the highest performing model.

10.2. User Guide 247

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

If the criteria is based on variance or cardinality, SmartCorrelatedSelection will determine these attributes for each
feature in the group and retain that one with the highest. Note however, that variability is dominated by the variable’s
scale. Hence, variables with larger scales will dominate the selection procedure, unless you have a scaled dataset.

If the criteria is based on missing data, SmartCorrelatedSelection will determine the number of NA in each feature
from the correlated group and keep the one with less NA.

Variance

Let’s see how to use SmartCorrelatedSelection in a toy example. Let’s create a toy dataframe with 4 correlated
features:

import pandas as pd
from sklearn.datasets import make_classification
from feature_engine.selection import SmartCorrelatedSelection

make dataframe with some correlated variables
def make_data(Q):

X, vy = make_classification(n_samples=1000,
n_features=12,
n_redundant=4,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1)

transform arrays into pandas df and series
colnames = ['var_'+str(i) for i in range(12)]
X = pd.DataFrame(X, columns=colnames)

return X

X = make_data()

Now, we set up SmartCorrelatedSelection to find features groups which (absolute) correlation coefficient is >0.8.
From these groups, we want to retain the feature with highest variance:

set up the selector

tr = SmartCorrelatedSelection(
variables=None,
method="pearson",
threshold=0.8,
missing_values="raise",
selection_method="variance",
estimator=None,

With fit (), the transformer finds the correlated variables and selects the ones to keep. With transform(), it drops
the remaining features in the correlated group from the dataset:

Xt = tr.fit_transform(X)

The correlated feature groups are stored in the one of the transformer’s attributes:

248 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

tr.correlated_feature_sets_

In the first group, 4 features are correlated to at least one of them. In the second group, 2 features are correlated.

[{'var_4', 'var_6', 'var_7', 'var_9'}, {'var_0', 'var_8'}]

SmartCorrelatedSelection picks a feature, and then determines the correlation of other features in the dataframe
to it. Hence, all features in a group will be correlated to this one feature, but they may or may not be correlated to the
other features within the group, because correlation is not transitive.

This feature that was used in the assessment, was either the one with the higher variance, higher cardinality or smaller
number of missing data. Or, if model performance was selected, it was the one that came first in alphabetic order.

We can identify from each group which feature will be retained and which ones removed by inspecting the following
attribute:

tr.correlated_feature_dict_

In the dictionary below we see that from the first correlated group, var_7 is a key, hence it will be retained, whereas
variables 4, 6 and 9 are values, which means that they are correlated to var_7 and will therefore be removed.

Because we are selecting features based on variability, var_7 has the higher variability from the group.

{'var_7': {'var_4', 'var_6', 'var_9'}, 'var_8': {'var_0'}}

Similarly, var_8 is a key and will be retained, whereas the var_@ is a value, which means that it was found correlated
to var_8 and will therefore be removed.

We can corroborate that, for example, var_7 had the highest variability as follows:

X[1list(tr.correlated_feature_sets_[0])].std()

That command returns the following output, where we see that the variability of var_7 is the highest:

var_4 1.810273
var_7 2.159634
var_9 1.764249
var_6 2.032947
dtype: float64

The features that will be removed from the dataset are stored in the following attribute:

tr.features_to_drop_

['var_6', 'var_4', 'var_9', 'var_0']

If we now go ahead and print the transformed data, we see that the correlated features have been removed.

print(Xt.head())

var_1 var_2 var_3 var_5 var_7 var_8 var_10 \
-2.376400 -0.247208 1.210290 0.091527 -2.230170 2.070483 2.070526
1.969326 -0.126894 0.034598 -0.186802 -1.447490 2.421477 1.184820
1.499174 0.334123 -2.233844 -0.313881 -2.240741 2.263546 -0.066448
0.075341 1.627132 0.943132 -0.468041 -3.534861 2.792500 ©0.713558

w N~

(continues on next page)

10.2. User Guide 249

feature_engine Documentation, Release 1.7.0

(continued from previous page)

4 0.372213 0.338141 0.951526 0.729005 -2.053965 2.186741 0.398790

var_11
-1.989335
-1.309524
.852703
0.484649
-0.186530

D wNn R
|
(=]

Performance

Let’s now select the feature that returns a machine learning model with the highest performance, from each group.
We’ll use a decision tree.

We start by creating a toy dataframe:

import pandas as pd

from sklearn.datasets import make_classification

from sklearn.tree import DecisionTreeClassifier

from feature_engine.selection import SmartCorrelatedSelection

make dataframe with some correlated variables
def make_data(Q):

X, y = make_classification(n_samples=1000,
n_features=12,
n_redundant=4,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1)

transform arrays into pandas df and series
colnames = ['var_'+str(i) for i in range(12)]
X = pd.DataFrame(X, columns=colnames)

return X, y

X, y = make_data(Q)

Let’s now set up the selector:

tr = SmartCorrelatedSelection(
variables=None,
method="pearson",
threshold=0.38,
missing_values="raise",
selection_method="model_performance",
estimator=DecisionTreeClassifier(random_state=1),
scoring="'roc_auc',
cv=3,

Next, we fit the selector to the data. Here, as we are training a model, we also need to pass the target variable:

250 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Xt = tr.fit_transform(X, y)

Let’s explore the correlated feature groups:

tr.correlated_feature_sets_

We see that the groups of correlated features are slightly different, because in this cases, the features were assessed in
alphabetical order, whereas when we used the variance the features we sorted based on their standard deviation for the
assessment.

[{'var_0', 'var_8'}, {'var_4', 'var_6', 'var_7', 'var_9'}]

We can find the feature that will be retained as the key in the following attribute:

tr.correlated_feature_dict_

The variables var_0 and var_7 will be retained, and the remaining ones will be dropped.

{'var_0': {'var_8'}, 'var_7': {'var_4', 'var_6', 'var_9'}}

We find the variables that will be dropped in the following attribute:

tr. features_to_drop_

['var_8', 'var_4', 'var_6', 'var_9']

And now we can print the resulting dataframe after the transformation:

print(Xt.head(Q))

var_0 var_1l var_2 var_3 var_5 var_7 var_10 \
.471061 -2.376400 -0.247208 1.210290 0.091527 -2.230170 2.070526
.819196 1.969326 -0.126894 0.034598 -0.186802 -1.447490 1.184820
.625024 1.499174 0.334123 -2.233844 -0.313881 -2.240741 -0.066448
.939212 0.075341 1.627132 0.943132 -0.468041 -3.534861 0.713558
.579307 0.372213 0.338141 0.951526 0.729005 -2.053965 0.398790

B wWw N~
R R R R R

var_11
-1.989335
-1.309524
-0.852703
0.484649
-0.186530

A wNn R

Let’s examine other attributes that may be useful. Like with any Scikit-learn transformer we can obtain the names of
the features in the resulting dataframe as follows:

tr.get_feature_names_out()

['var_®', 'var_1', 'var_2', 'var_3', 'var_5', 'var_7', 'var_10', 'var_11']

We also find the get_support method that flags the features that will be retained from the dataframe:

10.2. User Guide 251

feature_engine Documentation, Release 1.7.0

tr.get_support()

[True, True, True, True, False, True, False, True, False, False, True, True]

And that’s it!

Additional resources

In this notebook, we show how to use SmartCorrelatedSelection with a different relation metric:
e Jupyter notebook
All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these resources:

Or read our book:

Fig. 83: Feature Selection for Machine Learning

Both our book and course are suitable for beginners and more advanced data

Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Smart-Correlation-Selection.ipynb
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

SelectBySingleFeaturePerformance

The SelectBySingleFeaturePerformance () selects features based on the
performance of machine learning models trained using individual features.
That is, it selects features based on their individual performance. In short,
the selection algorithms works as follows:

1. Train a machine learning model per feature (using only 1 feature)
2. Determine the performance metric of choice
3. Retain features which performance is above a threshold

If the parameter threshold is left to None, it will select features which per-
formance is above the mean performance of all features.

Example

Let’s see how to use this transformer with the diabetes dataset that comes in
Scikit-learn. First, we load the data:

import pandas as pd

from sklearn.datasets import load_diabetes

from sklearn.linear_model import LinearRegression

from feature_

—,engine.selection import SelectBySingleFeaturePerformance

load dataset

diabetes_X, diabetes_y = load_diabetes(return_X_y=True)
X = pd.DataFrame(diabetes_X)

y = pd.Series(diabetes_y)

Now, we start SelectBySingleFeaturePerformance () to select features based on the r2 returned by a Linear re-
gression, using 3 fold cross-validation. We want to select features which r2 > 0.01.

initialize feature selector
sel = SelectBySingleFeaturePerformance (
estimator=LinearRegression(), scoring="r2", cv=3, threshold=0.01)

With £fit () the transformer fits 1 model per feature, determines the performance and selects the important features:

fit transformer
sel. fit(X, y)

The features that will be dropped are stored in an attribute:

sel.features_to_drop_

(1]

SelectBySingleFeaturePerformance () also stores the performace of each one of the models, in case we want to
study those further:

10.2. User Guide 253

feature_engine Documentation, Release 1.7.0

sel. feature_performance_

{0: 0.029231969375784466,
: -0.003738551760264386,
.336620809987693,
.19219056680145055,
.037115559827549806,
.017854228256932614,
.15153886177526896,
.17721609966501747,
.3149462084418813,
.13876602125792703}

[y

O 00 NO VT i W
(== I — R — I — N — R —]

With transform() we go ahead and remove the features from the dataset:

drop variables
Xt = sel.transform(X)

If we now print the transformed data, we see that the features above were removed.

print(Xt.head())

0 2 3 4 5 6 7\
0 0.038076 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592
1 -0.001882 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493
2 0.085299 0.044451 -0.005670 -0.045599 -0.034194 -0.032356 -0.002592
3 -0.089063 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309
4 0.005383 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592
8 9
0 0.019907 -0.017646
1 -0.068332 -0.092204
2 0.002861 -0.025930
3 0.022688 -0.009362
4 -0.031988 -0.046641

Additional resources

Check also:
* Jupyter notebook
All notebooks can be found in a dedicated repository.
For more details about this and other feature selection methods check out these resources:

For more details about this and other feature selection methods check out these resources:

254 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Select-by-Single-Feature-Performance.ipynb
https://github.com/feature-engine/feature-engine-examples

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 85: Feature Selection for Machine Learning

Feature Selection
Machine Learning

RecursiveFeatureEIimi

Soledad Galli, PhD

Fig. 86: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

RecursiveFeatureElimination implements recursive feature elimination.
Recursive feature elimination (RFE) is a backward feature selection process.
In Feature-engine’s implementation of RFE, a feature will be kept or removed
based on the performance of a machine learning model without that feature.
This differs from Scikit-learn’s implementation of RFE where a feature will be
kept or removed based on the feature importance.

This technique begins by building a model on the entire set of variables, then
calculates and stores a model performance metric, and finally computes an
importance score for each variable. Features are ranked by the model’s coef_
or feature_importances_ attributes.

In the next step, the least important feature is removed, the model is re-built,
and a new performance metric is determined. If this performance metric is
worse than the original one, then, the feature is kept, (because eliminating the
feature clearly caused a drop in model performance) otherwise, it removed.

The procedure removes now the second to least important feature, trains a new
model, determines a new performance metric, and so on, until it evaluates all

10.2. User Guide

255

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

feature_engine Documentation, Release 1.7.0

the features, from the least to the most important.

Note that, in Feature-engine’s implementation of RFE, the feature importance
is used just to rank features and thus determine the order in which the features will be eliminated. But whether to retain
a feature is determined based on the decrease in the performance of the model after the feature elimination.

By recursively eliminating features, RFE attempts to eliminate dependencies and collinearity that may exist in the
model.

Parameters

Feature-engine’s RFE has 2 parameters that need to be determined somewhat arbitrarily by the user: the first one is the
machine learning model which performance will be evaluated. The second is the threshold in the performance drop
that needs to occur, to remove a feature.

RFE is not machine learning model agnostic, this means that the feature selection depends on the model, and different
models may have different subsets of optimal features. Thus, it is recommended that you use the machine learning
model that you finally intend to build.

Regarding the threshold, this parameter needs a bit of hand tuning. Higher thresholds will of course return fewer
features.

Example

Let’s see how to use this transformer with the diabetes dataset that comes in Scikit-learn. First, we load the data:

import pandas as pd

from sklearn.datasets import load_diabetes

from sklearn.linear_model import LinearRegression

from feature_engine.selection import RecursiveFeatureElimination

load dataset

diabetes_X, diabetes_y = load_diabetes(return_X_y=True)
X = pd.DataFrame(diabetes_X)

y = pd.Series(diabetes_y)

Now, we set up RecursiveFeatureElimination to select features based on the r2 returned by a Linear Regression
model, using 3 fold cross-validation. In this case, we leave the parameter threshold to the default value which is
0.01.

initialize linear regresion estimator
linear_model = LinearRegression()

initialize feature selector
tr = RecursiveFeatureElimination(estimator=linear_model, scoring="r2", cv=3)

With £fit () the model finds the most useful features, that is, features that when removed cause a drop in model perfor-
mance bigger than 0.01. With transform(), the transformer removes the features from the dataset.

fit transformer
Xt = tr.fit_transform(X, y)

RecursiveFeatureElimination stores the performance of the model trained using all the features in its attribute:

get the initial linear model performance, using all features
tr.initial_model_performance_

256 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

0.488702767247119

RecursiveFeatureElimination also stores the change in the performance caused by removing every feature.

Get the performance drift of each feature
tr.performance_drifts_

: -0.0032796652347705235,
: -0.00028200591588534163,
: -0.0006752869546966522,
.00013883578730117252,
.011956170569096924,
.028634492035512438,
.012639090879036363,
.06630127204137715,
.1093736570697495,
.024318093565432353}

A oM UVTwEkE N0

(=R — I — I — I — I — I —]

RecursiveFeatureElimination also stores the features that will be dropped based n the given threshold.

the features to remove
tr.features_to_drop_

0, 6, 7, 9]

If we now print the transformed data, we see that the features above were removed.

print(Xt.head())

1 2 3 4 5 8
0 0.050680 0.061696 0.021872 -0.044223 -0.034821 0.019907
1 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 -0.068332
2 0.050680 0.044451 -0.005670 -0.045599 -0.034194 0.002861
3 -0.044642 -0.011595 -0.036656 0.012191 0.024991 0.022688
4 -0.044642 -0.036385 0.021872 0.003935 0.015596 -0.031988

Additional resources

More details on recursive feature elimination in this article:
* Recursive feature elimination with Python
For more details about this and other feature selection methods check out these resources:

For more details about this and other feature selection methods check out these resources:

10.2. User Guide 257

https://www.blog.trainindata.com/recursive-feature-elimination-with-python/

feature_engine Documentation, Release 1.7.0

Or read our book:

Fig. 87: Feature Selection for Machine Learning

Feature Selection ..
Machine Learning T

RecursiveFeaturedditi Qn,.

Soledad Golli, PhD

Fig. 88: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

RecursiveFeatureAddition implements recursive feature addition. Recur-
sive feature addition (RFA) is a forward feature selection process.

This technique begins by building a model on the entire set of variables and
computing an importance score for each variable. Features are ranked by the
model’s coef_ or feature_importances_ attributes.

In the next step, it trains a model only using the feature with the highest im-
portance and stores the model performance.

Then, it adds the second most important, trains a new model and determines a
new performance metric. If the performance increases beyond the threshold,
compared to the previous model, then that feature is important and will be kept.
Otherwise, that feature is removed.

It proceeds to evaluate the next most important feature, and so on, until all
features are evaluated.

Note that feature importance is used just to rank features and thus determine
the order in which the features will be added. But whether to retain a feature

258

Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

is determined based on the increase in the performance of the model after the
feature addition.

Parameters

Feature-engine’s RFA has 2 parameters that need to be determined somewhat arbitrarily by the user: the first one is the
machine learning model which performance will be evaluated. The second is the threshold in the performance increase
that needs to occur, to keep a feature.

RFA is not machine learning model agnostic, this means that the feature selection depends on the model, and different
models may have different subsets of optimal features. Thus, it is recommended that you use the machine learning
model that you finally intend to build.

Regarding the threshold, this parameter needs a bit of hand tuning. Higher thresholds will of course return fewer
features.

Example

Let’s see how to use this transformer with the diabetes dataset that comes in Scikit-learn. First, we load the data:

import pandas as pd

from sklearn.datasets import load_diabetes

from sklearn.linear_model import LinearRegression

from feature_engine.selection import RecursiveFeatureAddition

load dataset

diabetes_X, diabetes_y = load_diabetes(return_X_y=True)
X pd.DataFrame(diabetes_X)

y = pd.Series(diabetes_y)

Now, we set up RecursiveFeatureAddition to select features based on the 12 returned by a Linear Regression
model, using 3 fold cross-validation. In this case, we leave the parameter threshold to the default value which is
0.01.

initialize linear regresion estimator
linear_model = LinearRegression()

initialize feature selector
tr = RecursiveFeatureAddition(estimator=linear_model, scoring="r2", cv=3)

With £it() the model finds the most useful features, that is, features that when added cause an increase in model
performance bigger than 0.01. With transform(), the transformer removes the features from the dataset.

fit transformer
Xt = tr.fit_transform(X, y)

RecursiveFeatureAddition stores the performance of the model trained using all the features in its attribute:

get the initial linear model performance, using all features
tr.initial_model_performance_

0.488702767247119

RecursiveFeatureAddition also stores the change in the performance caused by adding each feature.

Get the performance drift of each feature
tr.performance_drifts_

10.2. User Guide 259

feature_engine Documentation, Release 1.7.0

.28371458794131676,
.1377714799388745,
.0023327265047610735,
.018759914615172735,
.0027996354657459643,
.002695149440021638,
.002683934134630306,
.000304067408860742,
: -0.007387230783454768}

S VWO NRFE WU N O D
(=R — I — R — R — A — N — A~ N~

RecursiveFeatureAddition also stores the features that will be dropped based n the given threshold.

the features to drop
tr. features_to_drop_

[®’ 11 5’ 6’ 7’ 9]

If we now print the transformed data, we see that the features above were removed.

print (Xt.head())

2 3 4 8
0.061696 0.021872 -0.044223 0.019907
-0.051474 -0.026328 -0.008449 -0.068332
0.044451 -0.005670 -0.045599 0.002861
0
0

.011595 -0.036656 0.012191 0.022688
.036385 0.021872 0.003935 -0.031988

0
1
2
3
4

Additional resources

For more details about this and other feature selection methods check out these resources:

Or read our book:

Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Feature Selection

Machine Learning
SelectByShuffling

Soledad Galli, PhD

Fig. 90: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

The SelectByShuffling() selects important features if a random permuta-
tion of their values decreases the model performance. If the feature is predic-
tive, a random shuffle of the values across the rows, should return predictions
that are off the truth. If the feature is not predictive, their values should have a
minimal impact on the prediction.

The algorithm works as follows:
1. Train a machine learning model using all features
2. Determine a model performance metric of choice
3. Shuffle the order of 1 feature values
4. Use the model trained in 1 to obtain new predictions
5. Determine the performance with the predictions in 4
6. If there is a drop in performance beyond a threshold, keep the feature.
7. Repeat 3-6 until all features are examined.
Example

Let’s see how to use this transformer with the diabetes dataset that comes in
Scikit-learn. First, we load the data:

import pandas as pd

from sklearn.datasets import load_diabetes

from sklearn.linear_model import LinearRegression
from feature_engine.selection import SelectByShuffling

(continues on next page)

10.2. User Guide

261

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

(continued from previous page)

load dataset

diabetes_X, diabetes_y = load_diabetes(return_X_y=True)
X = pd.DataFrame(diabetes_X)

y = pd.Series(diabetes_y)

Now, we set up the model for which we want to have the performance drop evaluated:

initialize linear regresion estimator
linear_model = LinearRegression()

Now, we instantiate SelectByShuffling() to select features by shuffling, based on the r2 of the model from the
previous cell, using 3 fold cross-validation. The parameter threshold was left to None, which means that features
will be selected if the performance drop is bigger than the mean drop caused by all features.

initialize feature selector
tr = SelectByShuffling(estimator=linear_model, scoring="r2", cv=3)

With £fit () the transformer finds the important variables, that is, those which values permutations caused a drop in
the model performance. With transform() it drops them from the dataset:

fit transformer
Xt = tr.fit_transform(X, y)

SelectByShuffling() stores the performance of the model trained using all the features in its attribute:

tr.initial_model_performance_

0.488702767247119

SelectByShuffling() also stores the performance change caused by every single feature after shuffling. In case you
are not satisfied with the threshold used, you can get an idea of where the threshold could be by looking at these values:

tr.performance_drifts_

: -0.0035681361984126747,
.041170843574652394,
.1920054944393057,
.07007527443645178,
.49871458125373913,
.1802858704499694,
.025536233845966705,
.024058931694668884,
.40901959802129045,
.004487448637912506}

O o0 NO UV WN - D
(= — I — R — T — N — R — =~}

SelectByShuffling() also stores the features that will be dropped based on the threshold indicated.

tr.features_to_drop_

o, 1, 3, 6, 7, 9]

If we now print the transformed data, we see that the features above were removed.

262 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

print(Xt.head())

2 4 5 8
0 0.061696 -0.044223 -0.034821 0.019907
1 -0.051474 -0.008449 -0.019163 -0.068332
2 0.044451 -0.045599 -0.034194 0.002861
3 -0.011595 0.012191 0.024991 0.022688
4 -0.036385 0.003935 0.015596 -0.031988

Additional resources

For more details about this and other feature selection methods check out these resources:

Or read our book:

Fig. 91: Feature Selection for Machine Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

263

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

SelectByTargetMeanPerformance

SelectByTargetMeanPerformance() selects features based on perfor-
mance metrics like the ROC-AUC or accuracy for classification, or mean
squared error and R-squared for regression.

To obtain performance metrics, we compare an estimate of the target, returned
by a machine learning model, with the real target. The closer the values of the
estimate to the real target, the better the performance of the model.

SelectByTargetMeanPerformance(), like
SelectBySingleFeaturePerformance() train models based on sin-
gle features. Or in other words, they train and test one model per feature.
With SelectBySingleFeaturePerformance(), we can use any machine
learning classifier or regressor available in Scikit-learn to evaluate each
feature’s performance. The downside is that Scikit-learn models only work
with numerical variables, thus, if our data has categorical variables, we need
to encode them into numbers first.

SelectByTargetMeanPerformance (), on the other hand, can select both
numerical and categorical variables. SelectByTargetMeanPerformance ()
uses a very simple “machine learning model” to estimate the target. It estimates
the target by returning the mean target value per category or per interval. And

with this prediction, it determines a performance metric for each feature.

These feature selection idea is very simple; it involves taking the mean of the responses (target) for each level (category
or interval), and so amounts to a least squares fit on a single categorical variable against a response variable, with the
categories in the continuous variables defined by intervals.

SelectByTargetMeanPerformance () works with cross-validation. It uses the k-1 folds to define the numerical
intervals and learn the mean target value per category or interval. Then, it uses the remaining fold to evaluate the
performance of the feature: that is, in the last fold it sorts numerical variables into the bins, replaces bins and categories
by the learned target estimates, and calculates the performance of each feature.

Despite its simplicity, the method has a number of advantages:

* Speed: Computing means and intervals is fast, straightforward and efficient.

« Stability with respect to feature magnitude: Extreme values for continuous variables do not skew predictions as

they would in many models.

* Comparability between continuous and categorical variables.

¢ Accommodation of non-linearities.

* Does not require encoding categorical variables into numbers.

The method has also some limitations. First, the selection of the number of intervals as well as the threshold is arbitrary.
And also, rare categories and very skewed variables will raise errors when NAN are accidentally introduced during the

evaluation.

264

Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Important

SelectByTargetMeanPerformance () automatically identifies numerical and categorical variables. It will select as
categorical variables, those cast as object or categorical, and as numerical variables those of type numeric. Therefore,
make sure that your variables are of the correct data type.

Troubleshooting

The main problem that you may encounter using this selector is having missing data introduced in the variables when
replacing the categories or the intervals by the target mean estimates.

Categorical variables

NAN are introduced in categorical variables when a category present in the kth fold was not present in the k-1 fold used
to calculate the mean target value per category. This is probably due to the categorical variable having high cardinality
(a lot of categories) or rare categories, that is, categories present in a small fraction of the observations.

If this happens, try reducing the cardinality of the variable, for example by grouping rare labels into a single group.
Check the RareLabelEncoder for more details.

Numerical variables

NAN are introduced in numerical variables when an interval present in the kth cross-validation fold was not present in
the k-1 fold used to calculate the mean target value per interval. This is probably due to the numerical variable being
highly skewed, or having few unique values, for example, if the variable is discrete instead of continuous.

If this happens, check the distribution of the problematic variable and try to identify the problem. Try using equal-
frequency intervals instead of equal-width and also reducing the number of bins.

If the variable is discrete and has few unique values, another thing you could do is casting the variable as object, so that
the selector evaluates the mean target value per unique value.

Finally, if a numerical variable is truly continuous and not skewed, check that it is not accidentally cast as object.

Example

Let’s see how to use this method to select variables in the Titanic dataset. This data has a mix of numerical and
categorical variables, then it is a good option to showcase this selector.

Let’s import the required libraries and classes, and prepare the titanic dataset:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

from feature_engine.datasets import load_titanic
from feature_engine.encoding import RarelabelEncoder
from feature_engine.selection import SelectByTargetMeanPerformance

data = load_titanic(
handle_missing=True,
predictors_only=True,

(continues on next page)

10.2. User Guide 265

feature_engine Documentation, Release 1.7.0

(continued from previous page)

cabin="letter_only",

)

replace infrequent cabins by N
data['cabin'] = np.where(data['cabin'].isin(['T"', 'G']), 'N', data['cabin'])

cap maximum values
data['parch'] = np.where(data['parch']>3,3,data['parch'])
data['sibsp'] = np.where(data['sibsp']>3,3,data['sibsp'])

cast variables as object to treat as categorical
data[['pclass', 'sibsp', 'parch']] = data[['pclass', 'sibsp', 'parch']].astype('0")

print(data.head())

We can see the first 5 rows of data below:

pclass survived sex age sibsp parch fare cabin embarked
0 1 1 female 29.0000 0 ® 211.3375 B S
1 1 1 male 0.9167 1 2 151.5500 C S
2 1 0 female 2.0000 1 2 151.5500 C S
3 1) male 30.0000 1 2 151.5500 C S
4 1 ® female 25.0000 1 2 151.5500 C S

Let’s now go ahead and split the data into train and test sets:

separate train and test sets

X_train, X_test, y_train, y_test = train_test_split(
data.drop(['survived'], axis=1),
data['survived'],
test_size=0.1,
random_state=0)

X_train.shape, X_test.shape

We see the sizes of the datasets below:

(1178, 85, (131, 8))

Now, we set up SelectByTargetMeanPerformance (). We will examine the roc-auc using 3 fold cross-validation.
We will separate numerical variables into equal-frequency intervals. And we will retain those variables where the
roc-auc is bigger than the mean ROC-AUC of all features (default functionality).

sel = SelectByTargetMeanPerformance (
variables=None,
scoring="roc_auc",
threshold=None,
bins=3,
strategy="equal_frequency",
cv=3,
regression=False,

(continues on next page)

266 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

sel.fit(X_train, y_train)

With £it () the transformer:
* replaces categories by the target mean
* sorts numerical variables into equal-frequency bins
* replaces bins by the target mean
* calculates the the roc-auc for each transformed variable
* selects features which roc-auc bigger than the average

In the attribute variables_ we find the variables that were evaluated:

sel.variables_

1 v v

['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare', 'cabin', 'embarked']

In the attribute features_to_drop_ we find the variables that were not selected:

sel.features_to_drop_

['age', 'sibsp', 'parch', 'embarked']

In the attribute feature_performance_ we find the ROC-AUC for each feature. Remember that this is the average
ROC-AUC in each cross-validation fold:

sel. feature_performance_

{'pclass': 0.668151138112005,
'sex': 0.764831274819234,
'age': 0.535490029737471,
'sibsp': 0.5815934176199077,
'parch': 0.5721327969642238,
"fare': 0.6545985745474006,
'cabin': 0.630092526712033,
"embarked': 0.5765961846034091}

The mean ROC-AUC of all features is 0.62, we can calculate it as follows:

pd.Series(sel. feature_performance_) .mean()

0.6229357428894605

So we can see that the transformer correclty selected the features with ROC-AUC above that value.

With transform() we can go ahead and drop the features:

Xtr = sel.transform(X_test)

Xtr.head()

10.2. User Guide 267

feature_engine Documentation, Release 1.7.0

pclass sex fare cabin

3 male 7.8958

2 female 21.0000

459 2 male 27.0000
3 male 14.5000

2 male 31.5000

EREEER=

And finally, we can also obtain the names of the features in the final transformed data:

sel.get_feature_names_out ()

['pclass', 'sex', 'fare', 'cabin']

Additional resources

Check also:
* Jupyter notebook
All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these resources: For more details about this
and other feature selection methods check out these resources:

Or read our book:

Fig. 93: Feature Selection for Machine Learning

268 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Select-by-Target-Mean-Encoding.ipynb
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Feature Selection .o
Machine Learning ‘%ﬁ@;

DropHighPSIFeatures y

s

Soledad Galli, PhD

Bl SiasIie Thde¥eshar

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

The DropHighPSIFeatures() finds and removes features with changes in
their distribution, i.e. “unstable values”, from a pandas dataframe. The stabil-
ity of the distribution is computed using the Population Stability Index (PSI)
and all features having a PSI value above a given threshold are removed.

Unstable features may introduce an additional bias in a model if the training
population significantly differs from the population in production. Removing
features for which a shift in the distribution is suspected leads to more ro-
bust models and therefore to better performance. In the field of Credit Risk
modelling, eliminating features with high PSI is common practice and usually
required by the Regulator.

The PSI is a measure of how much a population has changed in time or how
different the distributions are between two different population samples.

To determine the PSI, continuous features are sorted into discrete intervals,
the fraction of observations per interval is then determined, and finally those
values are compared between the 2 groups, or as we call them in Feature-
engine, between the basis and test sets, to obtain the PSI.

In other words, the PSI is computed as follows:

¢ Define the intervals into which the observations will be sorted.

¢ Sort the feature values into those intervals.

¢ Determine the fraction of observations within each interval.

e Compute the PSL
The PSI is determined as:

PSI = Z(testi — basis;).In(

=1

test;

)

basis;

where basis and test are the “reference” and “evaluation” datasets, respectively, and i refers to the interval.

In other words, the PSI determines the difference in the proportion of observations in each interval, between the refer-

ence (aka, original) and test datasets.

In the PSI equation, n is the total number of intervals.

10.2. User Guide

269

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

Important

When working with the PSI it is worth highlighting the following:

* The PSI is not symmetric; switching the order of the basis and test dataframes in the PSI calculation will lead to
different values.

* The number of bins used to define the distributions has an impact on the PSI values.
* The PSI is a suitable metric for numerical features (i.e., either continuous or with high cardinality).

* For categorical or discrete features, the change in distributions is better assessed with Chi-squared.

Threshold

Different thresholds can be used to assess the magnitude of the distribution shift according to the PSI value. The most
commonly used thresholds are:

* Below 10%, the variable has not experienced a significant shift.

* Above 25%, the variable has experienced a major shift.

¢ Between those two values, the shift is intermediate.

* ‘auto’: the threshold will be calculated based on the size of the base and target datasets and the number of bins.
When ‘auto’, the threshold is calculated using the chi2 approximation, proposed by B. Yurdakul:

1 1
threshold = X%q,B—l)'(N + M)

where q is the percentile, B is the number of bins, N is the size of basis dataset, N is the size of test dataset.
In our implementation, we are using the 99.9th percentile.

As mentioned above, the number of bins has an impact on PSI value, because with a higher number of bins it is easier
to find divergence in data and vice versa. The same could be said about dataset size - the more data we have, the harder
it is to find the difference (if the shift is not drastic). This formula tries to catch these relationships and adjust threshold
to correctly detect feature drift.

Procedure

To compute the PSI, the DropHighPSIFeatures () splits the input dataset in two: a basis data set (aka the reference
data) and a test set. The basis data set is assumed to contain the expected or original feature distributions. The test set
will be assessed against the basis data set.

In the next step, the interval boundaries are determined based on the features in the basis or reference data. These
intervals can be determined to be of equal with, or equal number of observations.

Next, DropHighPSIFeatures () sorts each of the variable values into those intervals, both in the basis and test datasets,
and then determines the proportion (percentage) of observations within each interval.

Finally, the PSI is determined as indicated in the previous paragraph for each feature. With the PSI value per feature,
DropHighPSIFeatures () can now select the features that are unstable and drop them, based on a threshold.

270 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Splitting the data

DropHighPSIFeatures () allows us to determine how much a feature distribution has changed in time, or how much
it differs between 2 groups.

If we want to evaluate the distribution change in time, we can use a datetime variable as splitting reference and provide
a datetime cut-off as split point.

If we want to compare the distribution change between 2 groups, DropHighPSIFeatures() offers 3 different ap-
proaches to split the input dataframe:

* Based on proportion of observations.
* Based on proportions of unique observations.

 Using a cut-off value.

Proportion of observations

Splitting by proportion of observations will result in a certain proportion of observations allocated to either the reference
and test datasets. For example, if we set split_frac=0.75, then 75% and 25% of the observations will be put into
the reference and test data, respectively.

If we select this method, we can pass a variable in the parameter split_col or leave it to None.

Note that the data split is not done at random, but instead guided by the values in the reference variable indicated
in split_col. Under the hood, the reference variable indicated in split_col is ordered, and the percentage of
observations is determined with NumPy quantile. This means that the observations with smaller values in split_col
will land in the reference dataset, and those with bigger values will go to the test set.

If the rows in your dataset are sorted in time, this could be a good default option to split the dataframe in 2 and compute
the PSI. This will for example be the case if your data set contains daily (or any other frequency) sales information on
a company’s products.

Proportions of unique observations

If we split based on proportion of unique observations, it is important that we indicate which column we want to use as
reference in the split_col parameter, to make a meaningful split. If we leave this to None, DropHighPSIFeatures ()
will use the dataframe index as reference. This makes sense only if the index in the dataframe has meaningful values.

DropHighPSIFeatures () will first identify the unique values of the variable in split_col. Then it will put a certain
proportion of those values into the reference dataset and the remaining to the test dataset. The proportion is indicated
in the parameter split_£frac.

Under the hood, DropHighPSIFeatures () will sort the unique values of the reference variable, and then use NumPy
quantiles to determine the fraction that should be allocated to the reference and test sets. Thus, it is important to consider
that the order of the unique values matters in the split.

This split makes sense when we have for example unique customer identifiers and multiple rows per customer in the
dataset. We want to make sure that all rows belonging to the same customer are allocated either in the reference or test
data, but the same customer cannot be in both data sets. This way of splitting the data will also ensure that we have a
certain percentage, indicated in split_£frac of customers in either data set after the split.

Thus, if split_frac=0.6 and split_distinct=True, DropHighPSIFeatures () will send the first 60% of cus-
tomers to the reference data set, and the remaining 40% to the test set. And it will ensure that rows belonging to the
same customer are just in one of the 2 data sets.

10.2. User Guide 271

feature_engine Documentation, Release 1.7.0

Using a cut-off value

We have the option to pass a reference variable to use to split the dataframe using split_col and also a cut-off value
in the cut_off parameter. The cut-off value can be a number, integer or float, a date or a list of values.

If we pass a datetime column in split_col and a datetime value in the cut_off, we can split the data in a temporal
manner. Observations collected before the time indicated will be sent to the reference dataframe, and the remaining to
the test set.

If we pass a list of values in the cut_off all observations which values are included in the list will go into the ref-
erence data set, and the remaining to the test set. This split is useful if we have a categorical variable indicating a
portfolio from which the observations have been collected. For example, if we set split_col="portfolio' and
cut_off=["port_1', 'port_2'], all observations that belong to the first and second portfolio will be sent to the
reference data set, and the observations from other portfolios to the test set.

Finally, if we pass a number to cut_off, all observations which value in the variable indicated in split_col is <=
cut-off, will be sent to the reference data set, alternatively to the test set. This can be useful for example when dates are
defined as integer (for example 20200411) or when using an ordinal customer segmentation to split the dataframe (1:
retail customers, 2: private banking customers, 3: SME and 4: Wholesale).

split_col

To split the data set, we recommend that you indicate which column you want to use as reference in the split_col
parameter. If you don’t, the split will be done based on the values of the dataframe index. This might be a good option
if the index contains meaningful values or if splitting just based on split_frac.

Examples

The versatility of the class lies in the different options to split the input dataframe in a reference or basis data set with
the “expected” distributions, and a test set which will be evaluated against the reference.

After splitting the data, DropHighPSIFeatures () goes ahead and compares the feature distributions in both data sets
by computing the PSI.

To illustrate how to best use DropHighPSIFeatures () depending on your data, we provide various examples illus-
trating the different possibilities.

Case 1: split data based on proportions (split_frac)

In this case, DropHighPSIFeatures () will split the dataset in 2, based on the indicated proportion. The proportion
is indicated in the split_frac parameter. You have the option to select a variable in split_col or leave it to None.
In the latter, the dataframe index will be used to split.

Let’s first create a toy dataframe containing 5 random variables and 1 variable with a shift in its distribution (var_3 in
this case).

import pandas as pd
import seaborn as sns

from sklearn.datasets import make_classification
from feature_engine.selection import DropHighPSIFeatures

Create a dataframe with 500 observations and 6 random variables

(continues on next page)

272 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X, y = make_classification(
n_samples=500,
n_features=6,
random_state=0

)

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Add a column with a shift.
X['var_3']1[250:] = X['var_3"][250:] + 1

The default approach in DropHighPSIFeatures () is to split the input dataframe X in two equally sized data sets. You
can adjust the proportions by changing the value in the split_frac parameter.

For example, let’s split the input dataframe into a reference data set containing 60% of the observations and a test set
containing 40% of the observations.

Remove the features with high PSI values using a 60-40 split.

transformer = DropHighPSIFeatures(split_frac=0.6)
transformer. fit (X)

The value of split_frac tells DropHighPSIFeatures() to split X according to a 60% - 40% ratio. The fit()
method performs the split of the dataframe and the calculation of the PSIL.

Because we created random variables, these features will have low PSI values (i.e., no distribution change). However,
we manually added a distribution shift in the variable var_3 and therefore expect the PSI for this particular feature to
be above the 0.25 PSI threshold.

The PSI values are accessible through the psi_values_ attribute:

transformer.psi_values_

The analysis of the PSI values below shows that only feature 3 (called var_3) has a PSI above the 0.25 threshold
(default value) and will be removed by the transform method.

{'var_0': 0.07405459925568803,
'var_1': 0.09124093185820083,
'var_2': 0.16985790067687764,
'var_3': 1.342485289730313,
'var_4': 0.0743442762545251,
'var_5': 0.06809060587241555}

From the output, we see that the PSI value for var_0 is around 7%. This means that, when comparing the first 300 and
the last 200 observations of the dataframe, there is only a small difference in the distribution of the var_0 feature. A
similar conclusion applies to var_I, var_2, var_4 and var_5. Looking at the PSI value for var_3, we see that it exceeds
by far the 0.25 threshold. We can then conclude the population of this feature has shifted and it is wise not to include
it in the feature set for modelling.

The cut-off value used to split the dataframe is stored in the cut_off_ attribute:

transformer.cut_off_

This yields the following answer

10.2. User Guide 273

feature_engine Documentation, Release 1.7.0

299.4

The value of 299.4 means that observations with index from 0 to 299 are used to define the basis data set. This
corresponds to 60% (300 / 500) of the original dataframe (X). The value of 299.4 may seem strange because it is not
one of the value present in (the (index of) the dataframe. Intuitively, we would expect the cut_off to be an integer in the
present case. However, the cut_off is computed using quantiles and the quantiles are computed using extrapolation.

Splitting with proportions will order the index or the reference column first, and then determine the data that will go into
each dataframe. In other words, the order of the index or the variable indicated in split_col matters. Observations
with the lowest values will be sent to the basis dataframe and the ones with the highest values to the test set.

The features_to_drop_ attribute provides the list with the features to be dropped when executing the transform
method.

The command

transformer. features_to_drop_

Yields the following result:

['var_3']

That the var_3 feature is dropped during the procedure is illustrated when looking at the columns from the
X_transformed dataframe.

X_transformed = transformer.transform(X)
X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_4', 'var_5'], dtype='object')

DropHighPSIFeatures () also contains a fit_transform method that combines the £it and the transform meth-
ods.

The difference in distribution between a non-shifted and a shifted distribution is clearly visible when plotting the
cumulative density function.

For the shifted variable:

X['above_cut_off'] = X.index > transformer.cut_off_
sns.ecdfplot(data=X, x='var_3', hue='"above_cut_off")

and a non-shifted variable (for example var_I)

sns.ecdfplot(data=X, x='var_1', hue='"above_cut_off")

274 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

10 —
above_cut_off
—— False

089 —— Tue

2 - 6
var_3
10
above_cut_off
— False
0849 - Tue
e 0.6 1
=
t
g
& 04
0.2 -
00 - T T T

10.2. User Guide 275

feature_engine Documentation, Release 1.7.0

Case 2: split data based on variable (numerical cut_off)

In the previous example, we wanted to split the input dataframe in 2 datasets, with the reference dataset containing 60%
of the observations. We let DropHighPSIFeatures () find the cut-off to achieve this.

We can instead, provide ourselves the numerical cut-off that determines which observations will go to the reference or
basis data set, and which to the test set. Using the cut_off parameter, we can define the specific threshold for the split.

A real life example for this case is the use of the customer ID or contract ID to split the dataframe. These IDs are often
increasing in value over time which justifies their use to assess distribution shifts in the features.

Let’s create a toy dataframe representing the customers’ characteristics of a company. This dataset contains six random
variables (in real life this are variables like age or postal code), the seniority of the customer (i.e. the number of months
since the start of the relationship between the customer and the company) and the customer ID (i.e. the number (integer)
used to identify the customer). Generally the customer ID grows over time which means that early customers have a
lower customer ID than late customers.

From the definition of the variables, we expect the seniority to increase with the customer ID and therefore to have a
high PSI value when comparing early and late customer,

import pandas as pd
from sklearn.datasets import make_classification
from feature_engine.selection import DropHighPSIFeatures

X, y = make_classification(
n_samples=500,
n_features=6,
random_state=0

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Let's add a variable for the customer ID
X['customer_id'] = [customer_id for customer_id in range(l, 501)]

Add a column with the seniority... that is related to the customer ID
X['seniority'] = 100 - X['customer_id'] // 10

transformer = DropHighPSIFeatures(split_col="'customer_id', cut_off=250)
transformer. fit (X)

In this case, DropHighPSIFeatures () will allocate in the basis or reference data set, all observations which values
in customer_id are <= 250. The test dataframe contains the remaining observations.

The method fit () will determine the PSI values, which are stored in the class:

transformer.psi_values_

We see that DropHighPSIFeatures() does not provide any PSI value for the customer_id feature, because this
variable was used as a reference to split the data.

{'var_0': 0.07385590683974477,
'var_1': 0.061155637727757485,
'var_2': 0.1736694458621651,

'var_3': 0.044965387331530465,

(continues on next page)

276 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'var_4': 0.0904519893659045,
'var_5': 0.027545195437270797,
'seniority': 7.8688986006052035}

transformer. features_to_drop_

Gives

['seniority']

Executing the dataframe transformation leads to the exclusion of the seniority feature but not to the exclusion of the
customer_id.

X_transformed = transformer.transform(X)
X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'customer_id'], dtype=
—'object')

Case 3: split data based on time (date as cut_off)

DropHighPSIFeatures () can handle different types of split_col variables. The following case illustrates how it
works with a date variable. In fact, we often want to determine if the distribution of a feature changes in time, for
example after a certain event like the start of the Covid-19 pandemic.

This is how to do it. Let’s create a toy dataframe with 6 random numerical variables and two date variables. One will
be use to specific the split of the dataframe while the second one is expected to have a high PSI value.

import pandas as pd

from datetime import date

from sklearn.datasets import make_classification

from feature_engine.selection import DropHighPSIFeatures

X, y = make_classification(
n_samples=1000,
n_features=6,
random_state=0

)

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Add two time variables to the dataframe
X['time'] = [date(year, 1, 1) for year in range(1000, 2000)]
X['century'] = X['time'].apply(lambda x: ((x.year - 1) // 100) + 1)

Let's shuffle the dataframe and reset the index to remove the correlation
between the index and the time variables.

X = X.sample(frac=1).reset_index(drop=True)

10.2. User Guide 277

feature_engine Documentation, Release 1.7.0

Dropping features with high PSI values comparing two periods of time is done simply by providing the name of the
column with the date and a cut-off date. In the example below the PSI calculations will be done comparing the periods
up to the French revolution and after.

transformer = DropHighPSIFeatures(split_col="'time', cut_off=date(1789, 7, 14))
transformer. fit (X)

Important: if the date variable is in pandas or NumPy datetime format, you may need to pass the cut_off value as
pd.to_datetime(1789-07-14).

The PSI values shows the century variables in unstable as its value is above the 0.25 threshold.

transformer.psi_values_

{'var_0': 0.0181623637463045,
'var_1': 0.10595496570984747,
'var_2': 0.05425659114295842,
'var_3': 0.09720689210928271,
'var_4': 0.07917647542638032,
'var_5': 0.10122468631060424,
'century': 8.272395772368412}

The class has correctly identified the feature to be dropped.

transformer. features_to_drop_

['century']

And the transform method correctly removes the feature.

X_transformed = transformer.transform(X)
X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'time'], dtype='object')

The difference in distribution between a non-shifted and a shifted distribution is clearly visible when plotting the
cumulative density function for each of the group.

We can plot the cumulative distribution of the shifted variable like this:

X['above_cut_off'] = X.time > pd.to_datetime(transformer.cut_off)
sns.ecdfplot(data=X, x='century', hue='above_cut_off")

and the distribution of a non-shifted variable, for example var_2, like this:

sns.ecdfplot(data=X, x='var_2', hue='"above_cut_off")

And below we can compare both plots:

278 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

10
above_cut_off
- False
081 -—— Tue
e 06 -
=
t
&
£ 041
0.2 1
00 L] T T T T L)
10 12 14 16 18 20
century
10
above_cut_off
— False
084 =—— Tue
e 06 1
=
t
&
£ 04
0.2
00 T I L L] L) I L Ll
-4 -3 -2 -1 0 1 2 3
var_2

10.2. User Guide 279

feature_engine Documentation, Release 1.7.0

Case 4: split data based on a categorical variable (category or list as cut_off)

DropHighPSIFeatures () can also split the original dataframe based on a categorical variable. The cut-off can then
be defined in two ways:

» Using a single string.
 Using a list of values.

In the first case, the column with the categorical variable is sorted alphabetically and the split is determined by the
cut-off. We recommend being very careful when using a single category as cut-off, because alphabetical sorting in
combination with a cut-off does not always provide obvious results. In other words, for this way of splitting the data to
be meaningful, the alphabetical order of the categories in the reference variable should have an intrinsic meaning.

A better purpose for splitting the data based on a categorical variable would be to pass a list with the values of the
variable that want in the reference dataframe. A real life example for this case is the computation of the PSI between
different customer segments like ‘Retail’, ‘SME’ or “‘Wholesale’. In this case, if we indicate [‘Retail’] as cut-off,
observations for Retail will be sent to the basis data set, and those for ‘SME’ and ‘Wholesale’ will be added to the test
set.

Split passing a category value

Let’s show how to set up the transformer in this case. The example data set contains 6 randoms variables, a categorical
variable with the labels of the different categories and 2 category related features.

import pandas as pd
import seaborn as sns

from sklearn.datasets import make_classification
from feature_engine.selection import DropHighPSIFeatures

X, y = make_classification(
n_samples=1000,
n_features=6,
random_state=0

)

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Add a categorical column
X[lgroupl] - ["A”, IlBH, IICH, IIDH, IIEII] % 2®®

And two category related features
X['group_means'] = X.group.map({"A": 1, "B": 2, "C": ®, "D": 1.5, "E": 2.5})
X['shifted_feature'] = X['group_means'] + X['var_2']

We can define a simple cut-off value (for example the letter C). In this case, observations with values that come before
C, alphabetically, will be allocated to the reference data set.

transformer = DropHighPSIFeatures(split_col='group', cut_off='C")
X_transformed = transformer.fit_transform(X)

The PSI values are provided in the psi_values_ attribute.

280 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

transformer.psi_values_

{'var_0': 0.06485778974895254,

'var_1': 0.03605540598761757,

'var_2': 0.040632784917352296,

'var_3': 0.023845405645510645,

'var_4': 0.028007185972248064,

'var_5': 0.07009152672971862,
"group_means': 6.601444547497699,
'shifted_feature': 0.48428009522119164}

From these values we see that the last 2 features should be removed. @ We can corroborate that in the
features_to_drop_ attribute:

transformer. features_to_drop_

['group_means', 'shifted_feature']

And these columns are removed from the original dataframe by the transform method that, in the present case, has been
applied through the fit_transform method a couple of block cells above.

X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'group'], dtype='object')

Split passing a list of categories

Instead of passing a category value, we can instead pass a list of values to the cut_off. Using the same data set let’s set
up the DropHighPSIFeatures () to split the dataframe according to the list [‘A’, ‘C’, ‘E’] for the categorical variable
group.

In this case, the PSI’s will be computed by comparing two dataframes: the first one containing only the values A, C
and E for the group variable and the second one containing only