
feature_engine Documentation
Release 1.7.0

Feature-engine Developers

Apr 29, 2024

CONTENTS

1 A Python library for Feature Engineering and Selection 1
1.1 Pst! How did you find us? . 2

2 What is unique about Feature-engine? 3

3 Installation 5

4 Feature-engine features in the following resources 7

5 Feature-engine’s Transformers 9
5.1 Missing Data Imputation: Imputers . 9
5.2 Categorical Encoders: Encoders . 9
5.3 Variable Discretisation: Discretisers . 10
5.4 Outlier Capping or Removal . 10
5.5 Numerical Transformation: Transformers . 10
5.6 Feature Creation: . 10
5.7 Datetime: . 10
5.8 Feature Selection: . 11
5.9 Forecasting: . 11
5.10 Preprocessing: . 11
5.11 Scikit-learn Wrapper: . 11

6 Getting Help 13

7 Contributing 15

8 Sponsor us 17

9 Open Source 19

10 Table of Contents 21
10.1 Quick Start . 21
10.2 User Guide . 27
10.3 API . 372
10.4 Resources . 649
10.5 Contribute . 653
10.6 About . 669
10.7 What’s new . 677
10.8 Other versions . 707
10.9 Sponsor us . 707
10.10 Sponsors . 708

i

Bibliography 709

Index 711

ii

CHAPTER

ONE

A PYTHON LIBRARY FOR FEATURE ENGINEERING AND
SELECTION

Fig. 1: Feature-engine rocks!

Feature-engine is a Python library with multiple transformers to engineer and select features to use in machine learning
models. Feature-engine preserves Scikit-learn functionality with methods fit() and transform() to learn parame-
ters from and then transform the data.

Feature-engine includes transformers for:

• Missing data imputation

• Categorical encoding

• Discretisation

• Outlier capping or removal

• Variable transformation

• Variable creation

• Variable selection

• Datetime features

• Time series

• Preprocessing

Feature-engine allows you to select the variables you want to transform within each transformer. This way, different
engineering procedures can be easily applied to different feature subsets.

Feature-engine transformers can be assembled within the Scikit-learn pipeline, therefore making it possible to save and
deploy one single object (.pkl) with the entire machine learning pipeline. Check **Quick Start** for an example.

1

feature_engine Documentation, Release 1.7.0

1.1 Pst! How did you find us?

We want to share Feature-engine with more people. It’d help us loads if you tell us how you discovered us.

Then we’d know what we are doing right and which channels to use to share the love.

Please share your story by answering 1 quick question at this link .

2 Chapter 1. A Python library for Feature Engineering and Selection

https://docs.google.com/forms/d/e/1FAIpQLSfxvgnJvuvPf2XgosakhXo5VNQafqRrjNXkoW5qDWqnuxZNSQ/viewform?usp=sf_link

CHAPTER

TWO

WHAT IS UNIQUE ABOUT FEATURE-ENGINE?

The following characteristics make Feature-engine unique:

• Feature-engine contains the most exhaustive collection of feature engineering transformations.

• Feature-engine can transform a specific group of variables in the dataframe.

• Feature-engine returns dataframes, hence suitable for data exploration and model deployment.

• Feature-engine is compatible with the Scikit-learn pipeline, Grid and Random search and cross validation.

• Feature-engine automatically recognizes numerical, categorical and datetime variables.

• Feature-engine alerts you if a transformation is not possible, e.g., if applying logarithm to negative variables or
divisions by 0.

If you want to know more about what makes Feature-engine unique, check this article.

3

https://trainindata.medium.com/feature-engine-a-new-open-source-python-package-for-feature-engineering-29a0ab88ea7c

feature_engine Documentation, Release 1.7.0

4 Chapter 2. What is unique about Feature-engine?

CHAPTER

THREE

INSTALLATION

Feature-engine is a Python 3 package and works well with 3.7 or later. Earlier versions are not compatible with the
latest versions of Python numerical computing libraries.

The simplest way to install Feature-engine is from PyPI with pip:

$ pip install feature-engine

Note, you can also install it with a _ as follows:

$ pip install feature_engine

Feature-engine is an active project and routinely publishes new releases. To upgrade Feature-engine to the latest version,
use pip like this:

$ pip install -U feature-engine

If you’re using Anaconda, you can install the Anaconda Feature-engine package:

$ conda install -c conda-forge feature_engine

5

https://anaconda.org/conda-forge/feature_engine

feature_engine Documentation, Release 1.7.0

6 Chapter 3. Installation

CHAPTER

FOUR

FEATURE-ENGINE FEATURES IN THE FOLLOWING RESOURCES

• Feature Engineering for Machine Learning, Online Course.

• Feature Selection for Machine Learning, Online Course.

• Feature Engineering for Time Series Forecasting, Online Course.

• Python Feature Engineering Cookbook, book.

• Feature Selection in Machine Learning with Python, book.

More learning resources in the **Learning Resources**.

7

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://www.www.trainindata.com/p/feature-engineering-for-forecasting
https://packt.link/0ewSo
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

8 Chapter 4. Feature-engine features in the following resources

CHAPTER

FIVE

FEATURE-ENGINE’S TRANSFORMERS

Feature-engine hosts the following groups of transformers:

5.1 Missing Data Imputation: Imputers

• MeanMedianImputer: replaces missing data in numerical variables by the mean or median

• ArbitraryNumberImputer: replaces missing data in numerical variables by an arbitrary number

• EndTailImputer: replaces missing data in numerical variables by numbers at the distribution tails

• CategoricalImputer: replaces missing data with an arbitrary string or by the most frequent category

• RandomSampleImputer: replaces missing data by random sampling observations from the variable

• AddMissingIndicator: adds a binary missing indicator to flag observations with missing data

• DropMissingData: removes observations (rows) containing missing values from dataframe

5.2 Categorical Encoders: Encoders

• OneHotEncoder: performs one hot encoding, optional: of popular categories

• CountFrequencyEncoder: replaces categories by the observation count or percentage

• OrdinalEncoder: replaces categories by numbers arbitrarily or ordered by target

• MeanEncoder: replaces categories by the target mean

• WoEEncoder: replaces categories by the weight of evidence

• DecisionTreeEncoder: replaces categories by predictions of a decision tree

• RareLabelEncoder: groups infrequent categories

• StringSimilarityEncoder: encodes categories based on string similarity

9

feature_engine Documentation, Release 1.7.0

5.3 Variable Discretisation: Discretisers

• ArbitraryDiscretiser: sorts variable into intervals defined by the user

• EqualFrequencyDiscretiser: sorts variable into equal frequency intervals

• EqualWidthDiscretiser: sorts variable into equal width intervals

• DecisionTreeDiscretiser: uses decision trees to create finite variables

• GeometricWidthDiscretiser: sorts variable into geometrical intervals

5.4 Outlier Capping or Removal

• ArbitraryOutlierCapper: caps maximum and minimum values at user defined values

• Winsorizer: caps maximum or minimum values using statistical parameters

• OutlierTrimmer: removes outliers from the dataset

5.5 Numerical Transformation: Transformers

• LogTransformer: performs logarithmic transformation of numerical variables

• LogCpTransformer: performs logarithmic transformation after adding a constant value

• ReciprocalTransformer: performs reciprocal transformation of numerical variables

• PowerTransformer: performs power transformation of numerical variables

• BoxCoxTransformer: performs Box-Cox transformation of numerical variables

• YeoJohnsonTransformer: performs Yeo-Johnson transformation of numerical variables

• ArcsinTransformer: performs arcsin transformation of numerical variables

5.6 Feature Creation:

• MathFeatures: creates new variables by combining features with mathematical operations

• RelativeFeatures: combines variables with reference features

• CyclicalFeatures: creates variables using sine and cosine, suitable for cyclical features

5.7 Datetime:

• DatetimeFeatures: extract features from datetime variables

• DatetimeSubtraction: computes subtractions between datetime variables

10 Chapter 5. Feature-engine’s Transformers

feature_engine Documentation, Release 1.7.0

5.8 Feature Selection:

• DropFeatures: drops an arbitrary subset of variables from a dataframe

• DropConstantFeatures: drops constant and quasi-constant variables from a dataframe

• DropDuplicateFeatures: drops duplicated variables from a dataframe

• DropCorrelatedFeatures: drops correlated variables from a dataframe

• SmartCorrelatedSelection: selects best features from correlated groups

• DropHighPSIFeatures: selects features based on the Population Stability Index (PSI)

• SelectByInformationValue: selects features based on their information value

• SelectByShuffling: selects features by evaluating model performance after feature shuffling

• SelectBySingleFeaturePerformance: selects features based on their performance on univariate estimators

• SelectByTargetMeanPerformance: selects features based on target mean encoding performance

• RecursiveFeatureElimination: selects features recursively, by evaluating model performance

• RecursiveFeatureAddition: selects features recursively, by evaluating model performance

• ProbeFeatureSelection: selects features whose importance is greater than those of random variables

5.9 Forecasting:

• LagFeatures: extract lag features

• WindowFeatures: create window features

• ExpandingWindowFeatures: create expanding window features

5.10 Preprocessing:

• MatchCategories: ensures categorical variables are of type ‘category’

• MatchVariables: ensures that columns in test set match those in train set

5.11 Scikit-learn Wrapper:

• SklearnTransformerWrapper: applies Scikit-learn transformers to a selected subset of features

5.8. Feature Selection: 11

feature_engine Documentation, Release 1.7.0

12 Chapter 5. Feature-engine’s Transformers

CHAPTER

SIX

GETTING HELP

Can’t get something to work? Here are places where you can find help.

1. The **User Guide** in the docs.

2. Stack Overflow. If you ask a question, please mention “feature_engine” in it.

3. If you are enrolled in the Feature Engineering for Machine Learning course , post a question in a relevant section.

4. If you are enrolled in the Feature Selection for Machine Learning course , post a question in a relevant section.

5. Join our gitter community. You an ask questions here as well.

6. Ask a question in the repo by filing an issue (check before if there is already a similar issue created :)).

13

https://stackoverflow.com/search?q=feature_engine
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://gitter.im/feature_engine/community
https://github.com/feature-engine/feature_engine/issues/

feature_engine Documentation, Release 1.7.0

14 Chapter 6. Getting Help

CHAPTER

SEVEN

CONTRIBUTING

Interested in contributing to Feature-engine? That is great news!

Feature-engine is a welcoming and inclusive project and we would be delighted to have you on board. We follow the
Python Software Foundation Code of Conduct.

Regardless of your skill level you can help us. We appreciate bug reports, user testing, feature requests, bug fixes,
addition of tests, product enhancements, and documentation improvements. We also appreciate blogs about Feature-
engine. If you happen to have one, let us know!

For more details on how to contribute check the contributing page. Click on the **Contribute** guide.

15

http://www.python.org/psf/codeofconduct/

feature_engine Documentation, Release 1.7.0

16 Chapter 7. Contributing

CHAPTER

EIGHT

SPONSOR US

Empower Sole, the main developer of Feature-engine, to assemble a team of paid contributors to accelerate the devel-
opment of Feature-engine.

Currently, Sole and our contributors dedicate their free time voluntarily to advancing the project. You can help us reach
a funding milestone, so that we can gather on a group of 2-3 contributors who will commit regular hours each week to
enhance documentation and expand Feature-engine’s functionality at a faster pace.

Your contribution will play a vital role in propelling Feature-engine to new heights, ensuring it remains a valuable
resource for the data science community.

If you don’t have a Github account, you can also sponsor us here.

17

https://github.com/sponsors/solegalli
https://github.com/sponsors/solegalli
https://github.com/sponsors/solegalli
https://buymeacoffee.com/solegalliy

feature_engine Documentation, Release 1.7.0

18 Chapter 8. Sponsor us

CHAPTER

NINE

OPEN SOURCE

Feature-engine’s license is an open source BSD 3-Clause.

Feature-engine is hosted on GitHub. The issues and pull requests are tracked there.

19

https://github.com/feature-engine/feature_engine/blob/master/LICENSE.md
https://github.com/feature-engine/feature_engine/
https://github.com/feature-engine/feature_engine/issues/
https://github.com/feature-engine/feature_engine/pulls

feature_engine Documentation, Release 1.7.0

20 Chapter 9. Open Source

CHAPTER

TEN

TABLE OF CONTENTS

10.1 Quick Start

If you’re new to Feature-engine this guide will get you started. Feature-engine transformers have the methods fit()
and transform() to learn parameters from the data and then modify the data. They work just like any Scikit-learn
transformer.

10.1.1 Installation

Feature-engine is a Python 3 package and works well with 3.7 or later. Earlier versions are not compatible with the
latest versions of Python numerical computing libraries.

$ pip install feature-engine

Note, you can also install it with a _ as follows:

$ pip install feature_engine

Note that Feature-engine is an active project and routinely publishes new releases. In order to upgrade Feature-engine
to the latest version, use pip as follows.

$ pip install -U feature-engine

If you’re using Anaconda, you can install the Anaconda Feature-engine package:

$ conda install -c conda-forge feature_engine

Once installed, you should be able to import Feature-engine without an error, both in Python and in Jupyter notebooks.

10.1.2 Example Use

This is an example of how to use Feature-engine’s transformers to perform missing data imputation.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine.imputation import MeanMedianImputer

(continues on next page)

21

https://anaconda.org/conda-forge/feature_engine

feature_engine Documentation, Release 1.7.0

(continued from previous page)

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'],
test_size=0.3,
random_state=0

)

set up the imputer
median_imputer = MeanMedianImputer(

imputation_method='median', variables=['LotFrontage', 'MasVnrArea']
)

fit the imputer
median_imputer.fit(X_train)

transform the data
train_t = median_imputer.transform(X_train)
test_t = median_imputer.transform(X_test)

fig = plt.figure()
ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind='kde', ax=ax)
train_t['LotFrontage'].plot(kind='kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

22 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

10.1.3 Feature-engine with the Scikit-learn’s pipeline

Feature-engine’s transformers can be assembled within a Scikit-learn pipeline. This way, we can store our entire feature
engineering pipeline in one single object or pickle (.pkl). Here is an example of how to do it:

from math import sqrt
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline as pipe
from sklearn.preprocessing import MinMaxScaler

from feature_engine.encoding import RareLabelEncoder, MeanEncoder
from feature_engine.discretisation import DecisionTreeDiscretiser
from feature_engine.imputation import (

AddMissingIndicator,
MeanMedianImputer,
CategoricalImputer,

)

load dataset
data = pd.read_csv('houseprice.csv')

drop some variables
data.drop(

labels=['YearBuilt', 'YearRemodAdd', 'GarageYrBlt', 'Id'],
axis=1,
inplace=True

)

make a list of categorical variables
categorical = [var for var in data.columns if data[var].dtype == 'O']

make a list of numerical variables
numerical = [var for var in data.columns if data[var].dtype != 'O']

make a list of discrete variables
discrete = [var for var in numerical if len(data[var].unique()) < 20]

categorical encoders work only with object type variables
to treat numerical variables as categorical, we need to re-cast them
data[discrete]= data[discrete].astype('O')

continuous variables
numerical = [

var for var in numerical if var not in discrete
and var not in ['Id', 'SalePrice']
]

(continues on next page)

10.1. Quick Start 23

feature_engine Documentation, Release 1.7.0

(continued from previous page)

separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(labels=['SalePrice'], axis=1),
data.SalePrice,
test_size=0.1,
random_state=0
)

set up the pipeline
price_pipe = pipe([

add a binary variable to indicate missing information for the 2 variables below
('continuous_var_imputer', AddMissingIndicator(variables=['LotFrontage'])),

replace NA by the median in the 2 variables below, they are numerical
('continuous_var_median_imputer', MeanMedianImputer(

imputation_method='median', variables=['LotFrontage', 'MasVnrArea']
)),

replace NA by adding the label "Missing" in categorical variables
('categorical_imputer', CategoricalImputer(variables=categorical)),

disretise continuous variables using trees
('numerical_tree_discretiser', DecisionTreeDiscretiser(

cv=3,
scoring='neg_mean_squared_error',
variables=numerical,
regression=True)),

remove rare labels in categorical and discrete variables
('rare_label_encoder', RareLabelEncoder(

tol=0.03, n_categories=1, variables=categorical+discrete
)),

encode categorical and discrete variables using the target mean
('categorical_encoder', MeanEncoder(variables=categorical+discrete)),

scale features
('scaler', MinMaxScaler()),

Lasso
('lasso', Lasso(random_state=2909, alpha=0.005))

])

train feature engineering transformers and Lasso
price_pipe.fit(X_train, np.log(y_train))

predict
pred_train = price_pipe.predict(X_train)
pred_test = price_pipe.predict(X_test)

Evaluate

(continues on next page)

24 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

print('Lasso Linear Model train mse: {}'.format(
mean_squared_error(y_train, np.exp(pred_train))))

print('Lasso Linear Model train rmse: {}'.format(
sqrt(mean_squared_error(y_train, np.exp(pred_train)))))

print()
print('Lasso Linear Model test mse: {}'.format(

mean_squared_error(y_test, np.exp(pred_test))))
print('Lasso Linear Model test rmse: {}'.format(

sqrt(mean_squared_error(y_test, np.exp(pred_test)))))

Lasso Linear Model train mse: 949189263.8948538
Lasso Linear Model train rmse: 30808.9153313591

Lasso Linear Model test mse: 1344649485.0641894
Lasso Linear Model train rmse: 36669.46256852136

plt.scatter(y_test, np.exp(pred_test))
plt.xlabel('True Price')
plt.ylabel('Predicted Price')
plt.show()

10.1. Quick Start 25

feature_engine Documentation, Release 1.7.0

More examples

More examples can be found in:

• User Guide

• Learning Resources

• Jupyter notebooks

Datasets

The user guide and examples included in Feature-engine’s documentation are based on these 3 datasets:

Titanic dataset

We use the dataset available in openML which can be downloaded from here.

Ames House Prices dataset

We use the data set created by Professor Dean De Cock: * Dean De Cock (2011) Ames, Iowa: Alternative to the Boston
Housing * Data as an End of Semester Regression Project, Journal of Statistics Education, Vol.19, No. 3.

The examples are based on a copy of the dataset available on Kaggle.

The original data and documentation can be found here:

• Documentation

• Data

Credit Approval dataset

We use the Credit Approval dataset from the UCI Machine Learning Repository:

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA: University of California, School of
Information and Computer Science.

To download the dataset visit this website and click on “crx.data” to download the data set.

To prepare the data for the examples:

import random
import pandas as pd
import numpy as np

load data
data = pd.read_csv('crx.data', header=None)

create variable names according to UCI Machine Learning information
varnames = ['A'+str(s) for s in range(1,17)]
data.columns = varnames

replace ? by np.nan
(continues on next page)

26 Chapter 10. Table of Contents

https://nbviewer.jupyter.org/github/feature-engine/feature-engine-examples/tree/main/
https://www.openml.org/d/40945
https://www.openml.org/data/get_csv/16826755/phpMYEkMl
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
http://jse.amstat.org/v19n3/decock/DataDocumentation.txt
http://jse.amstat.org/v19n3/decock/AmesHousing.xls
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/

feature_engine Documentation, Release 1.7.0

(continued from previous page)

data = data.replace('?', np.nan)

re-cast some variables to the correct types
data['A2'] = data['A2'].astype('float')
data['A14'] = data['A14'].astype('float')

encode target to binary
data['A16'] = data['A16'].map({'+':1, '-':0})

save the data
data.to_csv('creditApprovalUCI.csv', index=False)

10.2 User Guide

In this section you will find additional information about Feature-engine’s transformers and feature engineering trans-
formations in general, as well as additional examples.

10.2.1 Transformation

Missing Data Imputation

Feature-engine’s missing data imputers replace missing data by parameters estimated from data or arbitrary values
pre-defined by the user. The following image summarizes the main imputer’s functionality.

In this guide, you will find code snippets to quickly be able to apply the imputers to your datasets, as well as general
knowledge and guidance on the imputation techniques.

10.2. User Guide 27

feature_engine Documentation, Release 1.7.0

Imputers

MeanMedianImputer

The MeanMedianImputer() replaces missing data with the mean or median of the variable. It works only with nu-
merical variables. You can pass the list of variables you want to impute, or alternatively, the imputer will automatically
select all numerical variables in the train set.

Note that in symetrical distributions, the mean and the median are very similar. But in skewed distributions, the median
is a better representation of the majority, as the mean is biased to extreme values. The following image was taken from
Wikipedia. The image links to the use license.

With the fit() method, the transformer learns and stores the mean or median values per variable. Then it uses these
values in the transform() method to transform the data.

Below a code example using the House Prices Dataset (more details about the dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine.imputation import MeanMedianImputer

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'],
test_size=0.3,
random_state=0,
)

Now we set up the MeanMedianImputer() to impute in this case with the median and only 2 variables from the dataset.

set up the imputer
median_imputer = MeanMedianImputer(

(continues on next page)

28 Chapter 10. Table of Contents

https://commons.wikimedia.org/wiki/File:Relationship_between_mean_and_median_under_different_skewness.png

feature_engine Documentation, Release 1.7.0

(continued from previous page)

imputation_method='median',
variables=['LotFrontage', 'MasVnrArea']
)

fit the imputer
median_imputer.fit(X_train)

With fit, the MeanMedianImputer() learned the median values for the indicated variables and stored it in one of its
attributes. We can now go ahead and impute both the train and the test sets.

transform the data
train_t= median_imputer.transform(X_train)
test_t= median_imputer.transform(X_test)

Note that after the imputation, if the percentage of missing values is relatively big, the variable distribution will differ
from the original one (in red the imputed variable):

fig = plt.figure()
ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind='kde', ax=ax)
train_t['LotFrontage'].plot(kind='kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

10.2. User Guide 29

feature_engine Documentation, Release 1.7.0

Additional resources

In the following Jupyter notebook you will find more details on the functionality of the MeanMedianImputer(),
including how to select numerical variables automatically. You will also see how to navigate the different attributes of
the transformer to find the mean or median values of the variables.

• Jupyter notebook

For more details about this and other feature engineering methods check out these resources:

Fig. 1: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

30 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/MeanMedianImputer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 2: Python Feature Engineering
Cookbook

ArbitraryNumberImputer

The ArbitraryNumberImputer() replaces missing data with an arbitrary
numerical value determined by the user. It works only with numerical vari-
ables.

The ArbitraryNumberImputer() can find and impute all numerical vari-
ables automatically. Alternatively, you can pass a list of the variables you want
to impute to the variables parameter.

You can impute all variables with the same number, in which case you need to
define the variables to impute in the variables parameter and the imputation
number in arbitrary_number parameter. For example, you can impute varA
and varB with 99 like this:

transformer = ArbitraryNumberImputer(
variables = ['varA', 'varB'],
arbitrary_number = 99
)

Xt = transformer.fit_transform(X)

You can also impute different variables with different numbers. To do this,
you need to pass a dictionary with the variable names and the numbers to use
for their imputation to the imputer_dict parameter. For example, you can
impute varA with 1 and varB with 99 like this:

transformer = ArbitraryNumberImputer(
imputer_dict = {'varA' : 1, 'varB': 99}
)

Xt = transformer.fit_transform(X)

Below a code example using the House Prices Dataset (more details about the
dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from␣
→˓feature_engine.imputation import ArbitraryNumberImputer

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

␣
→˓ data.drop(['Id', 'SalePrice'], axis=1),

data['SalePrice'],
test_size=0.3,

(continues on next page)

10.2. User Guide 31

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

random_state=0,
)

Now we set up the ArbitraryNumberImputer() to impute 2 variables from
the dataset with the number -999:

set up the imputer
arbitrary_imputer = ArbitraryNumberImputer(

arbitrary_number=-999,
variables=['LotFrontage', 'MasVnrArea'],
)

fit the imputer
arbitrary_imputer.fit(X_train)

With fit(), the transformer does not learn any parameter. It just assigns
the imputation values to each variable, which can be found in the attribute
imputer_dict_.

With transform, we replace the missing data with the arbitrary values both in
train and test sets:

transform the data
train_t= arbitrary_imputer.transform(X_train)
test_t= arbitrary_imputer.transform(X_test)

Note that after the imputation, if the percentage of missing values is relatively
big, the variable distribution will differ from the original one (in red the im-
puted variable):

fig = plt.figure()
ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind='kde', ax=ax)
train_
→˓t['LotFrontage'].plot(kind='kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

32 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Additional resources

In the following Jupyter notebook you will find more details on the function-
ality of the ArbitraryNumberImputer(), including how to select numerical
variables automatically. You will also see how to navigate the different at-
tributes of the transformer.

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 3: Feature Engineering for Machine Learning

Or read our book:

10.2. User Guide 33

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/ArbitraryNumberImputer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 4: Python Feature Engineering
Cookbook

EndTailImputer

The EndTailImputer() replaces missing data with a value at the end of the
distribution. The value can be determined using the mean plus or minus a num-
ber of times the standard deviation, or using the inter-quartile range proximity
rule. The value can also be determined as a factor of the maximum value.

You decide whether the missing data should be placed at the right or left tail
of the variable distribution.

In a sense, the EndTailImputer() “automates” the work of the
ArbitraryNumberImputer() because it will find automatically “arbitrary
values” far out at the end of the variable distributions.

EndTailImputer() works only with numerical variables. You can impute
only a subset of the variables in the data by passing the variable names in a list.
Alternatively, the imputer will automatically select all numerical variables in
the train set.

Below a code example using the House Prices Dataset (more details about the
dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine.imputation import EndTailImputer

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

(continues on next page)

34 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

␣
→˓ data.drop(['Id', 'SalePrice'], axis=1),

data['SalePrice'],
test_size=0.3,
random_state=0,
)

Now we set up the EndTailImputer() to impute in this case only 2 variables
from the dataset. We instruct the imputer to find the imputation values using
the mean plus 3 times the standard deviation as follows:

set up the imputer
tail_
→˓imputer = EndTailImputer(imputation_method='gaussian',

tail='right',
fold=3,

␣
→˓ variables=['LotFrontage', 'MasVnrArea'])
fit the imputer
tail_imputer.fit(X_train)

With fit, the EndTailImputer() learned the imputation values for the indi-
cated variables and stored it in one of its attributes. We can now go ahead and
impute both the train and the test sets.

transform the data
train_t= tail_imputer.transform(X_train)
test_t= tail_imputer.transform(X_test)

Note that after the imputation, if the percentage of missing values is relatively
big, the variable distribution will differ from the original one (in red the im-
puted variable):

fig = plt.figure()
ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind='kde', ax=ax)
train_
→˓t['LotFrontage'].plot(kind='kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

10.2. User Guide 35

feature_engine Documentation, Release 1.7.0

Additional resources

In the following Jupyter notebook you will find more details on the functional-
ity of the CategoricalImputer(), including how to select numerical vari-
ables automatically, how to impute with the most frequent category, and how
to impute with a used defined string.

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 5: Feature Engineering for Machine Learning

Or read our book:

36 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/EndTailImputer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 6: Python Feature Engineering
Cookbook

CategoricalImputer

Categorical data are common in most data science projects and can also show
missing values. There are 2 main imputation methods that are used to replace
missing data in categorical variables. One method consists of replacing the
missing values with the most frequent category. The second method consists
of replacing missing values with a dedicated string, for example, “Missing.”

Scikit-learn’s machine learning algorithms can neither handle missing data nor
categorical variables out of the box. Hence, during data preprocessing, we
need to use imputation techniques to replace the nan values by any permitted
value and then proceed with categorical encoding, before training classifica-
tion or regression models.

Handling missing values

Feature-engine’s CategoricalImputer() can replace missing data in cate-
gorical variables with an arbitrary value, like the string ‘Missing’, or with the
most frequent category.

You can impute a subset of the categorical variables by passing their names
to CategoricalImputer() in a list. Alternatively, the categorical imputer
automatically finds and imputes all variables of type object and categorical
found in the training dataframe.

Originally, we designed this imputer to work only with categorical variables.
In version 1.1.0, we introduced the parameter ignore_format to allow the
imputer to also impute numerical variables with this functionality. This is
because, in some cases, variables that are by nature categorical have numerical
values.

10.2. User Guide 37

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Python implementation

We’ll show the CategoricalImputer()’s data imputation functionality us-
ing the Ames house prices dataset. We’ll start by loading the necessary li-
braries, functions and classes, loading the dataset, and separating it into a
training and a test set.

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from feature_engine.imputation import CategoricalImputer

data = fetch_openml(name='house_prices', as_frame=True)
data = data.frame

X = data.drop(['SalePrice', 'Id'], axis=1)
y = data['SalePrice']

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

print(X_train.head())

In the following output we see the predictor variables of the house prices
dataset:

MSSubClass␣
→˓MSZoning LotFrontage LotArea Street Alley LotShape \
254 ␣
→˓ 20 RL 70.0 8400 Pave NaN Reg
1066 ␣
→˓ 60 RL 59.0 7837 Pave NaN IR1
638 ␣
→˓ 30 RL 67.0 8777 Pave NaN Reg
799 ␣
→˓ 50 RL 60.0 7200 Pave NaN Reg
380 ␣
→˓ 50 RL 50.0 5000 Pave Pave Reg

LandContour Utilities␣
→˓LotConfig ... ScreenPorch PoolArea PoolQC Fence \
254 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN
1066 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN
638 Lvl ␣
→˓AllPub Inside ... 0 0 NaN MnPrv
799 Lvl ␣
→˓AllPub Corner ... 0 0 NaN MnPrv
380 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN

(continues on next page)

38 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

MiscFeature␣
→˓MiscVal MoSold YrSold SaleType SaleCondition
254 ␣
→˓ NaN 0 6 2010 WD Normal
1066 ␣
→˓ NaN 0 5 2009 WD Normal
638 ␣
→˓ NaN 0 5 2008 WD Normal
799 ␣
→˓ NaN 0 6 2007 WD Normal
380 ␣
→˓ NaN 0 5 2010 WD Normal

[5 rows x 79 columns]

These 2 variables show null values, let’s check that out:

X_train[['Alley', 'MasVnrType']].isnull().sum()

We see the null values in the following output:

Alley 1094
MasVnrType 6
dtype: int64

Imputation with an arbitrary string

Let’s set up the categorical imputer to impute these 2 variables with the arbi-
trary string ‘missing’:

imputer = CategoricalImputer(
variables=['Alley', 'MasVnrType'],
fill_value="missing",

)

imputer.fit(X_train)

During fit, the transformer corroborates that the 2 variables are of type object
or categorical and creates a dictionary of variable to replacement value.

We can check the value that will be use to “fillna” as follows:

imputer.fill_value

We can check the dictionary with the replacement values per variable like this:

imputer.imputer_dict_

The dictionary contains the names of the variables in its keys and the imputa-
tion value among its values. In this case, the result is not super exciting because
we are replacing nan values in all variables with the same value:

10.2. User Guide 39

feature_engine Documentation, Release 1.7.0

{'Alley': 'missing', 'MasVnrType': 'missing'}

We can now go ahead and impute the missing data and then plot the categories
in the resulting variable after the imputation:

train_t = imputer.transform(X_train)
test_t = imputer.transform(X_test)

test_t['MasVnrType'].value_counts().plot.bar()
plt.ylabel("Number of observations")
plt.show()

In the following plot, we see the presence of the category “missing”, corre-
sponding to the imputed values:

40 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Imputation with the most frequent category

Let’s now impute the variables with the most frequent category instead:

imputer = CategoricalImputer(
variables=['Alley', 'MasVnrType'],
imputation_method="frequent"

)

imputer.fit(X_train)

We can find the most frequent category per variable in the imputer dictionary:

imputer.imputer_dict_

In the following output, we see that the most frequent category for Alley is
'Grvl' and the most frequent value for MasVnrType is 'None'.

{'Alley': 'Grvl', 'MasVnrType': 'None'}

We can now go ahead and impute the missing data to obtain a complete dataset,
at least for these 2 variables, and then plot the distribution of values after the
imputation:

train_t = imputer.transform(X_train)
test_t = imputer.transform(X_test)

test_t['MasVnrType'].value_counts().plot.bar()
plt.ylabel("Number of observations")
plt.show()

In the following image we see the resulting variable distribution:

10.2. User Guide 41

feature_engine Documentation, Release 1.7.0

Automatically impute all categorical variables

CategoricalImputer() can automatically find and impute all categorical
features in the training dataset when we set the parameter variables to None:

imputer = CategoricalImputer(
variables=None,

)

train_t = imputer.fit_transform(X_train)
test_t = imputer.transform(X_test)

We can find the categorical variables in the variables_ attribute:

imputer.variables_

Below, we see the list of categorical variables that were found in the training
dataframe:

42 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

['MSZoning',
'Street',
'Alley',
'LotShape',
'LandContour',
...
'SaleType',
'SaleCondition']

Categorical features with 2 modes

It is possible that one variable has more than one mode. In that case, the trans-
former will raise an error. For example, when you set the transformer to impute
the variable ‘PoolQC` with the most frequent value:

imputer = CategoricalImputer(
variables=['PoolQC'],
imputation_method="frequent"

)

imputer.fit(X_train)

‘PoolQC` has more than 1 mode, so the transformer raises the following error:

196 self.imputer_dict_ = {var: mode_vals[0]}
198 # imputing multiple variables:
199 else:
200 #␣

→˓Returns a dataframe with 1 row if there is one mode per
201␣

→˓ # variable, or more rows if there are more modes:

ValueError: The␣
→˓variable PoolQC contains multiple frequent categories.

We can check that the variable has various modes like this:

X_train['PoolQC'].mode()

We see that this variable has 3 categories with similar maximum number of
observations:

0 Ex
1 Fa
2 Gd
Name: PoolQC, dtype: object

10.2. User Guide 43

feature_engine Documentation, Release 1.7.0

Considerations

Replacing missing values in categorical features with a bespoke category is
standard practice and perhaps the more natural thing to do. We’ll probably
want to impute with the most frequent category when the percentage of miss-
ing values is small and the cardinality of the variable is low, not to introduce
unnecessary noise.

Combining imputation with data analysis is useful to decide the most conve-
nient imputation method as well as the impact of the imputation on the variable
distribution. Note that the variable distribution and its cardinality will affect
the performance and workings of machine learning models.

Imputation with the most frequent category will blend the missing values with
the most common values of the variable. Hence, it is common practice to
add dummy variables to indicate that the values were originally missing. See
AddMissingIndicator.

Additional resources

For more details about this and other feature engineering methods check out
these resources:

Fig. 7: Feature Engineering for Machine Learning

Or read our book:

44 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 8: Python Feature Engineering
Cookbook

RandomSampleImputer

The RandomSampleImputer() replaces missing data with a random sample
extracted from the variable. It works with both numerical and categorical vari-
ables. A list of variables can be indicated, or the imputer will automatically
select all variables in the train set.

Note
The random samples used to replace missing values may vary from execution
to execution. This may affect the results of your work. Thus, it is advisable to
set a seed.

Setting the seed

There are 2 ways in which the seed can be set in the
RandomSampleImputer():

If seed = 'general' then the random_state can be either None or an inte-
ger. The random_state then provides the seed to use in the imputation. All
observations will be imputed in one go with a single seed. This is equiva-
lent to pandas.sample(n, random_state=seed) where n is the number
of observations with missing data and seed is the number you entered in the
random_state.

If seed = 'observation', then the random_state should be a variable
name or a list of variable names. The seed will be calculated obser-
vation per observation, either by adding or multiplying the values of the
variables indicated in the random_state. Then, a value will be ex-
tracted from the train set using that seed and used to replace the NAN in
that particular observation. This is the equivalent of pandas.sample(1,
random_state=var1+var2) if the seeding_method is set to add or
pandas.sample(1, random_state=var1*var2) if the seeding_method
is set to multiply.

For example, if the observation shows variables color: np.nan, height: 152,
weight:52, and we set the imputer as:

RandomSampleImputer(random_state=['height', 'weight'],
seed='observation',
seeding_method='add'))

the np.nan in the variable colour will be replaced using pandas sample as fol-
lows:

observation.sample(1, random_state=int(152+52))

10.2. User Guide 45

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

For more details on why this functionality is important refer to the course Fea-
ture Engineering for Machine Learning.

You can also find more details about this imputation in the following notebook.

Note, if the variables indicated in the random_state list are not numerical
the imputer will return an error. In addition, the variables indicated as seed
should not contain missing values themselves.

Important for GDPR

This estimator stores a copy of the training set when the fit() method is
called. Therefore, the object can become quite heavy. Also, it may not
be GDPR compliant if your training data set contains Personal Information.
Please check if this behaviour is allowed within your organisation.

Below a code example using the House Prices Dataset (more details about the
dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine.imputation import RandomSampleImputer

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'],
test_size=0.3,
random_state=0

)

In this example, we sample values at random, observation per observation,
using as seed the value of the variable ‘MSSubClass’ plus the value of the
variable ‘YrSold’. Note that this value might be different for each observation.

The RandomSampleImputer()will impute all variables in the data, as we left
the default value of the parameter variables to None.

set up the imputer
imputer = RandomSampleImputer(

random_state=['MSSubClass', 'YrSold'],
seed='observation',
seeding_method='add'

)

fit the imputer
imputer.fit(X_train)

46 Chapter 10. Table of Contents

https://www.udemy.com/feature-engineering-for-machine-learning/
https://www.udemy.com/feature-engineering-for-machine-learning/
https://github.com/solegalli/feature-engineering-for-machine-learning/blob/master/Section-04-Missing-Data-Imputation/04.07-Random-Sample-Imputation.ipynb

feature_engine Documentation, Release 1.7.0

With fit() the imputer stored a copy of the X_train. And with transform, it
will extract values at random from this X_train to replace NA in the datasets
indicated in the transform() methods.

transform the data
train_t = imputer.transform(X_train)
test_t = imputer.transform(X_test)

The beauty of the random sampler is that it preserves the original variable
distribution:

fig = plt.figure()
ax = fig.add_subplot(111)
X_train['LotFrontage'].plot(kind='kde', ax=ax)
train_
→˓t['LotFrontage'].plot(kind='kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

Additional resources

In the following Jupyter notebook you will find more details on the functional-
ity of the RandomSampleImputer(), including how to set the different types
of seeds.

• Jupyter notebook

All Feature-engine notebooks can be found in a dedicated repository.

And finally, there is also a lot of information about this and other imputation
techniques in this online course:

10.2. User Guide 47

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/RandomSampleImputer.ipynb
https://github.com/feature-engine/feature-engine-examples

feature_engine Documentation, Release 1.7.0

Fig. 9: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 10: Python Feature Engineering
Cookbook

AddMissingIndicator

The AddMissingIndicator() adds a binary variable indicating if observa-
tions are missing (missing indicator). It adds missing indicators to both cate-
gorical and numerical variables.

You can select the variables for which the missing indicators should be created
passing a variable list to the variables parameter. Alternatively, the imputer
will automatically select all variables.

The imputer has the option to add missing indicators to all variables or only
to those that have missing data in the train set. You can change the behaviour
using the parameter missing_only.

If missing_only=True, missing indicators will be added only to those vari-
ables with missing data in the train set. This means that if you passed a variable
list to variables and some of those variables did not have missing data, no

48 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

missing indicators will be added to them. If it is paramount that all variables in
your list get their missing indicators, make sure to set missing_only=False.

It is recommended to use missing_only=True when not passing a list of
variables to impute.

Below a code example using the House Prices Dataset (more details about the
dataset here).

First, let’s load the data and separate it into train and test:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine.imputation import AddMissingIndicator

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
data.drop(['Id', 'SalePrice'], axis=1),
→˓ data['SalePrice'], test_size=0.3, random_state=0)

Now we set up the imputer to add missing indicators to the 4 indicated vari-
ables:

set up the imputer
addBinary_imputer = AddMissingIndicator(
variables=[
→˓'Alley', 'MasVnrType', 'LotFrontage', 'MasVnrArea'],
)

fit the imputer
addBinary_imputer.fit(X_train)

Because we left the default value for missing_only, the
AddMissingIndicator() will check if the variables indicated above
have missing data in X_train. If they do, missing indicators will be added
for all 4 variables looking forward. If one of them had not had missing data
in X_train, missing indicators would have been added to the remaining 3
variables only.

We can know which variables will have missing indicators by looking at the
variable list in the AddMissingIndicator()’s attribute variables_.

Now, we can go ahead and add the missing indicators:

transform the data
train_t = addBinary_imputer.transform(X_train)
test_t = addBinary_imputer.transform(X_test)

train_t[['Alley_na', 'MasVnrType_
→˓na', 'LotFrontage_na', 'MasVnrArea_na']].head()

10.2. User Guide 49

feature_engine Documentation, Release 1.7.0

Note that after adding missing indicators, we still need to replace NA in the
original variables if we plan to use them to train machine learning models.

Tip

Missing indicators are commonly used together with random sampling, mean
or median imputation, or frequent category imputation.

Additional resources

In the following Jupyter notebook you will find more details on the function-
ality of the AddMissingIndicator(), including how to use the parameter
missing_indicator and how to select the variables automatically.

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 11: Feature Engineering for Machine Learning

Or read our book:

50 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/AddMissingIndicator.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 12: Python Feature Engineering
Cookbook

DropMissingData

Removing rows with nan values from a dataset is a common practice in data
science and machine learning projects.

You are probably familiar with the use of pandas dropna. You basically take a
pandas dataframe or a pandas series, apply dropna, and eliminate those rows
that contain nan values in one or more columns.

Here, we have an example of that syntax:

import numpy as np
import pandas as pd

X = pd.DataFrame(dict(
x1 = [np.nan,1,1,0,np.nan],
x2 = ["a", np.nan, "b", np.nan, "a"],
))

X.dropna(inplace=True)
print(X)

The previous code returns a dataframe without missing values:

x1 x2
2 1.0 b

Feature-engine’s DropMissingData() wraps pandas dropna in a transformer
that will remove rows with na values while adhering to scikit-learn’s fit and
transform functionality.

Here we have a snapshot of DropMissingData()’s syntax:

import pandas as pd
import numpy as np
from feature_engine.imputation import DropMissingData

(continues on next page)

10.2. User Guide 51

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X = pd.DataFrame(dict(
x1 = [np.nan,1,1,0,np.nan],
x2 = ["a", np.nan, "b", np.nan, "a"],
))

dmd = DropMissingData()
dmd.fit(X)
dmd.transform(X)

The previous code returns a dataframe without missing values:

x1 x2
2 1.0 b

DropMissingData() allows you therefore to remove null values as part of
any scikit-learn feature engineering workflow.

DropMissingData

DropMissingData() has some advantages over pandas:

• It learns and stores the variables for which rows with nan values should be
deleted.

• It can be used within a Scikit-learn like pipeline.

With DropMissingData(), you can drop nan values from numerical and cat-
egorical variables. In other words, you can remove null values from numerical,
categorical or object datatypes.

You have the option to remove nan values from all columns or only from a
subset of them. Alternatively, you can remove rows if they have more than a
certain percentage of nan values.

Let’s better illustrate DropMissingData()’s functionality through code ex-
amples.

Dropna

Let’s start by importing pandas and numpy, and creating a toy dataframe with
nan values in 2 columns:

import numpy as np
import pandas as pd

from feature_engine.imputation import DropMissingData

X = pd.DataFrame(
dict(

x1=[2, 1, 1, 0, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],
x3=[2, 3, 4, 5, 5],

(continues on next page)

52 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

)
)
y = pd.Series([1, 2, 3, 4, 5])

print(X.head())

Below we see the new dataframe:

x1 x2 x3
0 2.0 a 2
1 1.0 NaN 3
2 1.0 b 4
3 0.0 NaN 5
4 NaN a 5

We can drop nan values across all columns as follows:

dmd = DropMissingData()
Xt = dmd.fit_transform(X)
Xt.head()

We see the transformed dataframe without null values:

x1 x2 x3
0 2.0 a 2
2 1.0 b 4

By default, DropMissingData() will find and store the columns that had
missing data during fit, that is, in the training set. They are stored here:

dmd.variables_

['x1', 'x2']

That means that every time that we apply transform() to a new dataframe,
the transformer will remove rows with nan values only in those columns.

If we want to force DropMissingData() to drop na across all columns, re-
gardless of whether they had nan values during fit, we need to set up the class
like this:

dmd = DropMissingData(missing_only=False)
Xt = dmd.fit_transform(X)

Now, when we explore the paramter variables_, we see that all the variables
in the train set are stored, and hence, will be used to remove nan values:

dmd.variables_

['x1', 'x2', 'x3']

10.2. User Guide 53

feature_engine Documentation, Release 1.7.0

Adjust target after dropna

DropMissingData() has the option to remove rows with nan from both train-
ing set and target variable. Like this, we can obtain a target that is aligned with
the resulting dataframe after the transformation.

The method transform_x_y removes rows with null values from the train set,
and then realigns the target. Let’s take a look:

Xt, yt = dmd.transform_x_y(X, y)
Xt

Below we see the dataframe without nan:

x1 x2 x3
0 2.0 a 2
2 1.0 b 4

yt

And here we see the target with those rows corresponing to the remaining rows
in the transformed dataframe:

0 1
2 3
dtype: int64

Let’s check that the shape of the transformed dataframe and target are the same:

Xt.shape, yt.shape

We see that the resulting training set and target have each 2 rows, instead of
the 5 original rows.

((2, 3), (2,))

Return the rows with nan

When we have a model in production, it might be useful to know which rows
are being removed by the transformer. We can obtain that information as fol-
lows:

dmd.return_na_data(X)

The previous command returns the rows with nan. In other words, it does the
opposite of transform(), or pandas.dropna.

x1 x2 x3
1 1.0 NaN 3
3 0.0 NaN 5
4 NaN a 5

54 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Dropna from subset of variables

We can choose to remove missing data only from a specific column or group of
columns. We just need to pass the column name or names to the variables
parameter:

Here, we’ll dropna from the variables “x1”, “x3”.

dmd = DropMissingData(variables=[
→˓"x1", "x3"], missing_only=False)
Xt = dmd.fit_transform(X)
Xt.head()

Below, we see the transformed dataframe. It removed the rows with nan in
“x1”, and we see that those rows with nan in “x2” are still in the dataframe:

x1 x2 x3
0 2.0 a 2
1 1.0 NaN 3
2 1.0 b 4
3 0.0 NaN 5

Only rows with nan in “x1” and “x3” are removed. We can corroborate that
by examining the variables_ parameter:

Important
When you indicate which variables should be examined to remove rows with
nan, make sure you set the parameter missing_only to the boolean False.
Otherwise, DropMissingData() will select from your list only those vari-
ables that showed nan values in the train set.

See for example what happens when we set up the class like this:

dmd = DropMissingData(variables=[
→˓"x1", "x3"], missing_only=True)
Xt = dmd.fit_transform(X)
dmd.variables_

Note, that we indicated that we wanted to remove nan from “x1”, “x3”. Yet,
only “x1” has nan in X. So the transformer learns that nan should be only
dropped from “x1”:

['x1']

DropMissingData() took the 2 variables indicated in the list, and stored only
the one that showed nan in during fit. That means that when transforming
future dataframes, it will only remove rows with nan in “x1”.

In other words, if you pass a list of variables to impute and set
missing_only=True, and some of the variables in your list do not have miss-
ing data in the train set, missing data will not be removed during transform for
those particular variables.

When missing_only=True, the transformer “double checks” that the entered
variables have missing data in the train set. If not, it ignores them during
transform().

10.2. User Guide 55

feature_engine Documentation, Release 1.7.0

It is recommended to use missing_only=True when not passing a list of
variables to impute.

Dropna based on percentage of non-nan values

We can set DropMissingData() to require a percentage of non-NA values
in a row to keep it. We can control this behaviour through the threshold
parameter, which is equivalent to pandas.dropna’s thresh parameter.

If threshold=1, all variables need to have data to keep a row. If
threshold=0.5, 50% of the variables need to have data to keep a row. If
threshold=0.01, 10% of the variables need to have data to keep the row. If
threshold=None, rows with NA in any of the variables will be dropped.

Let’s see this with an example. We create a new dataframe that has different
proportion of non-nan values in every row.

X = pd.DataFrame(
dict(

x1=[2, 1, 1, np.nan, np.nan],
x2=["a", np.nan, "b", np.nan, np.nan],
x3=[2, 3, 4, 5, np.nan],

)
)
X

We see that the bottom row has nan in all columns, row 3 has nan in 2 of 3
columns, and row 1 has nan in 1 variable:

x1 x2 x3
0 2.0 a 2.0
1 1.0 NaN 3.0
2 1.0 b 4.0
3 NaN NaN 5.0
4 NaN NaN NaN

Now, we can set DropMissingData() to drop rows if >50% of its values are
nan:

dmd = DropMissingData(threshold=.5)
dmd.fit(X)
dmd.transform(X)

We see that the last 2 rows are dropped, because they have more than 50% nan
values.

x1 x2 x3
0 2.0 a 2.0
1 1.0 NaN 3.0
2 1.0 b 4.0

Instead, we can set class:DropMissingData() to drop rows if >70% of its
values are nan as follows:

56 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

dmd = DropMissingData(threshold=.3)
dmd.fit(X)
dmd.transform(X)

Now we see that only the last row was removed.

x1 x2 x3
0 2.0 a 2.0
1 1.0 NaN 3.0
2 1.0 b 4.0
3 NaN NaN 5.0

Scikit-learn compatible

DropMissingData() is fully compatible with the Scikit-learn API, so you
will find common methods that you also find in Scikit-learn transformers, like,
for example, the get_feature_names_out() method to obtain the variable
names in the transformed dataframe.

Pipeline

When we dropna from a dataframe, we then need to realign the target. We saw
previously that we can do that by using the method transform_x_y.

We can align the target with the resulting dataframe automatically from within
a pipeline as well, by utilizing Feature-engine’s pipeline.

Let’s start by importing the necessary libraries:

import numpy as np
import pandas as pd

from feature_engine.imputation import DropMissingData
from feature_engine.encoding import OrdinalEncoder
from feature_engine.pipeline import Pipeline

Let’s create a new dataframe with nan values in some rows, two numerical and
one categorical variable, and its corresponding target variable:

X = pd.DataFrame(
dict(

x1=[2, 1, 1, 0, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],
x3=[2, 3, 4, 5, 5],

)
)
y = pd.Series([1, 2, 3, 4, 5])

X.head()

Below, we see the resulting dataframe:

10.2. User Guide 57

feature_engine Documentation, Release 1.7.0

x1 x2 x3
0 2.0 a 2
1 1.0 NaN 3
2 1.0 b 4
3 0.0 NaN 5
4 NaN a 5

Let’s now set up a pipeline to dropna first, and then encode the categorical
variable by using ordinal encoding:

pipe = Pipeline(
[

("drop", DropMissingData()),
␣

→˓ ("enc", OrdinalEncoder(encoding_method="arbitrary")),
]

)

pipe.fit_transform(X, y)

When we apply fit and transform or fit_transform, we will obtain the
transformed training set only:

x1 x2 x3
0 2.0 0 2
2 1.0 1 4

To obtain the transform training set and target, we use transform_x_y:

pipe.fit(X,y)
Xt, yt = pipe.transform_x_y(X, y)
Xt

Here we see the transformed training set:

x1 x2 x3
0 2.0 0 2
2 1.0 1 4

yt

And here we see the re-aligned target variable:

0 1
2 3

And to wrap up, let’s add an estimator to the pipeline:

import numpy as np
import pandas as pd

from sklearn.linear_model import Lasso

from feature_engine.imputation import DropMissingData
(continues on next page)

58 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

from feature_engine.encoding import OrdinalEncoder
from feature_engine.pipeline import Pipeline

df = pd.DataFrame(
dict(

x1=[2, 1, 1, 0, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],
x3=[2, 3, 4, 5, 5],

)
)
y = pd.Series([1, 2, 3, 4, 5])

pipe = Pipeline(
[

("drop", DropMissingData()),
␣

→˓ ("enc", OrdinalEncoder(encoding_method="arbitrary")),
("lasso", Lasso(random_state=2))

]
)

pipe.fit(df, y)
pipe.predict(df)

array([2., 2.])

Dropna or fillna?

DropMissingData() has the same functionality than pandas.series.
dropna or pandas.dataframe.dropna`. If you want functionality compat-
ible with pandas.fillna instead, check our other imputation transformers.

Drop columns with nan

At the moment, Feature-engine does not have transformers that will find
columns with a certain percentage of missing values and drop them. Instead,
you can find those columns manually, and then drop them with the help of
DropFeatures from the selection module.

See also

Check out our tutorials on LagFeatures and WindowFeatures to see how to
combine DropMissingData()with lags or rolling windows, to create features
for forecasting.

10.2. User Guide 59

feature_engine Documentation, Release 1.7.0

Tutorials, books and courses

In the following Jupyter notebook, in our accompanying Github repository,
you will find more examples using DropMissingData().

• Jupyter notebook

For tutorials about this and other feature engineering methods check out our
online course:

Fig. 13: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

60 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/imputation/DropMissingData.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 14: Python Feature Engineering
Cookbook

Categorical Encoding

Feature-engine’s categorical encoders replace variable strings by estimated or
arbitrary numbers. The following image summarizes the main encoder’s func-
tionality.

Summary of Feature-engine’s encoders characteristics

Transformer Regres-
sion

Classifica-
tion

Multi-
class

Description

OneHotEncoder() Adds dummy variables to represent each cate-
gory

OrdinalEncoder() Replaces categories with an integer
CountFreuencyEncoder() Replaces categories with their count or fre-

quency
MeanEncoder() x Replaces categories with the targe mean value
WoEEncoder() x x Replaces categories with the weight of the evi-

dence
DecisionTreeEncoder() Replaces categories with the predictions of a

decision tree
RareLabelEncoder() Groups infrequent categories into a single one

Feature-engine’s categorical encoders work only with categorical variables
by default. From version 1.1.0, you have the option to set the parameter ig-
nore_format to False, and make the transformers also accept numerical vari-
ables as input.

Monotonicity
Most Feature-engine’s encoders will return, or attempt to return monotonic
relationships between the encoded variable and the target. A monotonic rela-
tionship is one in which the variable value increases as the values in the other
variable increase, or decrease. See the following illustration as examples:

Monotonic relationships tend to help improve the performance of linear mod-
els and build shallower decision trees.

Regression vs Classification
Most Feature-engine’s encoders are suitable for both regression and classifi-
cation, with the exception of the WoEEncoder() and the PRatioEncoder()
which are designed solely for binary classification.

Multi-class classification
Finally, some Feature-engine’s encoders can handle multi-class
targets off-the-shelf for example the OneHotEncoder(), the
:class:CountFrequencyEncoder()` and the DecisionTreeEncoder().

Note that while the MeanEncoder() and the OrdinalEncoder()will operate
with multi-class targets, but the mean of the classes may not be significant and
this will defeat the purpose of these encoding techniques.

Encoders

10.2. User Guide 61

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

OneHotEncoder

One-hot encoding is a method used to represent categorical data, where each
category is represented by a binary variable. The binary variable takes the
value 1 if the category is present and 0 otherwise. The binary variables are
also known as dummy variables.

To represent the categorical feature “is-smoker” with categories “Smoker” and
“Non-smoker”, we can generate the dummy variable “Smoker”, which takes
1 if the person smokes and 0 otherwise. We can also generate the variable
“Non-smoker”, which takes 1 if the person does not smoke and 0 otherwise.

The following table shows a possible one hot encoded representation of the
variable “is smoker”:

is smoker smoker non-smoker
smoker 1 0
non-smoker 0 1
non-smoker 0 1
smoker 1 0
non-smoker 0 1

For the categorical variable Country with values England, Argentina, and
Germany, we can create three variables called England, Argentina, and
Germany. These variables will take the value of 1 if the observation is England,
Argentina, or Germany, respectively, and 0 otherwise.

62 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Encoding into k vs k-1 variables

A categorical feature with k unique categories can be encoded using k-1 binary
variables. For Smoker, k is 2 as it contains two labels (Smoker and Non-
Smoker), so we only need one binary variable (k - 1 = 1) to capture all of the
information.

In the following table we see that the dummy variable Smoker fully represents
the original categorical values:

is smoker smoker
smoker 1
non-smoker 0
non-smoker 0
smoker 1
non-smoker 0

For the Country variable, which has three categories (k=3; England, Ar-
gentina, and Germany), we need two (k - 1 = 2) binary variables to capture
all the information. The variable will be fully represented like this:

Country England Argentina
England 1 0
Argentina 0 1
Germany 0 0

As we see in the previous table, if the observation is England, it will show the
value 1 in the England variable; if the observation is Argentina, it will show
the value 1 in the Argentina variable; and if the observation is Germany, it
will show zeroes in both dummy variables.

Like these, by looking at the values of the k-1 dummies, we can infer the orig-
inal categorical value of each observation.

Encoding into k-1 binary variables is well-suited for linear regression models.
Linear models evaluate all features during fit, thus, with k-1 they have all the
information about the original categorical variable.

There are a few occasions in which we may prefer to encode the categorical
variables with k binary variables.

Encode into k dummy variables if training decision trees based models or per-
forming feature selection. Decision tree based models and many feature selec-
tion algorithms evaluate variables or groups of variables separately. Thus, if
encoding into k-1, the last category will not be examined. In other words, we
lose the information contained in that category.

10.2. User Guide 63

feature_engine Documentation, Release 1.7.0

Binary variables

When a categorical variable has only 2 categories, like “Smoker” in our pre-
vious example, then encoding into k-1 suits all purposes, because the second
dummy variable created by one hot encoding is completely redundant.

Encoding popular categories

One hot encoding can increase the feature space dramatically, particularly if we
have many categorical features, or the features have high cardinality. To con-
trol the feature space, it is common practice to encode only the most frequent
categories in each categorical variable.

When we encode the most frequent categories, we will create binary variables
for each of these frequent categories, and when the observation has a different,
less popular category, it will have a 0 in all binary variables. See the following
example:

var popular1 popular2
popular1 1 0
popular2 0 1
popular1 1 0
non-popular 0 0
popular2 0 1
less popular 0 0
unpopular 0 0
lonely 0 0

As we see in the previous table, less popular categories are represented as a
group by showing zeroes in all binary variables.

OneHotEncoder

Feature-engine’s OneHotEncoder() encodes categorical data as a one-hot nu-
meric dataframe.

OneHotEncoder() can encode into k or k-1 dummy variables. The behaviour
is specified through the drop_last parameter, which can be set to False for
k, or to True for k-1 dummy variables.

OneHotEncoder() can specifically encode binary variables into k-1 variables
(that is, 1 dummy) while encoding categorical features of higher cardinal-
ity into k dummies. This behaviour is specified by setting the parameter
drop_last_binary=True. This will ensure that for every binary variable
in the dataset, that is, for every categorical variable with ONLY 2 categories,
only 1 dummy is created. This is recommended, unless you suspect that the
variable could, in principle, take more than 2 values.

OneHotEncoder() can also create binary variables for the n most popular cat-
egories, n being determined by the user. For example, if we encode only the
6 more popular categories, by setting the parameter top_categories=6, the
transformer will add binary variables only for the 6 most frequent categories.

64 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

The most frequent categories are those with the greatest number of observa-
tions. The remaining categories will show zeroes in each one of the derived
dummies. This behaviour is useful when the categorical variables are highly
cardinal to control the expansion of the feature space.

Note
The parameter drop_last is ignored when encoding the most popular cate-
gories.

Python implementation

Let’s look at an example of one hot encoding, using Feature-engine’s
OneHotEncoder() utilizing the Titanic Dataset.

We’ll start by importing the libraries, functions and classes, and loading the
data into a pandas dataframe and dividing it into a training and a testing set:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import OneHotEncoder

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the first 5 rows of the training data below:

pclass␣
→˓ sex age sibsp parch fare cabin embarked
501 2␣
→˓ female 13.000000 0 1 19.5000 M S
588 2␣
→˓ female 4.000000 1 1 23.0000 M S
402 2␣
→˓ female 30.000000 1 0 13.8583 M C
1193 3␣
→˓ male 29.881135 0 0 7.7250 M Q
686 3␣
→˓ female 22.000000 0 0 7.7250 M Q

Let’s explore the cardinality of 4 of the categorical features:

X_train[['sex', 'pclass', 'cabin', 'embarked']].nunique()

10.2. User Guide 65

feature_engine Documentation, Release 1.7.0

sex 2
pclass 3
cabin 9
embarked 4
dtype: int64

We see that the variable sex has 2 categories, pclass has 3 categories, the vari-
able cabin has 9 categories, and the variable embarked has 4 categories.

Let’s now set up the OneHotEncoder to encode 2 of the categorical variables
into k-1 dummy variables:

encoder = OneHotEncoder(
variables=['cabin', 'embarked'],
drop_last=True,
)

encoder.fit(X_train)

With fit() the encoder learns the categories of the variables, which are stored
in the attribute encoder_dict_.

encoder.encoder_dict_

{'cabin': ['M', 'E', 'C', 'D', 'B', 'A', 'F', 'T'],
'embarked': ['S', 'C', 'Q']}

The encoder_dict_ contains the categories that will be represented by
dummy variables for each categorical variable.

With transform, we go ahead and encode the variables. Note that by default,
the OneHotEncoder() drops the original categorical variables, which are now
represented by the one-hot array.

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

Below we see the one hot dummy variables added to the dataset and the original
variables are no longer in the dataframe:

pclass sex␣
→˓ age sibsp parch fare cabin_M cabin_E \
501 2 female␣
→˓ 13.000000 0 1 19.5000 1 0
588 2 female␣
→˓ 4.000000 1 1 23.0000 1 0
402 2 female␣
→˓ 30.000000 1 0 13.8583 1 0
1193 3 ␣
→˓male 29.881135 0 0 7.7250 1 0
686 3 female␣
→˓ 22.000000 0 0 7.7250 1 0

(continues on next page)

66 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

cabin_C cabin_
→˓D cabin_B cabin_A cabin_F cabin_T embarked_S \
501 0␣
→˓ 0 0 0 0 0 1
588 0␣
→˓ 0 0 0 0 0 1
402 0␣
→˓ 0 0 0 0 0 0
1193 0␣
→˓ 0 0 0 0 0 0
686 0␣
→˓ 0 0 0 0 0 0

embarked_C embarked_Q
501 0 0
588 0 0
402 1 0
1193 0 1
686 0 1

Finding categorical variables automatically

Feature-engine’s OneHotEncoder() can automatically find and encode all
categorical features in the pandas dataframe. Let’s show that with an example.

Let’s set up the OneHotEncoder to find and encode all categorical features:

encoder = OneHotEncoder(
variables=None,
drop_last=True,
)

encoder.fit(X_train)

With fit, the encoder finds the categorical features and identifies it’s unique
categories. We can find the categorical variables like this:

encoder.variables_

['sex', 'cabin', 'embarked']

And we can identify the unique categories for each variables like this:

encoder.encoder_dict_

{'sex': ['female'],
'cabin': ['M', 'E', 'C', 'D', 'B', 'A', 'F', 'T'],
'embarked': ['S', 'C', 'Q']}

We can now encode the categorical variables:

10.2. User Guide 67

feature_engine Documentation, Release 1.7.0

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

And here we see the resulting dataframe:

pclass age␣
→˓ sibsp parch fare sex_female cabin_M cabin_E \
501 2 13.000000␣
→˓ 0 1 19.5000 1 1 0
588 2 4.000000␣
→˓ 1 1 23.0000 1 1 0
402 2 30.000000␣
→˓ 1 0 13.8583 1 1 0
1193 3 29.881135␣
→˓ 0 0 7.7250 0 1 0
686 3 22.000000␣
→˓ 0 0 7.7250 1 1 0

cabin_C cabin_
→˓D cabin_B cabin_A cabin_F cabin_T embarked_S \
501 0␣
→˓ 0 0 0 0 0 1
588 0␣
→˓ 0 0 0 0 0 1
402 0␣
→˓ 0 0 0 0 0 0
1193 0␣
→˓ 0 0 0 0 0 0
686 0␣
→˓ 0 0 0 0 0 0

embarked_C embarked_Q
501 0 0
588 0 0
402 1 0
1193 0 1
686 0 1

Encoding variables of type numeric

By default, Feature-engine’s OneHotEncoder() will only encode categorical
features. If you attempt to encode a variable of numeric dtype, it will raise an
error. To avoid this error, you can instruct the encoder to ignore the data type
format as follows:

enc = OneHotEncoder(
variables=['pclass'],
drop_last=True,
ignore_format=True,
)

(continues on next page)

68 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

enc.fit(X_train)

train_t = enc.transform(X_train)
test_t = enc.transform(X_test)

print(train_t.head())

Note that pclass had numeric values instead of strings, and it was one hot en-
coded by the transformer into 2 dummies:

sex ␣
→˓ age sibsp parch fare cabin embarked pclass_2 \
501 female 13.
→˓000000 0 1 19.5000 M S 1
588 female ␣
→˓4.000000 1 1 23.0000 M S 1
402 female 30.
→˓000000 1 0 13.8583 M C 1
1193 male 29.
→˓881135 0 0 7.7250 M Q 0
686 female 22.
→˓000000 0 0 7.7250 M Q 0

pclass_3
501 0
588 0
402 0
1193 1
686 1

Encoding binary variables into 1 dummy

With Feature-engine’s OneHotEncoder() we can encode all categorical vari-
ables into k dummies and the binary variables into k-1 by setting the encoder
as follows:

ohe = OneHotEncoder(
variables=['sex', 'cabin','embarked'],
drop_last=False,
drop_last_binary=True,
)

train_t = ohe.fit_transform(X_train)
test_t = ohe.transform(X_test)

print(train_t.head())

As we see in the following input, for the variable sex, we have only have 1
dummy, and for all the rest we have k dummies:

10.2. User Guide 69

feature_engine Documentation, Release 1.7.0

pclass age␣
→˓ sibsp parch fare sex_female cabin_M cabin_E \
501 2 13.000000␣
→˓ 0 1 19.5000 1 1 0
588 2 4.000000␣
→˓ 1 1 23.0000 1 1 0
402 2 30.000000␣
→˓ 1 0 13.8583 1 1 0
1193 3 29.881135␣
→˓ 0 0 7.7250 0 1 0
686 3 22.000000␣
→˓ 0 0 7.7250 1 1 0

cabin_C␣
→˓ cabin_D cabin_B cabin_A cabin_F cabin_T cabin_G \
501 ␣
→˓ 0 0 0 0 0 0 0
588 ␣
→˓ 0 0 0 0 0 0 0
402 ␣
→˓ 0 0 0 0 0 0 0
1193 ␣
→˓ 0 0 0 0 0 0 0
686 ␣
→˓ 0 0 0 0 0 0 0

embarked_S embarked_C embarked_Q embarked_Missing
501 1 0 0 0
588 1 0 0 0
402 0 1 0 0
1193 0 0 1 0

Encoding frequent categories

If the categorical variables are highly cardinal, we may end up with very big
datasets after one hot encoding. In addition, if some of these variables are
fairly constant or fairly similar, we may end up with one hot encoded features
that are highly correlated, if not identical. To avoid this behaviour, we can
encode only the most frequent categories.

To encode the 2 most frequent categories of each categorical column, we set
up the transformer as follows:

ohe = OneHotEncoder(
top_categories=2,
variables=['pclass', 'cabin', 'embarked'],
ignore_format=True,
)

train_t = ohe.fit_transform(X_train)
test_t = ohe.transform(X_test)

(continues on next page)

70 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

print(train_t.head())

As we see in the resulting dataframe, we created only 2 dummies per variable:

sex age␣
→˓ sibsp parch fare pclass_3 pclass_1 cabin_M \
501 female 13.000000␣
→˓ 0 1 19.5000 0 0 1
588 female 4.000000␣
→˓ 1 1 23.0000 0 0 1
402 female 30.000000␣
→˓ 1 0 13.8583 0 0 1
1193 male 29.881135␣
→˓ 0 0 7.7250 1 0 1
686 female 22.000000␣
→˓ 0 0 7.7250 1 0 1

cabin_C embarked_S embarked_C
501 0 1 0
588 0 1 0
402 0 0 1
1193 0 0 0
686 0 0 0

Finally, if we want to obtain the column names in the resulting dataframe we
can do the following:

encoder.get_feature_names_out()

We see the names of the columns below:

['sex',
'age',
'sibsp',
'parch',
'fare',
'pclass_3',
'pclass_1',
'cabin_M',
'cabin_C',
'embarked_S',
'embarked_C']

10.2. User Guide 71

feature_engine Documentation, Release 1.7.0

Considerations

Encoding categorical variables into k dummies, will handle unknown cate-
gories automatically. Those features not seen during training will show zeroes
in all dummies.

Encoding categorical features into k-1 dummies, will cause unseen data to be
treated as the category that is dropped.

Encoding the top categories will make unseen categories part of the group of
less popular categories.

If you add a big number of dummy variables to your data, many may be iden-
tical or highly correlated. Consider dropping identical and correlated features
with the transformers from the selection module.

For alternative encoding methods used in data science check the
OrdinalEncoder() and other encoders included in the encoding mod-
ule.

Tutorials, books and courses

For more details into OneHotEncoder()’s functionality visit:

• Jupyter notebook

For tutorials about this and other data preprocessing methods check out our
online course:

Fig. 15: Feature Engineering for Machine Learning

Or read our book:

72 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/OneHotEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 16: Python Feature Engineering
Cookbook

CountFrequencyEncoder

Count encoding and frequency encoding are 2 categorical encoding techniques
that were commonly used during data preprocessing in Kaggle’s data science
competitions, even when their predictive value is not immediately obvious.

Count encoding consists of replacing the categories of categorical features by
their counts, which are estimated from the training set. For example, in the
variable color, if 10 observations are blue and 5 observations are red, blue will
be replaced by 10 and red by 5.

Frequency encoding consists of replacing the labels of categorical data with
their frequency, which is also estimated from the training set. Then, in the
variable City, if London appears in 10% of the observations and Bristol in 1%,
London will be replaced by 0.1 and Bristol with 0.01.

Count and frequency encoding in machine learning

We’d use count encoding or frequency encoding when we think that the repre-
sentation of the categories in the dataset has some sort of predictive value. To
be honest, the only example that I can think of where count encoding could be
useful is in sales forecasting or sales data analysis scenarios, where the count
of a product or an item represents its popularity. In other words, we may be
more likely to sell a product with a high count.

Count encoding and frequency encoding can be suitable for categorical vari-
ables with high cardinality because these types of categorical encoding will
cause what is called collisions: categories that are present in a similar number
of observations will be replaced with similar, if not the same values, which
reduces the variability.

This, of course, can result in the loss of information by placing two categories
that are otherwise different in the same pot. But on the other hand, if we are
using count encoding or frequency encoding, we have reasons to believe that
the count or the frequency are a good indicator of predictive performance or
somehow capture data insight, so that categories with similar counts would
show similar patterns or behaviors.

10.2. User Guide 73

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Count and Frequency encoding with Feature-engine

The CountFrequencyEncoder() replaces categories of categorical features
by either the count or the percentage of observations each category shows in
the training set.

With CountFrequencyEncoder() we can automatically encode all categor-
ical features in the dataset, or only a subset of them, by passing the variable
names in a list to the variables parameter when we set up the encoder.

By default, CountFrequencyEncoder() will encode only categorical data.
If we want to encode numerical values, we need to explicitly say so by setting
the parameter ignore_format to True.

Count and frequency encoding with unseen categories

When we learn mappings from strings to numbers, either with count encoding
or other encoding techniques like ordinal encoding or target encoding, we do so
by observing the categories in the training set. Hence, we won’t have mappings
for categories that appear only in the test set. These are the so-called “unseen
categories.”

When encountering unseen categories, CountFrequencyEncoder() will ig-
nore them by default, which means that unseen categories will be replaced with
missing values. We can instruct the encoder to raise an error when a new cat-
egory is encountered, or alternatively, to encode unseen categories with zero.

Count encoding vs other encoding methods

Count and frequency encoding, similar to ordinal encoding and contrarily to
one-hot encoding, feature hashing, or binary encoding, does not increase the
dataset dimensionality. From one categorical variable, we obtain one numeri-
cal feature.

Python example

Let’s examine the functionality of CountFrequencyEncoder() by using the
Titanic dataset. We’ll start by loading the libraries and functions, loading the
dataset, and then splitting it into a training and a testing set.

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import CountFrequencyEncoder

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(
(continues on next page)

74 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X, y, test_size=0.3, random_state=0,
)

print(X_train.head())

We see the resulting dataframe with the predictor variables below:

pclass␣
→˓ sex age sibsp parch fare cabin embarked
501 2␣
→˓ female 13.000000 0 1 19.5000 M S
588 2␣
→˓ female 4.000000 1 1 23.0000 M S
402 2␣
→˓ female 30.000000 1 0 13.8583 M C
1193 3␣
→˓ male 29.881135 0 0 7.7250 M Q
686 3␣
→˓ female 22.000000 0 0 7.7250 M Q

This dataset has three obvious categorical features: cabin, embarked, and sex,
and in addition, pclass could also be handled as a categorical.

Count encoding

We’ll start by encoding the three categorical variables using their counts, that
is, replacing the strings with the number of times each category is present in
the training dataset.

encoder = CountFrequencyEncoder(
encoding_method='count',
variables=['cabin', 'sex', 'embarked'],
)

encoder.fit(X_train)

With fit(), the count encoder learns the counts of each category. We can
inspect the counts as follows:

encoder.encoder_dict_

We see the counts of each category for each of the three variables in the fol-
lowing output:

{'cabin': {'M': 702,
'C': 71,
'B': 42,
'E': 32,
'D': 32,
'A': 17,
'F': 15,
'G': 4,

(continues on next page)

10.2. User Guide 75

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'T': 1},
'sex': {'male': 581, 'female': 335},
'embarked': {'S': 652, 'C': 179, 'Q': 83, 'Missing': 2}}

Now, we can go ahead and encode the variables:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

We see the resulting dataframe where the categorical features are now replaced
with integer values corresponding to the category counts:

pclass␣
→˓ sex age sibsp parch fare cabin embarked
501 2␣
→˓ 335 13.000000 0 1 19.5000 702 652
588 2␣
→˓ 335 4.000000 1 1 23.0000 702 652
402 2␣
→˓ 335 30.000000 1 0 13.8583 702 179
1193 3␣
→˓ 581 29.881135 0 0 7.7250 702 83
686 3␣
→˓ 335 22.000000 0 0 7.7250 702 83

We can now use the encoded dataframes to train machine learning models.

Frequency encoding

Let’s now perform frequency encoding. We’ll encode 2 categorical and 1 nu-
merical variable, hence, we need to set the encoder to ignore the variable’s
type:

encoder = CountFrequencyEncoder(
encoding_method='frequency',
variables=['cabin', 'pclass', 'embarked'],
ignore_format=True,
)

Now, we fit the frequency encoder to the train set and transform it straightaway,
and then we transform the test set:

t_train = encoder.fit_transform(X_train)
t_test = encoder.transform(X_test)

test.head()

In the following output we see the transformed dataframe, where the categor-
ical features are now encoded into their frequencies:

76 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

pclass sex␣
→˓ age sibsp parch fare cabin embarked
1139 0.543668 male␣
→˓ 38.000000 0 0 7.8958 0.766376 0.71179
533 0.205240 female␣
→˓ 21.000000 0 1 21.0000 0.766376 0.71179
459 0.205240 male␣
→˓ 42.000000 1 0 27.0000 0.766376 0.71179
1150 0.543668 male␣
→˓ 29.881135 0 0 14.5000 0.766376 0.71179
393 0.205240 male␣
→˓ 25.000000 0 0 31.5000 0.766376 0.71179

With fit() the encoder learns the frequencies of each category, which are
stored in its encoder_dict_ parameter. We can inspect them like this:

encoder.encoder_dict_

In the encoder_dict_ we find the frequencies for each one of the unique
categories of each variable to encode. This way, we can map the original value
to the new value.

{'cabin': {'M': 0.7663755458515283,
'C': 0.07751091703056769,
'B': 0.04585152838427948,
'E': 0.034934497816593885,
'D': 0.034934497816593885,
'A': 0.018558951965065504,
'F': 0.016375545851528384,
'G': 0.004366812227074236,
'T': 0.001091703056768559},

'pclass': {3: 0.5436681222707423,
1: 0.25109170305676853,
2: 0.2052401746724891},

'embarked': {'S': 0.7117903930131004,
'C': 0.19541484716157206,
'Q': 0.0906113537117904,
'Missing': 0.002183406113537118}}

We can now use these dataframes to train machine learning algorithms.

With the method inverse_transform, we can transform the encoded
dataframes back to their original representation, that is, we can replace the
encoding with the original categorical values.

10.2. User Guide 77

feature_engine Documentation, Release 1.7.0

Additional resources

In the following notebook, you can find more details into the
CountFrequencyEncoder() functionality and example plots with the
encoded variables:

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 17: Feature Engineering for Machine Learning

Fig. 18: Feature Engineering for Time Series Forecasting

Our book:

78 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/CountFrequencyEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Both our book and courses are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 19: Python Feature Engineering
Cookbook

OrdinalEncoder

The OrdinalEncoder() replaces the categories by digits, starting from 0 to
k-1, where k is the number of different categories. If you select “arbitrary”
in the encoding_method, then the encoder will assign numbers as the labels
appear in the variable (first come first served). If you select “ordered”, the
encoder will assign numbers following the mean of the target value for that
label. So labels for which the mean of the target is higher will get the number
0, and those where the mean of the target is smallest will get the number k-1.
This way, we create a monotonic relationship between the encoded variable
and the target.

Arbitrary vs ordered encoding
Ordered ordinal encoding: for the variable colour, if the mean of the target
for blue, red and grey is 0.5, 0.8 and 0.1 respectively, blue is replaced by 1, red
by 2 and grey by 0.

The motivation is to try and create a monotonic relationship between the target
and the encoded categories. This tends to help improve performance of linear
models.

Arbitrary ordinal encoding: the numbers will be assigned arbitrarily to the
categories, on a first seen first served basis.

Let’s look at an example using the Titanic Dataset.

First, let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import OrdinalEncoder

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting data below:

10.2. User Guide 79

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

pclass␣
→˓ sex age sibsp parch fare cabin embarked
501 2␣
→˓ female 13.000000 0 1 19.5000 M S
588 2␣
→˓ female 4.000000 1 1 23.0000 M S
402 2␣
→˓ female 30.000000 1 0 13.8583 M C
1193 3␣
→˓ male 29.881135 0 0 7.7250 M Q
686 3␣
→˓ female 22.000000 0 0 7.7250 M Q

Now, we set up the OrdinalEncoder() to replace the categories by strings
based on the target mean value and only in the 3 indicated variables:

encoder = OrdinalEncoder(
encoding_method='ordered',
variables=['pclass', 'cabin', 'embarked'],
ignore_format=True)

encoder.fit(X_train, y_train)

With fit() the encoder learns the mappings for each category, which are
stored in its encoder_dict_ parameter:

encoder.encoder_dict_

In the encoder_dict_ we find the integers that will replace each one of the
categories of each variable that we want to encode. This way, we can map the
original value of the variable to the new value.

{'pclass': {3: 0, 2: 1, 1: 2},
'cabin': {'T': 0,

'M': 1,
'G': 2,
'A': 3,
'C': 4,
'F': 5,
'D': 6,
'E': 7,
'B': 8},

'embarked': {'S': 0, 'Q': 1, 'C': 2, 'Missing': 3}}

We can now go ahead and replace the original strings with the numbers:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

Below we see the resulting dataframe, where the original variable values are
now replaced with integers:

80 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

pclass ␣
→˓ sex age sibsp parch fare cabin embarked
501 1 female␣
→˓ 13.000000 0 1 19.5000 1 0
588 1 female␣
→˓ 4.000000 1 1 23.0000 1 0
402 1 female␣
→˓ 30.000000 1 0 13.8583 1 2
1193 0 ␣
→˓ male 29.881135 0 0 7.7250 1 1
686 0 female␣
→˓ 22.000000 0 0 7.7250 1 1

Additional resources

In the following notebook, you can find more details into the
OrdinalEncoder()’s functionality and example plots with the encoded
variables:

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 20: Feature Engineering for Machine Learning

Or read our book:

10.2. User Guide 81

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/OrdinalEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 21: Python Feature Engineering
Cookbook

MeanEncoder

Mean encoding is the process of replacing the categories in categorical features
by the mean value of the target variable shown by each category. For exam-
ple, if we are trying to predict the default rate (that’s the target variable), and
our dataset has the categorical variable City, with the categories of London,
Manchester, and Bristol, and the default rate per city is 0.1, 0.5, and 0.3, re-
spectively, with mean encoding, we would replace London by 0.1, Manchester
by 0.5, and Bristol by 0.3.

Mean encoding, together with one hot encoding and ordinal encoding, belongs
to the most commonly used categorical encoding techniques in data science.

It is said that mean encoding can easily cause overfitting. That’s because we are
capturing some information about the target into the predictive features during
the encoding. More importantly, the overfitting can be caused by encoding
categories with low frequencies with mean target values that are unreliable. In
short, the mean target values seen for those categories in the training set do not
hold for test data or new observations.

Overfitting

When the categories in the categorical features have a good representation, or,
in other words, when there are enough observations in our dataset that show
the categories that we want to encode, then taking the simple average of the
target variable per category is a good approximation. We can trust that a new
data point, say from the test data, that shows that category will also have a
target value that is similar to the target mean value that we calculated for said
category during training.

However, if there are only a few observations that show some of the categories,
then the mean target value for those categories will be unreliable. In other
words, the certainty that we have that a new observation that shows this cate-
gory will have a mean target value close to the one we estimated decreases.

To account for the uncertainty of the encoding values for rare categories, what
we normally do is “blend” the mean target variable per category with the gen-
eral mean of the target, calculated over the entire training dataset. And this
blending is proportional to the variability of the target within that category
and the category frequency.

82 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Smoothing

To avoid overfitting, we can determine the mean target value estimates as a
mixture of two values: the mean target value per category (known as the pos-
terior) and the mean target value in the entire dataset (known as the prior).

The following formula shows the estimation of the mean target value with
smoothing:

𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = (𝑤𝑖)𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 + (1− 𝑤𝑖)𝑝𝑟𝑖𝑜𝑟

The prior and posterior values are “blended” using a weighting factor (wi).
This weighting factor is a function of the category group size (n_i) and the
variance of the target in the data (t) and within the category (s):

𝑤𝑖 = 𝑛𝑖𝑡/(𝑠+ 𝑛𝑖𝑡)

When the category group is large, the weighing factor is close to 1, and there-
fore more weight is given to the posterior (the mean of the target per category).
When the category group size is small, then the weight gets closer to 0, and
more weight is given to the prior (the mean of the target in the entire dataset).

In addition, if the variability of the target within that category is large, we also
give more weight to the prior, whereas if it is small, then we give more weight
to the posterior.

In short, adding smoothing can help prevent overfitting in those cases where
categorical data have many infrequent categories or show high cardinality.

High cardinality

High cardinality refers to a high number of unique categories in the categorical
features. Mean encoding was specifically designed to tackle highly cardinal
variables by taking advantage of this smoothing function, which will essen-
tially blend infrequent categories together by replacing them with values very
close to the overall target mean calculated over the training data.

Another encoding method that tackles cardinality out of the box is count en-
coding. See for example CountFrequencyEncoder.

To account for highly cardinal variables in alternative encoding methods, you
can group rare categories together by using the RareLabelEncoder.

Alternative Python implementations of mean encoding

In Feature-engine, we blend the probabilities considering the target variability
and the category frequency. In the original paper, there are alternative for-
mulations to determine the blending. If you want to check those out, use the
transformers from the Python library Category encoders:

• M-estimate

• Target Encoder

10.2. User Guide 83

https://contrib.scikit-learn.org/category_encoders/mestimate.html
https://contrib.scikit-learn.org/category_encoders/targetencoder.html

feature_engine Documentation, Release 1.7.0

Mean encoder

Feature-engine’s MeanEncoder() replaces categories with the mean of the
target per category. By default, it does not implement smoothing. That means
that it will replace categories by the mean target value as determined during
training over the training data set (just the posterior).

To apply smoothing using the formulation that we described earlier, set the
parameter smoothing to "auto". That would be our recommended solution.
Alternatively, you can set the parameter smoothing to any value that you want,
in which case the weighting factor wi will be calculated like this:

𝑤𝑖 = 𝑛𝑖/(𝑠+ 𝑛𝑖)

where s is the value your pass to smoothing.

Unseen categories

Unseen categories are those labels that were not seen during training. Or in
other words, categories that were not present in the training data.

With the MeanEncoder(), we can take care of unseen categories in 1 of 3
ways:

• We can set the mean encoder to ignore unseen categories, in which case those
categories will be replaced by nan.

• We can set the mean encoder to raise an error when it encounters unseen cate-
gories. This is useful when we don’t expect new categories for those categor-
ical variables.

• We can instruct the mean encoder to replace unseen or new categories with the
mean of the target shown in the training data, that is, the prior.

Mean encoding and machine learning

Feature-engine’s MeanEncoder() can perform mean encoding for regression
and binary classification datasets. At the moment, we do not support multi-
class targets.

Python examples

In the following sections, we’ll show the functionality of MeanEncoder() us-
ing the Titanic Dataset.

First, let’s load the libraries, functions and classes:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import MeanEncoder

To avoid data leakage, it is important to separate the data into training and test
sets. The mean target values, with or without smoothing, will be determined
using the training data only.

84 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Let’s load and split the data:

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting dataframe containing 3 categorical columns: sex, cabin
and embarked:

pclass␣
→˓ sex age sibsp parch fare cabin embarked
501 2␣
→˓ female 13.000000 0 1 19.5000 M S
588 2␣
→˓ female 4.000000 1 1 23.0000 M S
402 2␣
→˓ female 30.000000 1 0 13.8583 M C
1193 3␣
→˓ male 29.881135 0 0 7.7250 M Q
686 3␣
→˓ female 22.000000 0 0 7.7250 M Q

Simple mean encoding

Let’s set up the MeanEncoder() to replace the categories in the categorical
features with the target mean, without smoothing:

encoder = MeanEncoder(
variables=['cabin', 'sex', 'embarked'],

)

encoder.fit(X_train, y_train)

With fit() the encoder learns the target mean value for each category and
stores those values in the encoder_dict_ attribute:

encoder.encoder_dict_

The encoder_dict_ contains the mean value of the target per category, per
variable. We can use this dictionary to map the numbers in the encoded fea-
tures to the original categorical values.

{'cabin': {'A': 0.5294117647058824,
'B': 0.7619047619047619,

(continues on next page)

10.2. User Guide 85

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'C': 0.5633802816901409,
'D': 0.71875,
'E': 0.71875,
'F': 0.6666666666666666,
'G': 0.5,
'M': 0.30484330484330485,
'T': 0.0},
'sex': {'female
→˓': 0.7283582089552239, 'male': 0.18760757314974183},
'embarked': {'C': 0.553072625698324,
'Missing': 1.0,
'Q': 0.37349397590361444,
'S': 0.3389570552147239}}

We can now go ahead and replace the categorical values with the numerical
values:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

Below we see the resulting dataframe, where the categorical values are now
replaced with the target mean values:

pclass sex␣
→˓ age sibsp parch fare cabin embarked
501 2 0.728358␣
→˓ 13.000000 0 1 19.5000 0.304843 0.338957
588 2 0.728358␣
→˓ 4.000000 1 1 23.0000 0.304843 0.338957
402 2 0.728358␣
→˓ 30.000000 1 0 13.8583 0.304843 0.553073
1193 3 0.187608␣
→˓ 29.881135 0 0 7.7250 0.304843 0.373494
686 3 0.728358␣
→˓ 22.000000 0 0 7.7250 0.304843 0.373494

Mean encoding with smoothing

By default, MeanEncoder() determines the mean target values without blend-
ing. If we want to apply smoothing to control the cardinality of the variable
and avoid overfitting, we set up the transformer as follows:

encoder = MeanEncoder(
variables=None,
smoothing="auto"

)

encoder.fit(X_train, y_train)

In this example, we did not indicate which variables to encode.

86 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

MeanEncoder() can automatically find the categorical variables, which
are stored in one of its attributes:

encoder.variables_

Below we see the categorical features found by MeanEncoder():

['sex', 'cabin', 'embarked']

We can find the categorical mappings calculated by the mean encoder:

encoder.encoder_dict_

Note that these values are different to those determined without smoothing:

{'sex': {'female
→˓': 0.7275051072923914, 'male': 0.18782635616273297},
'cabin': {'A': 0.5210189753697639,
'B': 0.755161569137655,
'C': 0.5608140829162441,
'D': 0.7100896537503179,
'E': 0.7100896537503179,
'F': 0.6501082490288561,
'G': 0.47606795923242295,
'M': 0.3049458046855866,
'T': 0.0},
'embarked': {'C': 0.552100581239763,
'Missing': 1.0,
'Q': 0.3736336816011083,
'S': 0.3390242994568531}}

We can now go ahead and replace the categorical values with the numerical
values:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

print(train_t.head())

Below we see the resulting dataframe with the encoded features:

pclass sex␣
→˓ age sibsp parch fare cabin embarked
501 2 0.727505␣
→˓ 13.000000 0 1 19.5000 0.304946 0.339024
588 2 0.727505␣
→˓ 4.000000 1 1 23.0000 0.304946 0.339024
402 2 0.727505␣
→˓ 30.000000 1 0 13.8583 0.304946 0.552101
1193 3 0.187826␣
→˓ 29.881135 0 0 7.7250 0.304946 0.373634
686 3 0.727505␣
→˓ 22.000000 0 0 7.7250 0.304946 0.373634

10.2. User Guide 87

feature_engine Documentation, Release 1.7.0

We can now use this dataframes to train machine learning models for regres-
sion or classification.

Mean encoding variables with numerical values

MeanEncoder(), and all Feature-engine encoders, have been designed to work
with variables of type object or categorical by default. If you want to encode
variables that are numeric, you need to instruct the transformer to ignore the
data type:

encoder = MeanEncoder(
variables=['cabin', 'pclass'],
ignore_format=True,

)

t_train = encoder.fit_transform(X_train, y_train)
t_test = encoder.transform(X_test)

After encoding the features we can use the data sets to train machine learning
algorithms.

Last thing to note before closing in is that mean encoding does not increase
the dimensionality of the resulting dataframes: from 1 categorical feature, we
obtain 1 encoded variable. Hence, this encoding method is suitable for pre-
dictive modeling that uses models that are sensitive to the size of the feature
space.

Additional resources

In the following notebook, you can find more details into the MeanEncoder()
functionality and example plots with the encoded variables:

• Jupyter notebook

For tutorials about this and other feature engineering methods check out these
resources:

Fig. 22: Feature Engineering for Machine Learning

88 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/MeanEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 23: Feature Engineering for Time Series Forecasting

Or read our book:

Both our book and courses are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 24: Python Feature Engineering
Cookbook

WoEEncoder

The WoEEncoder() replaces categories by the weight of evidence (WoE). The
WoE was used primarily in the financial sector to create credit risk scorecards.

The weight of evidence is given by:

𝑙𝑜𝑔(𝑝(𝑋 = 𝑥𝑗|𝑌 = 1)/𝑝(𝑋 = 𝑥𝑗|𝑌 = 0))

The WoE is determined as follows:
We calculate the percentage positive cases in each category of the total of all
positive cases. For example 20 positive cases in category A out of 100 total
positive cases equals 20 %. Next, we calculate the percentage of negative cases
in each category respect to the total negative cases, for example 5 negative
cases in category A out of a total of 50 negative cases equals 10%. Then we
calculate the WoE by dividing the category percentages of positive cases by the
category percentage of negative cases, and take the logarithm, so for category
A in our example WoE = log(20/10).

10.2. User Guide 89

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Note
• If WoE values are negative, negative cases supersede the positive cases.

• If WoE values are positive, positive cases supersede the negative cases.

• And if WoE is 0, then there are equal number of positive and negative exam-
ples.

Encoding into WoE:

• Creates a monotonic relationship between the encoded variable and the target

• Returns variables in a similar scale

Note
This categorical encoding is exclusive for binary classification.

Let’s look at an example using the Titanic Dataset.

First, let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_
→˓engine.encoding import WoEEncoder, RareLabelEncoder

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting data below:

pclass␣
→˓ sex age sibsp parch fare cabin embarked
501 2␣
→˓ female 13.000000 0 1 19.5000 M S
588 2␣
→˓ female 4.000000 1 1 23.0000 M S
402 2␣
→˓ female 30.000000 1 0 13.8583 M C
1193 3␣
→˓ male 29.881135 0 0 7.7250 M Q
686 3␣
→˓ female 22.000000 0 0 7.7250 M Q

Before we encode the variables, I would like to group infrequent categories into
one category, called ‘Rare’. For this, I will use the RareLabelEncoder() as
follows:

90 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

set up a rare label encoder
rare_encoder = RareLabelEncoder(

tol=0.1,
n_categories=2,
variables=['cabin', 'pclass', 'embarked'],
ignore_format=True,

)

fit and transform data
train_t = rare_encoder.fit_transform(X_train)
test_t = rare_encoder.transform(X_train)

Now, we set up the WoEEncoder() to replace the categories by the weight of
the evidence, only in the 3 indicated variables:

set up a weight of evidence encoder
woe_encoder = WoEEncoder(

variables=['cabin', 'pclass', 'embarked'],
ignore_format=True,

)

fit the encoder
woe_encoder.fit(train_t, y_train)

With fit() the encoder learns the weight of the evidence for each category,
which are stored in its encoder_dict_ parameter:

woe_encoder.encoder_dict_

In the encoder_dict_ we find the WoE for each one of the categories of the
variables to encode. This way, we can map the original values to the new value.

{'cabin':␣
→˓{'M': -0.35752781962490193, 'Rare': 1.083797390800775},
'pclass': {'1': 0.9453018143294478,
'2': 0.21009172435857942,
'3': -0.5841726684724614},
'embarked': {'C': 0.679904786667102,
'Rare': 0.012075414091446468,
'S': -0.20113381737960143}}

Now, we can go ahead and encode the variables:

train_t = woe_encoder.transform(train_t)
test_t = woe_encoder.transform(test_t)

print(train_t.head())

Below we see the resulting dataset with the weight of the evidence:

pclass sex␣
→˓ age sibsp parch fare cabin embarked
501 0.210092 female␣
→˓ 13.000000 0 1 19.5000 -0.357528 -0.201134

(continues on next page)

10.2. User Guide 91

feature_engine Documentation, Release 1.7.0

(continued from previous page)

588 0.210092 female␣
→˓ 4.000000 1 1 23.0000 -0.357528 -0.201134
402 0.210092 female␣
→˓ 30.000000 1 0 13.8583 -0.357528 0.679905
1193 -0.584173 male␣
→˓ 29.881135 0 0 7.7250 -0.357528 0.012075
686 -0.584173 female␣
→˓ 22.000000 0 0 7.7250 -0.357528 0.012075

WoE for continuous variables
In credit scoring, continuous variables are also transformed using the WoE. To
do this, first variables are sorted into a discrete number of bins, and then these
bins are encoded with the WoE as explained here for categorical variables.
You can do this by combining the use of the equal width, equal frequency or
arbitrary discretisers.

Additional resources

In the following notebooks, you can find more details into the WoEEncoder()
functionality and example plots with the encoded variables:

• WoE in categorical variables

• WoE in numerical variables

For more details about this and other feature engineering methods check out
these resources:

Fig. 25: Feature Engineering for Machine Learning

Or read our book:

92 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/WoEEncoder.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualFrequencyDiscretiser_plus_WoEEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 26: Python Feature Engineering
Cookbook

DecisionTreeEncoder

The DecisionTreeEncoder() replaces categories in the variable with the
predictions of a decision tree.

The transformer first encodes categorical variables into numerical variables
using OrdinalEncoder(). You have the option to have the integers assigned
to the categories as they appear in the variable, or ordered by the mean value
of the target per category. You can regulate this behaviour with the parameter
encoding_method. As decision trees are able to pick non-linear relation-
ships, replacing categories by arbitrary numbers should be enough in practice.

After this, the transformer fits with this numerical variable a decision tree to
predict the target variable. Finally, the original categorical variable is replaced
by the predictions of the decision tree.

The motivation of the DecisionTreeEncoder() is to try and create mono-
tonic relationships between the categorical variables and the target.

Let’s look at an example using the Titanic Dataset.

First, let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import DecisionTreeEncoder

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train[['cabin', 'pclass', 'embarked']].head(10))

We will encode the following categorical variables:

10.2. User Guide 93

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

cabin pclass embarked
501 M 2 S
588 M 2 S
402 M 2 C
1193 M 3 Q
686 M 3 Q
971 M 3 Q
117 E 1 C
540 M 2 S
294 C 1 C
261 E 1 S

We set up the encoder to encode the variables above with 3 fold cross-
validation, using a grid search to find the optimal depth of the decision tree
(this is the default behaviour of the DecisionTreeEncoder()). In this ex-
ample, we optimize the tree using the roc-auc metric.

encoder = DecisionTreeEncoder(
variables=['cabin', 'pclass', 'embarked'],
regression=False,
scoring='roc_auc',
cv=3,
random_state=0,
ignore_format=True)

encoder.fit(X_train, y_train)

With fit() the DecisionTreeEncoder() fits 1 decision tree per variable.
Now we can go ahead and transform the categorical variables into numbers,
using the predictions of these trees:

train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

train_t[['cabin', 'pclass', 'embarked']].head(10)

We can see the encoded variables below:

cabin pclass embarked
501 0.304843 0.436170 0.338957
588 0.304843 0.436170 0.338957
402 0.304843 0.436170 0.553073
1193 0.304843 0.259036 0.373494
686 0.304843 0.259036 0.373494
971 0.304843 0.259036 0.373494
117 0.611650 0.617391 0.553073
540 0.304843 0.436170 0.338957
294 0.611650 0.617391 0.553073
261 0.611650 0.617391 0.338957

94 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Additional resources

In the following notebook, you can find more details into the
DecisionTreeEncoder() functionality and example plots with the en-
coded variables:

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 27: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

10.2. User Guide 95

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/DecisionTreeEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 28: Python Feature Engineering
Cookbook

RareLabelEncoder

The RareLabelEncoder() groups infrequent categories into one new cat-
egory called ‘Rare’ or a different string indicated by the user. We need to
specify the minimum percentage of observations a category should have to be
preserved and the minimum number of unique categories a variable should
have to be re-grouped.

tol
In the parameter tol we indicate the minimum proportion of observations a
category should have, not to be grouped. In other words, categories which fre-
quency, or proportion of observations is <= tol will be grouped into a unique
term.

n_categories
In the parameter n_categories we indicate the minimum cardinality of the
categorical variable in order to group infrequent categories. For example, if
n_categories=5, categories will be grouped only in those categorical vari-
ables with more than 5 unique categories. The rest of the variables will be
ignored.

This parameter is useful when we have big datasets and do not have time to ex-
amine all categorical variables individually. This way, we ensure that variables
with low cardinality are not reduced any further.

max_n_categories
In the parameter max_n_categories we indicate the maximum num-
ber of unique categories that we want in the encoded variable. If
max_n_categories=5, then the most popular 5 categories will remain in the
variable after the encoding, all other will be grouped into a single category.

This parameter is useful if we are going to perform one hot encoding at the
back of it, to control the expansion of the feature space.

Example
Let’s look at an example using the Titanic Dataset.

First, let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.encoding import RareLabelEncoder

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,
predictors_only=True,
cabin="letter_only",

)
X["pclass"] = X["pclass"].astype("O")

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)
(continues on next page)

96 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

print(X_train.head())

We see the resulting data below:

pclass␣
→˓ sex age sibsp parch fare cabin embarked
501 2␣
→˓ female 13.000000 0 1 19.5000 M S
588 2␣
→˓ female 4.000000 1 1 23.0000 M S
402 2␣
→˓ female 30.000000 1 0 13.8583 M C
1193 3␣
→˓ male 29.881135 0 0 7.7250 M Q
686 3␣
→˓ female 22.000000 0 0 7.7250 M Q

Let’s explore the number of uniue categories in the variable "cabin".

X_train["cabin"].unique()

We see the number of unique categories in the output below:

array(['M',
→˓ 'E', 'C', 'D', 'B', 'A', 'F', 'T', 'G'], dtype=object)

Now, we set up the RareLabelEncoder() to group categories shown by less
than 3% of the observations into a new group or category called ‘Rare’. We
will group the categories in the indicated variables if they have more than 2
unique categories each.

encoder = RareLabelEncoder(
tol=0.03,
n_categories=2,
variables=['cabin', 'pclass', 'embarked'],
replace_with='Rare',

)

fit the encoder
encoder.fit(X_train)

With fit(), the RareLabelEncoder() finds the categories present in more
than 3% of the observations, that is, those that will not be grouped. These
categories can be found in the encoder_dict_ attribute.

encoder.encoder_dict_

In the encoder_dict_ we find the most frequent categories per variable to
encode. Any category that is not in this dictionary, will be grouped.

{'cabin': ['M', 'C', 'B', 'E', 'D'],
'pclass': [3, 1, 2],
'embarked': ['S', 'C', 'Q']}

10.2. User Guide 97

feature_engine Documentation, Release 1.7.0

Now we can go ahead and transform the variables:

transform the data
train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

Let’s now inspect the number of unique categories in the variable "cabin"
after the transformation:

train_t["cabin"].unique()

In the output below, we see that the infrequent categories have been replaced
by "Rare".

array(['M', 'E', 'C', 'D', 'B', 'Rare'], dtype=object)

We can also specify the maximum number of categories that can be considered
frequent using the max_n_categories parameter.

Let’s begin by creating a toy dataframe and count the values of observations
per category:

from feature_engine.encoding import RareLabelEncoder
import pandas as pd
data = {'var_
→˓A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
data = pd.DataFrame(data)
data['var_A'].value_counts()

A 10
B 10
C 2
D 1
Name: var_A, dtype: int64

In this block of code, we group the categories only for variables with more
than 3 unique categories and then we plot the result:

rare_encoder = RareLabelEncoder(tol=0.05, n_categories=3)
rare_encoder.fit_transform(data)['var_A'].value_counts()

A 10
B 10
C 2
Rare 1
Name: var_A, dtype: int64

Now, we retain the 2 most frequent categories of the variable and group the
rest into the ‘Rare’ group:

rare_encoder = RareLabelEncoder(tol=0.
→˓05, n_categories=3, max_n_categories=2)
Xt = rare_encoder.fit_transform(data)
Xt['var_A'].value_counts()

98 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

A 10
B 10
Rare 3
Name: var_A, dtype: int64

Tips

The RareLabelEncoder() can be used to group infrequent categories and
like this control the expansion of the feature space if using one hot encoding.

Some categorical encodings will also return NAN if a category is present in
the test set, but was not seen in the train set. This inconvenient can usually be
avoided if we group rare labels before training the encoders.

Some categorical encoders will also return NAN if there is not enough ob-
servations for a certain category. For example the WoEEncoder() and the
PRatioEncoder(). This behaviour can be also prevented by grouping infre-
quent labels before the encoding with the RareLabelEncoder().

Additional resources

In the following notebook, you can find more details into the
RareLabelEncoder() functionality and example plots with the encoded
variables:

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 29: Feature Engineering for Machine Learning

Or read our book:

10.2. User Guide 99

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/RareLabelEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 30: Python Feature Engineering
Cookbook

StringSimilarityEncoder

The StringSimilarityEncoder() replaces categorical variables with a set
of float variables that capture the similarity between the category names. The
new variables have values between 0 and 1, where 0 indicates no similarity
and 1 is an exact match between the names of the categories.

To calculate the similarity between the categories,
StringSimilarityEncoder() uses Gestalt pattern matching. Under
the hood, StringSimilarityEncoder() uses the quick_ratio method
from the SequanceMatcher() from difflib.

The similarity is calculated as:

𝐺𝑃𝑀 = 2𝑀/𝑇

where T is the total number of elements in both sequences and M is the number
of matches.

For example, the similarity between the categories “dog” and “dig” is 0.66.
T is the total number of elements in both categories, that is 6. There are 2
matches between the words, the letters d and g, so: 2 * M / T = 2 * 2 / 6 = 0.66.

Output of the StringSimilarityEncoder()

Let’s create a dataframe with the categories “dog”, “dig” and “cat”:

import pandas as pd
from␣
→˓feature_engine.encoding import StringSimilarityEncoder

df = pd.DataFrame({"words": ["dog", "dig", "cat"]})
df

We see the dataframe in the following output:

words
0 dog

(continues on next page)

100 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

1 dig
2 cat

Let’s now encode the variable:

encoder = StringSimilarityEncoder()
dft = encoder.fit_transform(df)
dft

We see the encoded variables below:

words_dog words_dig words_cat
0 1.000000 0.666667 0.0
1 0.666667 1.000000 0.0
2 0.000000 0.000000 1.0

Note that StringSimilarityEncoder() replaces the original variables by
the distance variables.

StringSimilarityEncoder() vs One-hot encoding

String similarity encoding is similar to one-hot encoding, in the sense that each
category is encoded as a new variable. But the values, instead of 1 or 0, are
the similarity between the observation’s category and the dummy variable. It
is suitable for poorly defined (or ‘dirty’) categorical variables.

Encoding only popular categories

The StringSimilarityEncoder() can also create similarity variables for
the n most popular categories, n being determined by the user. For exam-
ple, if we encode only the 6 more popular categories, by setting the parameter
top_categories=6, the transformer will add variables only for the 6 most
frequent categories. The most frequent categories are those with the largest
number of observations. This behaviour is useful when the categorical vari-
ables are highly cardinal, to control the expansion of the feature space.

Specifying how StringSimilarityEncoder() should deal with missing values

The StringSimilarityEncoder() has three options for dealing with miss-
ing values, which can be specified with the parameter missing_values:

1. Ignore NaNs (option ignore) - will leave the NaN in the resulting dataframe
after transformation. Could be useful, if the next step in the pipeline is imputa-
tion or if the machine learning algorithm can handle missing data out-of-the-
box.

2. Impute NaNs (option impute) - will impute NaN with an empty string, and
then calculate the similarity between the empty string and the variable’s cate-
gories. Most of the time, the similarity value will be 0 in resulting dataframe.
This is the default option.

10.2. User Guide 101

feature_engine Documentation, Release 1.7.0

3. Raise an error (option raise) - will raise an error if NaN is present during fit,
transform or fit_transform. Could be useful for debugging and monitor-
ing purposes.

Important

StringSimilarityEncoder()will encode unseen categories by out-of-the-
box, by measuring the string similarity to the seen categories.

No text preprocessing is applied by StringSimilarityEncoder(). Be
mindful of preparing string categorical variables if needed.

StringSimilarityEncoder() works with categorical variables by default.
And it has the option to encode numerical variables as well. This is useful,
when the values of the numerical variables are more useful as strings, than as
numbers. For example, for variables like barcode.

Examples

Let’s look at an example using the Titanic Dataset. First we load the data and
divide it into a train and a test set:

import string
from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from␣
→˓feature_engine.encoding import StringSimilarityEncoder

def clean_titanic():
translate_

→˓table = str.maketrans('' , '', string.punctuation)
data = load_titanic()
data['home.dest'] = (
data['home.dest']
.str.strip()
.str.translate(translate_table)
.str.replace(' ', ' ')
.str.lower()
)
data['name'] = (
data['name']
.str.strip()
.str.translate(translate_table)
.str.replace(' ', ' ')
.str.lower()
)
data['ticket'] = (
data['ticket']
.str.strip()
.str.translate(translate_table)
.str.replace(' ', ' ')
.str.lower()

(continues on next page)

102 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

)
return data

data = clean_titanic()
Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.
→˓drop(['survived', 'sex', 'cabin', 'embarked'], axis=1),

data['survived'],
test_size=0.3,
random_state=0

)

X_train.head()

Below, we see the first rows of the dataset:

pclass␣
→˓ name age sibsp parch \
501 ␣
→˓ 2 mellinger miss madeleine violet 13 0 1
588 ␣
→˓ 2 wells miss joan 4 1 1
402 ␣
→˓ 2 duran y more miss florentina 30 1 0
1193 ␣
→˓ 3 scanlan mr james NaN 0 0
686 ␣
→˓ 3 bradley miss bridget delia 22 0 0

ticket fare boat body \
501 250644 19.5 14 NaN
588 29103 23 14 NaN
402 scparis 2148 13.8583 12 NaN
1193 36209 7.725 NaN NaN
686 334914 7.725 13 NaN

home.dest
501 england bennington vt
588 cornwall akron oh
402 barcelona spain havana cuba
1193 NaN
686 kingwilliamstown co cork ireland glens falls ny

Now, we set up the encoder to encode only the 2 most frequent categories of
each of the 3 indicated categorical variables:

set up the encoder
encoder = StringSimilarityEncoder(

top_categories=2,
variables=['name', 'home.dest', 'ticket'],
ignore_format=True

(continues on next page)

10.2. User Guide 103

feature_engine Documentation, Release 1.7.0

(continued from previous page)

)

fit the encoder
encoder.fit(X_train)

With fit() the encoder will learn the most popular categories of the variables,
which are stored in the attribute encoder_dict_.

encoder.encoder_dict_

{
'name': ['mellinger␣

→˓miss madeleine violet', 'barbara mrs catherine david'],
'home.dest': ['', 'new york ny'],
'ticket': ['ca 2343', 'ca 2144']

}

The encoder_dict_ contains the categories that will derive similarity vari-
ables for each categorical variable.

With transform, we go ahead and encode the variables. Note that the
StringSimilarityEncoder() will drop the original variables.

transform the data
train_t = encoder.transform(X_train)
test_t = encoder.transform(X_test)

test_t.head()

Below, we see the resulting dataframe:

pclass age sibsp parch fare boat body \
1139 3 38 0 0 7.8958 NaN NaN
533 2 21 0 1 21 12 NaN
459 2 42 1 0 27 NaN NaN
1150 3 NaN 0 0 14.5 NaN NaN
393 2 25 0 0 31.5 NaN NaN

name_mellinger miss␣
→˓madeleine violet name_barbara mrs catherine david \
1139 ␣
→˓ 0.454545 0.550000
533 ␣
→˓ 0.615385 0.524590
459 ␣
→˓ 0.596491 0.603774
1150 ␣
→˓ 0.641509 0.693878
393 ␣
→˓ 0.408163 0.666667

home.dest_nan␣
→˓ home.dest_new york ny ticket_ca 2343 ticket_ca 2144

(continues on next page)

104 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

1139 1.
→˓0 0.000000 0.461538 0.461538
533 0.
→˓0 0.370370 0.307692 0.307692
459 0.
→˓0 0.352941 0.461538 0.461538
1150 1.
→˓0 0.000000 0.307692 0.307692
393 0.
→˓0 0.437500 0.666667 0.666667

More details

For more details into StringSimilarityEncoder()’s functionality visit:

• Jupyter notebook

All notebooks can be found in a dedicated repository.

Discretisation

Feature-engine’s variable discretisation transformers transform continuous nu-
merical variables into discrete variables. The discrete variables will contain
contiguous intervals in the case of the equal frequency and equal width trans-
formers. The Decision Tree discretiser will return a discrete variable, in the
sense that the new feature takes a finite number of values.

The following illustration shows the process of discretisation:

With discretisation, sometimes we can obtain a more homogeneous value
spread from an originally skewed variable. But this is not always possible.

Discretisation plus encoding
Very often, after we discretise the numerical continuous variables into discrete
intervals we want to proceed their engineering as if they were categorical. This

10.2. User Guide 105

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/encoding/StringSimilarityEncoder.ipynb
https://github.com/feature-engine/feature-engine-examples

feature_engine Documentation, Release 1.7.0

is common practice. Throughout the user guide, we point to jupyter notebooks
that showcase this functionality.

Discretisers

EqualFrequencyDiscretiser

Equal frequency discretization consists of dividing continuous attributes into
equal-frequency bins. These bins contain roughly the same number of ob-
servations, with boundaries set at specific quantile values determined by the
desired number of bins.

Equal frequency discretization ensures a uniform distribution of data points
across the range of values, enhancing the handling of skewed data and outliers.

Discretization is a common data preprocessing technique used in data science.
It’s also known as binning data (or simply “binning”).

Advantages and Limitations

Equal frequency discretization has some advantages and shortcomings:

Advantages

Some advantages of equal frequency binning:

• Algorithm Efficiency: Enhances the performance of data mining and machine
learning algorithms by providing a simplified representation of the dataset.

• Outlier Management: Efficiently mitigates the effect of outliers by grouping
them into the extreme bins.

• Data Smoothing: Helps smooth the data, reduces noise, and improves the
model’s ability to generalize.

• Improved value distribution: Returns an uniform distribution of values
across the value range.

Equal frequency discretization improves the data distribution, optimizing the
spread of values. This is particularly beneficial for datasets with skewed dis-
tributions (see the Python example code).

Limitations

On the other hand, equal frequency binning can lead to a loss of information
by aggregating data into broader categories. This is particularly concerning if
the data in the same bin has predictive information about the target.

Let’s consider a binary classifier task using a decision tree model. A bin with a
high proportion of both target categories would potentially impact the model’s
performance in this scenario.

106 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

EqualFrequencyDiscretiser

Feature-engine’s EqualFrequencyDiscretiser applies equal frequency
discretization to numerical variables. It uses the pandas.qcut() function
under the hood, to determine the interval limits.

You can specify the variables to be discretized by passing their
names in a list when you set up the transformer. Alternatively,
EqualFrequencyDiscretiser will automatically infer the data types
to compute the interval limits for all numeric variables.

Optimal number of intervals: With EqualFrequencyDiscretiser, the
user defines the number of bins. Smaller intervals may be required if the vari-
able is highly skewed or not continuous.

Integration with scikit-learn: EqualFrequencyDiscretiser and all other
feature-engine transformers seamlessly integrate with scikit-learn pipelines.

Python code example

In this section, we’ll show the main functionality of
EqualFrequencyDiscretiser

Load dataset

In this example, we’ll use the Ames House Prices’ Dataset. First, let’s load the
dataset and split it into train and test sets:

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from feature_
→˓engine.discretisation import EqualFrequencyDiscretiser

Load dataset
X, y = fetch_openml(name='house_
→˓prices', version=1, return_X_y=True, as_frame=True)
X.set_index('Id', inplace=True)

Separate into train and test sets
X_train, X_test, y_train, y_test =␣
→˓ train_test_split(X, y, test_size=0.3, random_state=42)

10.2. User Guide 107

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

feature_engine Documentation, Release 1.7.0

Equal-frequency Discretization

In this example, let’s discretize two variables, LotArea and GrLivArea, into 10
intervals of approximately equal number of observations.

List the target numeric variables to be transformed
TARGET_NUMERIC_FEATURES= ['LotArea','GrLivArea']

Set up the discretization transformer
disc = EqualFrequencyDiscretiser(q=10,
→˓ variables=TARGET_NUMERIC_FEATURES)

Fit the transformer
disc.fit(X_train)

Note that if we do not specify the variables (default=`None`),
EqualFrequencyDiscretiser will automatically infer the data types
to compute the interval limits for all numeric variables.

With the fit() method, the discretizer learns the bin boundaries and saves
them into a dictionary so we can use them to transform unseen data:

Learned limits for each variable
disc.binner_dict_

{'LotArea': [-inf,
5000.0,
7105.6,
8099.200000000003,
8874.0,
9600.0,
10318.400000000001,
11173.5,
12208.2,
14570.699999999999,
inf],
'GrLivArea': [-inf,
918.5,
1080.4,
1218.0,
1348.4,
1476.5,
1601.6000000000001,
1717.6999999999998,
1893.0000000000005,
2166.3999999999996,
inf]}

Note that the lower and upper boundaries are set to -inf and inf, respectively.
his behavior ensures that the transformer will be able to allocate to the ex-
treme bins values that are smaller or greater than the observed minimum and
maximum values in the training set.

EqualFrequencyDiscretiser will not work in the presence of missing val-
ues. Therefore, we should either remove or impute missing values before fitting

108 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

the transformer.

Transform the data
train_t = disc.transform(X_train)
test_t = disc.transform(X_test)

Let’s visualize the first rows of the raw data and the transformed data:

Raw data
print(X_train[TARGET_NUMERIC_FEATURES].head())

Here we see the original variables:

LotArea GrLivArea
Id
136 10400 1682
1453 3675 1072
763 8640 1547
933 11670 1905
436 10667 1661

Transformed data
print(train_t[TARGET_NUMERIC_FEATURES].head())

Here we observe the variables after discretization:

LotArea GrLivArea
Id
136 6 6
1453 0 1
763 3 5
933 7 8
436 6 6

The transformed data now contains discrete values corresponding to the or-
dered computed buckets (0 being the first and q-1 the last).

Now, let’s visualize the plots for equal-width intervals with a histogram and
the transformed data with equal-frequency discretiser:

Instantiate a figure with two axes
fig, axes = plt.subplots(ncols=2, figsize=(10,5))

Plot raw distribution
X_train['GrLivArea'].plot.hist(bins=disc.q, ax=axes[0])
axes[0].set_title('Raw data with equal width binning')
axes[0].set_xlabel('GrLivArea')

Plot transformed distribution
train_t['GrLivArea
→˓'].value_counts().sort_index().plot.bar(ax=axes[1])
axes[1].set_
→˓title('Transformed data with equal frequency binning')

(continues on next page)

10.2. User Guide 109

feature_engine Documentation, Release 1.7.0

(continued from previous page)

plt.tight_layout(w_pad=2)
plt.show()

As we see in the following image, the intervals contain approximately the same
number of observations:

Finally, as the default value for the return_object parameter is False, the
transformer outputs integer variables:

train_t[TARGET_NUMERIC_FEATURES].dtypes

LotArea int64
GrLivArea int64
dtype: object

Return variables as object

Categorical encoders in Feature-engine are designed to work by default with
variables of type object. Therefore, to further encode the discretised output
with Feature-engine, we can set return_object=True instead. This will re-
turn the transformed variables as object.

Let’s say we want to obtain monotonic relationships between the variable and
the target. We can do that seamlessly by setting return_object to True. A
tutorial of how to use this functionality is available here.

110 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualFrequencyDiscretiser_plus_WoEEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Return bin boundaries

If we want to output the intervals limits instead of integers, we can set
return_boundaries to True:

Set up the discretization transformer
disc = EqualFrequencyDiscretiser(

q=10,
variables=TARGET_NUMERIC_FEATURES,
return_boundaries=True)

Fit the transformer
disc.fit(X_train)

Transform test set & visualize limit
test_t = disc.transform(X_test)

Visualize output (boundaries)
print(test_t[TARGET_NUMERIC_FEATURES].head())

The transformed variables now show the interval limits in the output. We can
immediately see that the bin width for these intervals varies. In other words,
they don’t have the same width, contrarily to what we see with equal width
discretization.

Unlike the variables discretized into integers, these variables cannot be used to
train machine learning models; however, they are still highly helpful for data
analysis in this format, and they may be sent to any Feature-engine encoder for
additional processing.

LotArea GrLivArea
Id
893 (8099.2, 8874.0] (918.5, 1080.4]
1106 (12208.2, 14570.7] (2166.4, inf]
414 (8874.0, 9600.0] (918.5, 1080.4]
523 (-inf, 5000.0] (1601.6, 1717.7]
1037 (12208.2, 14570.7] (1601.6, 1717.7]

Binning skewed data

Let’s now show the benefits of equal frequency discretization for skewed vari-
ables. We’ll start by importing the libraries and classes:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from feature_
→˓engine.discretisation import EqualFrequencyDiscretiser

Now, we’ll create a toy dataset with a variable that is normally distributed and
another one that is skewed:

10.2. User Guide 111

feature_engine Documentation, Release 1.7.0

Set seed for reproducibility
np.random.seed(42)

Generate a normally distributed data
normal_data = np.random.normal(loc=0, scale=1, size=1000)

Generate␣
→˓a right-skewed data using exponential distribution
skewed_data = np.random.exponential(scale=1, size=1000)

Create dataframe with simulated data
X = pd.DataFrame(
→˓{'feature1': normal_data, 'feature2': skewed_data})

Let’s discretize both variables into 5 equal frequency bins:

Instantiate discretizer
disc = EqualFrequencyDiscretiser(q=5)

Transform simulated data
X_transformed = disc.fit_transform(X)

Let’s plot the original distribution and the distribution after discretization for
the variable that was normally distributed:

fig, axes = plt.subplots(1, 2, figsize=(12, 4))

axes[0].hist(X.feature1, bins=disc.q)
axes[0].
→˓set(xlabel='feature1', ylabel='count', title='Raw data')

X_transformed.feature1.
→˓value_counts().sort_index().plot.bar(ax=axes[1])
axes[1].set_title('Transformed data')

plt.suptitle('Normal␣
→˓distributed data', weight='bold', size='large', y=1.05)

plt.show()

In the following image, we see that after the discretization there is an even
distribution of the values across the value range, hence, the variable does no
look normally distributed any more.

112 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Let’s now plot the original distribution and the distribution after discretization
for the variable that was skewed:

fig, axes = plt.subplots(1, 2, figsize=(12, 4))

axes[0].hist(X.feature2, bins=disc.q)
axes[0].
→˓set(xlabel='feature2', ylabel='count', title='Raw data')

X_transformed.feature2.
→˓value_counts().sort_index().plot.bar(ax=axes[1])
axes[1].set_title('Transformed data')

plt.suptitle('Skewed␣
→˓distributed data', weight='bold', size='large', y=1.05)

plt.show()

In the following image, we see that after the discretization there is an even
distribution of the values across the value range.

10.2. User Guide 113

feature_engine Documentation, Release 1.7.0

See Also

For alternative binning techniques, check out the following resources:

• Further feature-engine discretizers / binning methods

• Scikit-learn’s KBinsDiscretizer.

Check out also:

• Pandas qcut.

Additional resources

Check also for more details on how to use this transformer:

• Jupyter notebook

• Jupyter notebook - Discretizer plus Weight of Evidence encoding

For more details about this and other feature engineering methods check out
these resources:

114 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualFrequencyDiscretiser.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualFrequencyDiscretiser_plus_WoEEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Fig. 31: Feature Engineering for Machine Learning

Or read our book:

Fig. 32: Python Feature Engineering
Cookbook

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

EqualWidthDiscretiser

Equal width discretization consist of dividing continuous variables into inter-
vals of equal width, calculated using the following formula:

𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ = (𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋))/𝑏𝑖𝑛𝑠

Here, bins is the number of intervals specified by the user and max(X) and
min(X) are the minimum and maximum values of the variable to discretize.

Discretization is a common data preprocessing technique used in data science.
It’s also known as data binning (or simply “binning”).

Advantages and Limitations

Equal binning discretization has some advantages and also shortcomings.

Advantages

Some advantages of equal width binning:

• Algorithm Efficiency: Enhances the performance of data mining and
machine learning algorithms by providing a simplified representation of
the dataset.

• Outlier Management: Efficiently mitigates the effect of outliers by
grouping them into the extreme bins, thus preserving the integrity of the main data distribution.

• Data Smoothing: Helps smooth the data, reduces noise, and improves
the model’s ability to generalize.

10.2. User Guide 115

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Limitations

On the other hand, equal width discretzation can lead to a loss of information by aggregating data into broader cate-
gories. This is particularly concerning if the data in the same bin has predictive information about the target.

Let’s consider a binary classifier task using a decision tree model. A bin with a high proportion of both target categories
would potentially impact the model’s performance in this scenario.

EqualWidthDiscretiser

Feture-engine’s EqualWidthDiscretiser() applies equal width discretization to numerical variables. It uses the
pandas.cut() function under the hood to find the interval limits and then sort the continuous variables into the bins.

You can specify the variables to be discretized by passing their names in a list when you set up the transformer. Al-
ternatively, EqualWidthDiscretiser() will automatically infer the data types to compute the interval limits for all
numeric variables.

Optimal number of intervals: With EqualWidthDiscretiser(), the user defines the number of bins. Smaller
intervals may be required if the variable is highly skewed or not continuous.

Integration with scikit-learn: EqualWidthDiscretiser() and all other Feature-engine transformers seamlessly
integrate with scikit-learn pipelines.

Python code example

In this section, we’ll show the main functionality of EqualWidthDiscretiser().

Load dataset

In this example, we’ll use the Ames House Prices’ Dataset. First, let’s load the dataset and split it into train and test
sets:

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from feature_engine.discretisation import EqualFrequencyDiscretiser

Load dataset
X, y = fetch_openml(name='house_prices', version=1, return_X_y=True, as_frame=True)
X.set_index('Id', inplace=True)

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_
→˓state=42)

116 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

feature_engine Documentation, Release 1.7.0

Equal-width Discretization

In this example, let’s discretize two variables, LotArea and GrLivArea, into 10 intervals of equal width:

List the target numeric variables for equal-width discretization
TARGET_NUMERIC_FEATURES= ['LotArea','GrLivArea']

Set up the discretization transformer
disc = EqualWidthDiscretiser(bins=10, variables=TARGET_NUMERIC_FEATURES)

Fit the transformer
disc.fit(X_train)

Note that if we do not specify the variables (default=`None`), EqualWidthDiscretiser will automatically infer the
data types to compute the interval limits for all numeric variables.

With the fit() method, the discretizer learns the bin boundaries and saves them into a dictionary so we can use them
to transform unseen data:

Learned limits for each variable
disc.binner_dict_

{'LotArea': [-inf,
22694.5,
44089.0,
65483.5,
86878.0,
108272.5,
129667.0,
151061.5,
172456.0,
193850.5,
inf],
'GrLivArea': [-inf,
864.8,
1395.6,
1926.3999999999999,
2457.2,
2988.0,
3518.7999999999997,
4049.5999999999995,
4580.4,
5111.2,
inf]}

Note that the lower and upper boundaries are set to -inf and inf, respectively. This behavior ensures that the transformer
will be able to allocate to the extreme bins values that are smaller or greater than the observed minimum and maximum
values in the training set.

EqualWidthDiscretiser will not work in the presence of missing values. Therefore, we should either remove or
impute missing values before fitting the transformer.

Transform the data (data discretization)
train_t = disc.transform(X_train)
test_t = disc.transform(X_test)

10.2. User Guide 117

feature_engine Documentation, Release 1.7.0

Let’s visualize the first rows of the raw data and the transformed data:

Raw data
print(X_train[TARGET_NUMERIC_FEATURES].head())

Here we see the original variables:

LotArea GrLivArea
Id
136 10400 1682
1453 3675 1072
763 8640 1547
933 11670 1905
436 10667 1661

Transformed data
print(train_t[TARGET_NUMERIC_FEATURES].head())

Here we observe the variables after discretization:

LotArea GrLivArea
Id
136 0 2
1453 0 1
763 0 2
933 0 2
436 0 2

The transformed data now contains discrete values corresponding to the ordered computed buckets (0 being the first
and bins-1 the last).

Now, let’s check out the number of observations per bin by creating a bar plot:

train_t['GrLivArea'].value_counts().sort_index().plot.bar()
plt.ylabel('Number of houses')
plt.show()

As we see in the following image, the intervals contain different number of observations. It’s a similar output to a
histogram:

118 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Equal width discretization does not improve the spread of values over the value range. If the variable is skewed, it will
still be skewed after the discretization.

Finally, since the default value for the return_object parameter is False, the transformer outputs integer variables:

train_t[TARGET_NUMERIC_FEATURES].dtypes

LotArea int64
GrLivArea int64
dtype: object

Return variables as object

Categorical encoders in Feature-engine are designed to work by default with variables of type object. Therefore, to
further encode the discretized output with Feature-engine’s encoders, we can set return_object=True instead. This
will return the transformed variables as object.

Let’s say we want to obtain monotonic relationships between the variable and the target. We can do that seamlessly by
setting return_object to True. A tutorial of how to use this functionality is available here.

10.2. User Guide 119

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualWidthDiscretiser_plus_OrdinalEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Return bin boundaries

If we want to output the intervals limits instead of integers, we can set return_boundaries to True:

Set up the discretization transformer
disc = EqualFrequencyDiscretiser(

bins=10,
variables=TARGET_NUMERIC_FEATURES,
return_boundaries=True)

Fit the transformer
disc.fit(X_train)

Transform test set & visualize limit
test_t = disc.transform(X_test)

Visualize output (boundaries)
print(test_t[TARGET_NUMERIC_FEATURES].head())

In the following output we see that the transformed variables now display the interval limits. While we can’t use these
variables to train machine learning models, as opposed to the variables discretized into integers, they are very useful
in this format for data analysis, and they can also be passed on to any Feature-engine encoder for further processing.

LotArea GrLivArea
Id
893 (-inf, 22694.5] (864.8, 1395.6]
1106 (-inf, 22694.5] (2457.2, 2988.0]
414 (-inf, 22694.5] (864.8, 1395.6]
523 (-inf, 22694.5] (1395.6, 1926.4]
1037 (-inf, 22694.5] (1395.6, 1926.4]

See Also

For alternative binning techniques, check out the following resources:

• Further feature-engine discretizers / binning methods

• Scikit-learn’s KBinsDiscretizer.

Check out also:

• Pandas cut.

Additional resources

Check also for more details on how to use this transformer:

• Jupyter notebook

• Jupyter notebook - Discretizer plus Ordinal encoding

For more details about this and other feature engineering methods check out these resources:

120 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualWidthDiscretiser.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/EqualWidthDiscretiser_plus_OrdinalEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Fig. 33: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 34: Python Feature Engineering
Cookbook

ArbitraryDiscretiser

The ArbitraryDiscretiser() sorts the variable values into contiguous in-
tervals which limits are arbitrarily defined by the user. Thus, you must provide
a dictionary with the variable names as keys and a list with the limits of the
intervals as values, when setting up the discretiser.

The ArbitraryDiscretiser() works only with numerical variables. The
discretiser will check that the variables entered by the user are present in the
train set and cast as numerical.

10.2. User Guide 121

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Example

Let’s take a look at how this transformer works. First, let’s load a dataset and
plot a histogram of a continuous variable. We use the california housing dataset
that comes with Scikit-learn.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from feature_
→˓engine.discretisation import ArbitraryDiscretiser

X, y = fetch_
→˓california_housing(return_X_y=True, as_frame=True)

X['MedInc'].hist(bins=20)
plt.xlabel('MedInc')
plt.ylabel('Number of obs')
plt.title('Histogram of MedInc')
plt.show()

In the following plot we see a histogram of the variable median income:

122 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Now, let’s discretise the variable into arbitrarily determined intervals. We
want the intervals as integers in the resulting transformation, so we set
return_boundaries to False.

user_dict = {'MedInc': [0, 2, 4, 6, np.Inf]}

transformer = ArbitraryDiscretiser(
binning_dict=user_

→˓dict, return_object=False, return_boundaries=False)

X = transformer.fit_transform(X)

Now, we can go ahead and plot the variable after the transformation:

X['MedInc'].value_counts().plot.bar(rot=0)
plt.xlabel('MedInc - bins')
plt.ylabel('Number of observations')
plt.title('Discretised MedInc')
plt.show()

In the following plot we see the number of observations per interval:

10.2. User Guide 123

feature_engine Documentation, Release 1.7.0

Note that in the above figure the intervals are represented by digits.

Alternatively, we can return the interval limits in the discretised variable by
setting return_boundaries to True.

X, y = fetch_
→˓california_housing(return_X_y=True, as_frame=True)

user_dict = {'MedInc': [0, 2, 4, 6, np.Inf]}

transformer = ArbitraryDiscretiser(
binning_dict=user_

→˓dict, return_object=False, return_boundaries=True)
X = transformer.fit_transform(X)

X['MedInc'].value_counts().plot.bar(rot=0)
plt.xlabel('MedInc - bins')
plt.ylabel('Number of observations')
plt.title('Discretised MedInc')
plt.show()

In the following plot we see the number of observations per interval:

124 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Discretisation plus encoding
If we return the interval values as integers, the discretiser has the option to
return the transformed variable as integer or as object. Why would we want
the transformed variables as object?

Categorical encoders in Feature-engine are designed to work with variables of
type object by default. Thus, if you wish to encode the returned bins further,
say to try and obtain monotonic relationships between the variable and the
target, you can do so seamlessly by setting return_object to True. You can
find an example of how to use this functionality here.

Additional resources

Check also:

• Jupyter notebook

• Jupyter notebook - Discretiser plus Mean Encoding

For more details about this and other feature engineering methods check out
these resources:

10.2. User Guide 125

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/ArbitraryDiscretiser_plus_MeanEncoder.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/ArbitraryDiscretiser.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/ArbitraryDiscretiser_plus_MeanEncoder.ipynb

feature_engine Documentation, Release 1.7.0

Fig. 35: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 36: Python Feature Engineering
Cookbook

DecisionTreeDiscretiser

The DecisionTreeDiscretiser() replaces numerical variables by discrete,
i.e., finite variables, which values are the predictions of a decision tree. The
method is based on the winning solution of the KDD 2009 competition:

Niculescu-Mizil, et al. “Winning the KDD Cup Orange Challenge with En-
semble Selection”. JMLR: Workshop and Conference Proceedings 7: 23-34.
KDD 2009.

In the original article, each feature in the challenge dataset was re-coded by
training a decision tree of limited depth (2, 3 or 4) using that feature alone,
and letting the tree predict the target. The probabilistic predictions of this
decision tree were used as an additional feature, that was now linearly (or at
least monotonically) correlated with the target.

According to the authors, the addition of these new features had a significant
impact on the performance of linear models.

126 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf

feature_engine Documentation, Release 1.7.0

Example
In the following example, we re-code 2 numerical variables using decision
trees.

First we load the data and separate it into train and test:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_
→˓engine.discretisation import DecisionTreeDiscretiser

Load dataset
data = data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
␣

→˓ data['SalePrice'], test_size=0.3, random_state=0)

Now we set up the discretiser. We will optimise the decision tree’s depth using
3 fold cross-validation.

set up the discretisation transformer
disc = DecisionTreeDiscretiser(cv=3,
␣

→˓ scoring='neg_mean_squared_error',
␣

→˓ variables=['LotArea', 'GrLivArea'],
regression=True)

fit the transformer
disc.fit(X_train, y_train)

With fit() the transformer fits a decision tree per variable. Then, we can go
ahead replace the variable values by the predictions of the trees:

transform the data
train_t= disc.transform(X_train)
test_t= disc.transform(X_test)

The binner_dict_ stores the details of each decision tree.

disc.binner_dict_

{'LotArea
→˓': GridSearchCV(cv=3, error_score='raise-deprecating',

estimator=DecisionTreeRegressor(criterion=
→˓'mse', max_depth=None,

␣
→˓ max_features=None,

(continues on next page)

10.2. User Guide 127

feature_engine Documentation, Release 1.7.0

(continued from previous page)

␣
→˓ max_leaf_nodes=None,

␣
→˓ min_impurity_decrease=0.0,

␣
→˓ min_impurity_split=None,

␣
→˓ min_samples_leaf=1,

␣
→˓ min_samples_split=2,

␣
→˓ min_weight_fraction_leaf=0.0,

␣
→˓ presort=False, random_state=None,

␣
→˓ splitter='best'),

iid='warn
→˓', n_jobs=None, param_grid={'max_depth': [1, 2, 3, 4]},

pre_dispatch=
→˓'2*n_jobs', refit=True, return_train_score=False,
␣

→˓ scoring='neg_mean_squared_error', verbose=0),
'GrLivArea
→˓': GridSearchCV(cv=3, error_score='raise-deprecating',

estimator=DecisionTreeRegressor(criterion=
→˓'mse', max_depth=None,

␣
→˓ max_features=None,

␣
→˓ max_leaf_nodes=None,

␣
→˓ min_impurity_decrease=0.0,

␣
→˓ min_impurity_split=None,

␣
→˓ min_samples_leaf=1,

␣
→˓ min_samples_split=2,

␣
→˓ min_weight_fraction_leaf=0.0,

␣
→˓ presort=False, random_state=None,

␣
→˓ splitter='best'),

iid='warn
→˓', n_jobs=None, param_grid={'max_depth': [1, 2, 3, 4]},

pre_dispatch=
→˓'2*n_jobs', refit=True, return_train_score=False,
␣

→˓ scoring='neg_mean_squared_error', verbose=0)}

With tree discretisation, each bin, that is, each prediction value, does not nec-
essarily contain the same number of observations.

128 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

with tree␣
→˓discretisation, each bin does not necessarily contain
the same number of observations.
train_
→˓t.groupby('GrLivArea')['GrLivArea'].count().plot.bar()
plt.ylabel('Number of houses')

Note
Our implementation of the DecisionTreeDiscretiser() will replace the
original values of the variable by the predictions of the trees. This is not strictly
identical to what the winners of the KDD competition did. They added the
predictions of the features as new variables, while keeping the original ones.

10.2. User Guide 129

feature_engine Documentation, Release 1.7.0

More details

Check also for more details on how to use this transformer:

• Jupyter notebook

• tree_pipe in cell 21 of this Kaggle kernel

For more details about this and other feature engineering methods check out
these resources:

• Feature engineering for machine learning, online course.

• Python Feature Engineering Cookbook, book.

GeometricWidthDiscretiser

The GeometricWidthDiscretiser() divides continuous numerical vari-
ables into intervals of increasing width. The width of each succeeding interval
is larger than the previous interval by a constant amount (cw).

The constant amount is calculated as:

𝑐𝑤 = (𝑀𝑎𝑥−𝑀𝑖𝑛)1/𝑛

were Max and Min are the variable’s maximum and minimum value, and n is
the number of intervals.

The sizes of the intervals themselves are calculated with a geometric progres-
sion:

𝑎𝑖+1 = 𝑎𝑖𝑐𝑤

Thus, the first interval’s width equals cw, the second interval’s width equals 2
* cw, and so on.

Note that the proportion of observations per interval may vary.

This discretisation technique is great when the distribution of the variable is
right skewed.

Note: The width of some bins might be very small. Thus, to allow this trans-
former to work properly, it might help to increase the precision value, that is,
the number of decimal values allowed to define each bin. If the variable has a
narrow range or you are sorting into several bins, allow greater precision (i.e.,
if precision = 3, then 0.001; if precision = 7, then 0.0001).

The GeometricWidthDiscretiser() works only with numerical variables.
A list of variables to discretise can be indicated, or the discretiser will auto-
matically select all numerical variables in the train set.

Example
Let’s look at an example using the house prices dataset (more details about the
dataset here).

Let’s load the house prices dataset and separate it into train and test sets:

130 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/DecisionTreeDiscretiser.ipynb
https://www.kaggle.com/solegalli/feature-engineering-and-model-stacking
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.amazon.com/Python-Feature-Engineering-Cookbook-transforming-dp-1804611301/dp/1804611301

feature_engine Documentation, Release 1.7.0

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_
→˓engine.discretisation import GeometricWidthDiscretiser

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
␣

→˓ data['SalePrice'], test_size=0.3, random_state=0)

Now, we want to discretise the 2 variables indicated below into 10 intervals of
increasing width:

set up the discretisation transformer
disc = GeometricWidthDiscretiser(bins=10,
→˓ variables=['LotArea', 'GrLivArea'])

fit the transformer
disc.fit(X_train)

With fit() the transformer learns the boundaries of each interval. Then, we
can go ahead and sort the values into the intervals:

transform the data
train_t= disc.transform(X_train)
test_t= disc.transform(X_test)

The binner_dict_ stores the interval limits identified for each variable.

disc.binner_dict_

'LotArea': [-inf,
1303.412,
1311.643,
1339.727,
1435.557,
1762.542,
2878.27,
6685.32,
19675.608,
64000.633,
inf],
'GrLivArea': [-inf,
336.311,
339.34,
346.34,

(continues on next page)

10.2. User Guide 131

feature_engine Documentation, Release 1.7.0

(continued from previous page)

362.515,
399.894,
486.27,
685.871,
1147.115,
2212.974,
inf]}

With increasing width discretisation, each bin does not necessarily contain the
same number of observations. This transformer is suitable for variables with
right skewed distributions.

Let’s compare the variable distribution before and after the discretization:

fig, ax = plt.subplots(1, 2)
X_train['LotArea'].hist(ax=ax[0], bins=10);
train_t['LotArea'].hist(ax=ax[1], bins=10);

We can see below that the intervals contain different number of observations.
We can also see that the shape from the distribution changed from skewed to
a more “bell shaped” distribution.

Discretisation plus encoding

132 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

If we return the interval values as integers, the discretiser has the option to
return the transformed variable as integer or as object. Why would we want
the transformed variables as object?

Categorical encoders in Feature-engine are designed to work with variables of
type object by default. Thus, if you wish to encode the returned bins further,
say to try and obtain monotonic relationships between the variable and the
target, you can do so seamlessly by setting return_object to True. You can
find an example of how to use this functionality here.

Additional resources

Check also for more details on how to use this transformer:

• Jupyter notebook - Geometric Discretiser

• Jupyter notebook - Geometric Discretiser plus Mean encoding

For more details about this and other feature engineering methods check out
these resources:

Fig. 37: Feature Engineering for Machine Learning

Or read our book:

10.2. User Guide 133

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/GeometricWidthDiscretiser_plus_MeanEncoder.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/GeometricWidthDiscretiser.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/discretisation/GeometricWidthDiscretiser_plus_MeanEncoder.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 38: Python Feature Engineering
Cookbook

Outlier Handling

Feature-engine’s outlier cappers cap maximum or minimum values of a vari-
able at an arbitrary or derived value. The OutlierTrimmer removes outliers
from the dataset.

Winsorizer

The Winsorizer() caps maximum and/or minimum values of a variable at
automatically determined values. The minimum and maximum values can be
calculated in 1 of 3 different ways:

Gaussian limits:

• right tail: mean + 3* std

• left tail: mean - 3* std

IQR limits:

• right tail: 75th quantile + 3* IQR

• left tail: 25th quantile - 3* IQR

where IQR is the inter-quartile range: 75th quantile - 25th quantile.

MAD limits:

• right tail: median + 3* MAD

• left tail: median - 3* MAD

where MAD is the median absolute deviation from the median.

percentiles or quantiles:

• right tail: 95th percentile

• left tail: 5th percentile

Example
Let’s cap some outliers in the Titanic Dataset. First, let’s load the data and
separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.outliers import Winsorizer

X, y = load_titanic(
return_X_y_frame=True,
predictors_only=True,
handle_missing=True,

)

(continues on next page)

134 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting data below:

pclass ␣
→˓ sex age sibsp parch fare cabin embarked
501 2 female␣
→˓ 13.000000 0 1 19.5000 Missing S
588 2 female␣
→˓ 4.000000 1 1 23.0000 Missing S
402 2 female␣
→˓ 30.000000 1 0 13.8583 Missing C
1193 3 ␣
→˓male 29.881135 0 0 7.7250 Missing Q
686 3 female␣
→˓ 22.000000 0 0 7.7250 Missing Q

Now, we will set the Winsorizer() to cap outliers at the right side of the dis-
tribution only (param tail). We want the maximum values to be determined
using the mean value of the variable (param capping_method) plus 3 times
the standard deviation (param fold). And we only want to cap outliers in 2
variables, which we indicate in a list.

capper = Winsorizer(capping_method='gaussian',
tail='right',
fold=3,
variables=['age', 'fare'])

capper.fit(X_train)

With fit(), the Winsorizer() finds the values at which it should cap the
variables. These values are stored in its attribute:

capper.right_tail_caps_

{'age': 67.73951212364803, 'fare': 174.70395336846678}

We can now go ahead and censor the outliers:

transform the data
train_t = capper.transform(X_train)
test_t = capper.transform(X_test)

If we evaluate now the maximum of the variables in the transformed
datasets, they should coincide with the values observed in the attribute
right_tail_caps_:

train_t[['fare', 'age']].max()

10.2. User Guide 135

feature_engine Documentation, Release 1.7.0

fare 174.703953
age 67.739512
dtype: float64

Additional resources

You can find more details about the Winsorizer() functionality in the fol-
lowing notebook:

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 39: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

136 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/outliers/Winsorizer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 40: Python Feature Engineering
Cookbook

ArbitraryOutlierCapper

The ArbitraryOutlierCapper() caps the maximum or minimum values of
a variable at an arbitrary value indicated by the user. The maximum or mini-
mum values should be entered in a dictionary with the form {feature:capping
value}.

Let’s look at this in an example. First we load the Titanic dataset, and separate
it into a train and a test set:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.outliers import ArbitraryOutlierCapper

X, y = load_titanic(
return_X_y_frame=True,
predictors_only=True,
handle_missing=True,

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting data below:

pclass ␣
→˓ sex age sibsp parch fare cabin embarked
501 2 female␣
→˓ 13.000000 0 1 19.5000 Missing S
588 2 female␣
→˓ 4.000000 1 1 23.0000 Missing S
402 2 female␣
→˓ 30.000000 1 0 13.8583 Missing C
1193 3 ␣
→˓male 29.881135 0 0 7.7250 Missing Q
686 3 female␣
→˓ 22.000000 0 0 7.7250 Missing Q

Now, we set up the ArbitraryOutlierCapper() indicating that we want to
cap the variable ‘age’ at 50 and the variable ‘Fare’ at 200. We do not want to
cap these variables on the left side of their distribution.

capper = ArbitraryOutlierCapper(
max_capping_dict={'age': 50, 'fare': 200},
min_capping_dict=None,

)

capper.fit(X_train)

With fit() the transformer does not learn any parameter. It just reassigns the
entered dictionary to the attribute that will be used in the transformation:

10.2. User Guide 137

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

capper.right_tail_caps_

{'age': 50, 'fare': 200}

Now, we can go ahead and cap the variables:

train_t = capper.transform(X_train)
test_t = capper.transform(X_test)

If we now check the maximum values in the transformed data, they should be
those entered in the dictionary:

train_t[['fare', 'age']].max()

fare 200.0
age 50.0
dtype: float64

Additional resources

You can find more details about the ArbitraryOutlierCapper() function-
ality in the following notebook:

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 41: Feature Engineering for Machine Learning

Or read our book:

138 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/outliers/ArbitraryOutlierCapper.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 42: Python Feature Engineering
Cookbook

OutlierTrimmer

Outliers are data points that significantly deviate from the rest of the dataset,
potentially indicating errors or rare occurrences. Outliers can distort the learn-
ing process of machine learning models by skewing parameter estimates and
reducing predictive accuracy. To prevent this, if you suspect that the outliers
are errors or rare occurrences, you can remove them from the training data.

In this guide, we show how to remove outliers in Python using the
OutlierTrimmer().

The first step to removing outliers consists of identifying those outliers. Out-
liers can be identified through various statistical methods, such as box plots,
z-scores, the interquartile range (IQR), or the median absolute deviation. Ad-
ditionally, visual inspection of the data using scatter plots or histograms is
common practice in data science, and can help detect observations that signif-
icantly deviate from the overall pattern of the dataset.

The OutlierTrimmer() can identify outliers by using all of these meth-
ods and then remove them automatically. Hence, we’ll begin this guide with
data analysis, showing how we can identify outliers through these statisti-
cal methods and boxplots, and then we will remove outliers by using the
OutlierTrimmer().

Identifying outliers

Outliers are data points that are usually far greater, or far smaller than some
value that determines where most of the values in the distribution lie. These
minimum and maximum values, that delimit the data distribution, can be cal-
culated in 4 ways: by using the z-score if the variable is normally distributed,
by using the interquartile range proximity rule or the median absolute deviation
if the variables are skewed, or by using percentiles.

10.2. User Guide 139

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Gaussian limits or z-score

If the variable shows a normal distribution, most of its values lie between the
mean minus 3 times the standard deviation and the mean plus 3 times the stan-
dard deviation. Hence, we can determine the limits of the distribution as fol-
lows:

• right tail (upper_bound): mean + 3* std

• left tail (lower_bound): mean - 3* std

We can consider outliers those data points that lie beyond these limits.

Interquartile range proximity rule

The interquartile range proximity rule can be used to detect outliers both in
variables that show a normal distribution and in variables with a skew. When
using the IQR, we detect outliers as those values that lie before the 25th per-
centile times a factor of the IQR, or after the 75th percentile times a factor of
the IQR. This factor is normally 1.5, or 3 if we want to be more stringent. With
the IQR method, the limits are calculated as follows:

IQR limits:

• right tail (upper_limit): 75th quantile + 3* IQR

• left tail (lower_limit): 25th quantile - 3* IQR

where IQR is the inter-quartile range:

• IQR = 75th quantile - 25th quantile = third quartile - first quartile.

Observations found beyond those limits can be considered extreme values.

Maximum absolute deviation

Parameters like the mean and the standard deviation are strongly affected by the
presence of outliers. Therefore, it might be a better solution to use a metric that
is robust against outliers, like the median absolute deviation from the median,
commonly shortened to the median absolute deviation (MAD), to delimit the
normal data distribution.

When we use MAD, we determine the limits of the distribution as follows:

MAD limits:

• right tail (upper_limit): median + 3* MAD

• left tail (lower_limit): median - 3* MAD

MAD is the median absolute deviation from the median. In other words, MAD
is the median value of the absolute difference between each observation and
its median.

• MAD = median(abs(X-median(X))

140 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Percentiles

A simpler way to determine the values that delimit the data distribution is by
using percentiles. Like this, outlier values would be those that lie before or
after a certain percentile or quantiles:

• right tail: 95th percentile

• left tail: 5th percentile

The number of outliers identified by any of these methods will vary. These
methods detect outliers, but they can’t decide if they are true outliers or faithful
data points. That required further examination and domain knowledge.

Let’s move on to removing outliers in Python.

Remove outliers in Python

In this demo, we’ll identify and remove outliers from the Titanic Dataset. First,
let’s load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.outliers import OutlierTrimmer

X, y = load_titanic(
return_X_y_frame=True,
predictors_only=True,
handle_missing=True,

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

We see the resulting pandas dataframe below:

pclass ␣
→˓ sex age sibsp parch fare cabin embarked
501 2 female␣
→˓ 13.000000 0 1 19.5000 Missing S
588 2 female␣
→˓ 4.000000 1 1 23.0000 Missing S
402 2 female␣
→˓ 30.000000 1 0 13.8583 Missing C
1193 3 ␣
→˓male 29.881135 0 0 7.7250 Missing Q
686 3 female␣
→˓ 22.000000 0 0 7.7250 Missing Q

10.2. User Guide 141

feature_engine Documentation, Release 1.7.0

Identifying outliers

Let’s now identify potential extreme values in the training set by using box-
plots.

X_train.boxplot(column=['age', 'fare', 'sibsp'])
plt.title("Box plot - outliers")
plt.ylabel("variable values")
plt.show()

In the following boxplots, we see that all three variables have data points that
are significantly greater than the majority of the data distribution. The variable
age also shows outlier values towards the lower values.

The variables have different scales, so let’s plot them individually for better
visualization. Let’s start by making a boxplot of the variable fare:

X_train.boxplot(column=['fare'])
plt.title("Box plot - outliers")
plt.ylabel("variable values")
plt.show()

We see the boxplot in the following image:

Next, we plot the variable age:

142 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

X_train.boxplot(column=['age'])
plt.title("Box plot - outliers")
plt.ylabel("variable values")
plt.show()

We see the boxplot in the following image:

And finally, we make a boxplot of the variable sibsp:

X_train.boxplot(column=['sibsp'])
plt.title("Box plot - outliers")
plt.ylabel("variable values")
plt.show()

We see the boxplot and the outlier values in the following image:

10.2. User Guide 143

feature_engine Documentation, Release 1.7.0

144 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Outlier removal

Now, we will use the OutlierTrimmer() to remove outliers. We’ll start by
using the IQR as outlier detection method.

IQR

We want to remove outliers at the right side of the distribution only (param
tail). We want the maximum values to be determined using the 75th quan-
tile of the variable (param capping_method) plus 1.5 times the IQR (param
fold). And we only want to cap outliers in 2 variables, which we indicate in
a list.

ot = OutlierTrimmer(capping_method='iqr',
tail='right',
fold=1.5,
variables=['sibsp', 'fare'],
)

ot.fit(X_train)

With fit(), the OutlierTrimmer() finds the values at which it should cap
the variables. These values are stored in one of its attributes:

ot.right_tail_caps_

{'sibsp': 2.5, 'fare': 66.34379999999999}

We can now go ahead and remove the outliers:

train_t = ot.transform(X_train)
test_t = ot.transform(X_test)

We can compare the sizes of the original and transformed datasets to check
that the outliers were removed:

X_train.shape, train_t.shape

We see that the transformed dataset contains less rows:

((916, 8), (764, 8))

If we evaluate now the maximum of the variables in the transformed datasets,
they should be <= the values observed in the attribute right_tail_caps_:

train_t[['fare', 'age']].max()

fare 65.0
age 53.0
dtype: float64

Finally, we can check the boxplots of the transformed variables to corroborate
the effect on their distribution.

10.2. User Guide 145

feature_engine Documentation, Release 1.7.0

train_t.boxplot(column=['sibsp', "fare"])
plt.title("Box plot - outliers")
plt.ylabel("variable values")
plt.show()

We see the boxplot and the sibsp does no longer have outliers, but as fare
was very skewed, when removing outliers, the parameters of the IQR change,
and we continue to see outliers:

We’ll come back to this later, but now let’s continue showing the functionality
of the OutlierTrimmer().

When we remove outliers from the datasets, we then need to re-align the target
variables. We can do this with pandas loc. But the OutlierTrimmer() can
do that automatically as follows:

train_t, y_train_t = ot.transform_x_y(X_train, y_train)
test_t, y_test_t = ot.transform_x_y(X_test, y_test)

The method transform_x_y will remove outliers from the predictor datasets
and then align the target variable. That means, it will remove from the target
those rows corresponding to the outlier values.

We can corroborate the size adjustment in the target as follows:

y_train.shape, y_train_t.shape,

The previous command returns the following output:

146 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

((916,), (764,))

We can obtain the names of the fetaures in the transformed dataset as follows:

ot.get_feature_names_out()

That returns the following variable namesL

['pclass', 'sex
→˓', 'age', 'sibsp', 'parch', 'fare', 'cabin', 'embarked']

MAD

We saw that the IQR did not work amazingly for the variable fare, because its
skew is too big. So let’s remove outliers by using the MAD instead:

ot = OutlierTrimmer(capping_method='mad',
tail='right',
fold=3,
variables=['fare'],
)

ot.fit(X_train)

train_t, y_train_t = ot.transform_x_y(X_train, y_train)
test_t, y_test_t = ot.transform_x_y(X_test, y_test)

train_t.boxplot(column=["fare"])
plt.title("Box plot - outliers")
plt.ylabel("variable values")
plt.show()

In the following image, we see that after this transformation, the variable fare
no longer shows outlier values:

Z-score

The variable age is more homogeneously distributed across its value range,
so let’s use the z-score or gaussian approximation to detect outliers. We saw
in the boxplot that it has outliers at both ends, so we’ll cap both ends of the
distribution:

ot_age = OutlierTrimmer(capping_method='gaussian',
tail="both",
fold=3,
variables=['age'],
)

ot_age.fit(X_train)

10.2. User Guide 147

feature_engine Documentation, Release 1.7.0

Let’s inspect the maximum values beyond which data points will be considered
outliers:

ot_age.right_tail_caps_

{'age': 67.73951212364803}

And the lower values beyond which data points will be considered outliers:

ot_age.left_tail_caps_

{'age': -7.410476010820627}

The minimum value does not make sense, because age can’t be negative. So,
we’ll try capping this variable with percentiles instead.

148 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Percentiles

We’ll cap age at the bottom 5 and top 95 percentile:

ot = OutlierTrimmer(capping_method='mad',
tail='right',
fold=3,
variables=['fare'],
)

ot.fit(X_train)

Let’s inspect the maximum values beyond which data points will be considered
outliers:

ot_age.right_tail_caps_

{'age': 54.0}

And the lower values beyond which data points will be considered outliers:

ot_age.left_tail_caps_

{'age': 9.0}

Let’s tranform the dataset and target:

train_
→˓t, y_train_t = ot_age.transform_x_y(X_train, y_train)
test_t, y_test_t = ot_age.transform_x_y(X_test, y_test)

And plot the resulting variable:

train_t.boxplot(column=['age'])
plt.title("Box plot - outliers")
plt.ylabel("variable values")
plt.show()

In the following image, we see that after this transformation, the variable age
still shows some outlier values towards its higher values, so we should be more
stringent with the percentiles or use MAD:

Pipeline

The OutlierTrimmer() removes observations from the predictor data sets.
If we want to use this transformer within a Pipeline, we can’t use Scikit-learn’s
pipeline because it can’t readjust the target. But we can use Feature-engine’s
pipeline instead.

Let’s start by creating a pipeline that removes outliers and then encodes cate-
gorical variables:

10.2. User Guide 149

feature_engine Documentation, Release 1.7.0

from feature_engine.encoding import OneHotEncoder
from feature_engine.pipeline import Pipeline

pipe = Pipeline(
[

("outliers", ot),
("enc", OneHotEncoder()),

]
)

pipe.fit(X_train, y_train)

The transform method will transform only the dataset with the predictors,
just like scikit-learn’s pipeline:

train_t = pipe.transform(X_train)

X_train.shape, train_t.shape

We see the adjusted data size compared to the original size here:

((916, 8), (736, 76))

Feature-engine’s pipeline can also adjust the target:

150 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

train_t, y_train_t = pipe.transform_x_y(X_train, y_train)

y_train.shape, y_train_t.shape

We see the adjusted data size compared to the original size here:

((916,), (736,))

To wrap up, let’s add a machine learning algorithm to the pipeline. We’ll use
logistic regression to predict survival:

from sklearn.linear_model import LogisticRegression

pipe = Pipeline(
[

("outliers", ot),
("enc", OneHotEncoder()),
("logit", LogisticRegression(random_state=10)),

]
)

pipe.fit(X_train, y_train)

Now, we can predict survival:

preds = pipe.predict(X_train)

preds[0:10]

We see the following output:

array([1, 1, 1, 0, 1, 0, 1, 1, 0, 1], dtype=int64)

We can obtain the probability of survival:

preds = pipe.predict_proba(X_train)

preds[0:10]

We see the following output:

array([[0.13027536, 0.86972464],
[0.14982143, 0.85017857],
[0.2783799 , 0.7216201],
[0.86907159, 0.13092841],
[0.31794531, 0.68205469],
[0.86905145, 0.13094855],
[0.1396715 , 0.8603285],
[0.48403632, 0.51596368],
[0.6299007 , 0.3700993],
[0.49712853, 0.50287147]])

We can obtain the accuracy of the predictions over the test set:

10.2. User Guide 151

feature_engine Documentation, Release 1.7.0

pipe.score(X_test, y_test)

That returns the following accuracy:

0.7823343848580442

We can obtain the names of the features after the trasnformation:

pipe[:-1].get_feature_names_out()

That returns the following names:

['pclass',
'age',
'sibsp',
'parch',
'fare',
'sex_female',
'sex_male',
'cabin_Missing',
...

And finally, we can obtain the transformed dataset and target as follows:

X_test_
→˓t, y_test_t = pipe[:-1].transform_x_y(X_test, y_test)

X_test.shape, X_test_t.shape

We see the resulting sizes here:

((393, 8), (317, 76))

Tutorials, books and courses

In the following Jupyter notebook, in our accompanying Github repository,
you will find more examples using OutlierTrimmer().

• Jupyter notebook

For tutorials about this and other feature engineering methods check out our
online course:

152 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/outliers/OutlierTrimmer.ipynb

feature_engine Documentation, Release 1.7.0

Fig. 43: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 44: Python Feature Engineering
Cookbook

Variance Stabilizing Transformations

Feature-engine’s variable transformers transform numerical variables with var-
ious mathematical transformations.

Variable transformations are commonly used to spread the values of the orig-
inal variables over a wider value range. See the following illustration:

Article

We added a lot of information about variance stabilizing transformations in
this article.

Note
Note however, that improving the value spread is not always possible and it
depends on the nature of the variable.

Transformers

10.2. User Guide 153

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo
https://www.blog.trainindata.com/variance-stabilizing-transformations-in-machine-learning/

feature_engine Documentation, Release 1.7.0

LogTransformer

The log transformation is used to transform skewed data so that the values are
more evenly distributed across the value range.

Some regression models, like linear regression, t-test and ANOVA, make as-
sumptions about the data. When the assumptions are not met, we can’t trust the
results. Applying data transformations is common practice during regression
analysis because it can help make the data meet those assumptions and hence
obtain more reliable results.

The logarithm function is helpful for dealing with positive data with a right-
skewed distribution. That is, those variables whose observations accumulate
towards lower values. A common example is the variable income, with a heavy
accumulation of values toward lower salaries.

More generally, when data follows a log-normal distribution, then its log-
transformed version approximates a normal distribution.

Other useful transformations are the square root transformation, power trans-
formations and the box cox transformation.

In statistical analysis, we can apply the logarithmic transformation to both the
dependent variable (that is, the target) and the independent variables (that is,
the predictors). These can help meet the linear regression model assumptions
and unmask a linear relationship between predictors and response variable.

With Feature-engine, we can only log transform input features. You can easily
transform the target variable by applying np.log(y).

154 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

The LogTransformer

The LogTransformer() applies the natural logarithm or the logarithm in base
10 to numerical variables. Note that the logarithm can only be applied to pos-
itive values. Thus, if the variable contains 0 or negative variables, this trans-
former will return and error.

To transform non-positive variables you can add a constant to shift the data
points towards positive values. You can do this from within the transformer by
using LogCpTransformer().

Python implementation

In this section, we will apply the logarithmic transformation to some indepen-
dent variables from the Ames house prices dataset.

Let’s start by importing the required libraries and transformers for data analysis
and then load the dataset and separate it into train and test sets.

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from feature_engine.transformation import LogTransformer

data = fetch_openml(name='house_prices', as_frame=True)
data = data.frame

X = data.drop(['SalePrice', 'Id'], axis=1)
y = data['SalePrice']

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

print(X_train.head())

In the following output we see the predictor variables of the house prices
dataset:

MSSubClass␣
→˓MSZoning LotFrontage LotArea Street Alley LotShape \
254 ␣
→˓ 20 RL 70.0 8400 Pave NaN Reg
1066 ␣
→˓ 60 RL 59.0 7837 Pave NaN IR1
638 ␣
→˓ 30 RL 67.0 8777 Pave NaN Reg
799 ␣
→˓ 50 RL 60.0 7200 Pave NaN Reg
380 ␣
→˓ 50 RL 50.0 5000 Pave Pave Reg

LandContour Utilities␣
(continues on next page)

10.2. User Guide 155

feature_engine Documentation, Release 1.7.0

(continued from previous page)

→˓LotConfig ... ScreenPorch PoolArea PoolQC Fence \
254 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN
1066 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN
638 Lvl ␣
→˓AllPub Inside ... 0 0 NaN MnPrv
799 Lvl ␣
→˓AllPub Corner ... 0 0 NaN MnPrv
380 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN

MiscFeature␣
→˓MiscVal MoSold YrSold SaleType SaleCondition
254 ␣
→˓ NaN 0 6 2010 WD Normal
1066 ␣
→˓ NaN 0 5 2009 WD Normal
638 ␣
→˓ NaN 0 5 2008 WD Normal
799 ␣
→˓ NaN 0 6 2007 WD Normal
380 ␣
→˓ NaN 0 5 2010 WD Normal

[5 rows x 79 columns]

Let’s inspect the distribution of 2 variables from the original data with his-
tograms.

X_train[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following plots we see that the variables show a right-skewed distribu-
tion, so they are good candidates for the log transformation:

156 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

We want to apply the natural logarithm to these 2 variables in the dataset using
the LogTransformer(). We set up the transformer as follows:

logt␣
→˓= LogTransformer(variables = ['LotArea', 'GrLivArea'])

logt.fit(X_train)

With fit(), this transformer does not learn any parameters, but it checks that
the variables you entered are numerical, or if no variable was entered, it will
automatically find all numerical variables.

To apply the logarithm in base 10, pass '10' to the base parameter when
setting up the transformer.

Now, we can go ahead and transform the data:

train_t = logt.transform(X_train)
test_t = logt.transform(X_test)

Let’s now examine the variable distribution in the log-transformed data with
histograms:

train_t[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following histograms we see that the natural log transformation helped
make the variables better approximate a normal distribution.

10.2. User Guide 157

feature_engine Documentation, Release 1.7.0

Note that the transformed variable has a more Gaussian looking distribution.

If we want to recover the original data representation, with the method
inverse_transform, the LogTransformer() will apply the exponential
function to obtain the variable in its original scale:

train_unt = logt.inverse_transform(train_t)
test_unt = logt.inverse_transform(test_t)

train_unt[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following plots we see histograms showing the variables in their original
scale:

158 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Following the transformations with scatter plots and residual analysis of the
regression models helps understand if the transformations are useful in our
regression analysis.

Tutorials, books and courses

You can find more details about the LogTransformer() here:

• Jupyter notebook

For tutorials about this and other data transformation methods, like the square
root transformation, power transformations, the box cox transformation, check
out our online course:

Fig. 45: Feature Engineering for Machine Learning

Or read our book:

10.2. User Guide 159

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/LogTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 46: Python Feature Engineering
Cookbook

LogCpTransformer

The LogCpTransformer() applies the transformation log(x + C), where C is
a positive constant.

You can enter the positive quantity to add to the variable. Alternatively, the
transformer will find the necessary quantity to make all values of the variable
positive.

Example

Let’s load the California housing dataset that comes with Scikit-learn and sep-
arate it into train and test sets.

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing

from feature_engine.transformation import LogCpTransformer

Load dataset
X, y = fetch_
→˓california_housing(return_X_y=True, as_frame=True)

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.3, random_state=0)

Now we want to apply the logarithm to 2 of the variables in the dataset using
the LogCpTransformer(). We want the transformer to detect automatically
the quantity “C” that needs to be added to the variable:

160 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

set up the variable transformer
tf = LogCpTransformer(variables␣
→˓= ["MedInc", "HouseAge"], C="auto")

fit the transformer
tf.fit(X_train)

With fit() the LogCpTransformer() learns the quantity “C” and stores it
as an attribute. We can visualise the learned parameters as follows:

learned constant C
tf.C_

{'MedInc': 1.4999, 'HouseAge': 2.0}

Applying the log of a variable plus a constant in this dataset does not make
much sense because all variables are positive, that is why the constant values
C for the former variables are possible.

We will carry on with the demo anyways.

We can now go ahead and transform the variables:

transform the data
train_t= tf.transform(X_train)
test_t= tf.transform(X_test)

Then we can plot the original variable distribution:

un-transformed variable
X_train["MedInc"].hist(bins=20)
plt.title("MedInc - original distribution")
plt.ylabel("Number of observations")

10.2. User Guide 161

feature_engine Documentation, Release 1.7.0

And the distribution of the transformed variable:

transformed variable
train_t["MedInc"].hist(bins=20)
plt.title("MedInc - transformed distribution")
plt.ylabel("Number of observations")

162 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Tutorials, books and courses

You can find more details about the LogCpTransformer() here:

• Jupyter notebook

For tutorials about this and other data transformation methods, like the square
root transformation, power transformations, the box cox transformation, check
out our online course:

10.2. User Guide 163

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/LogCpTransformer.ipynb

feature_engine Documentation, Release 1.7.0

Fig. 47: Feature Engineering for Machine Learning

Or read our book:

Fig. 48: Python Feature Engineering
Cookbook

Both our book and course are suitable for beginners and more advanced data
scientists alike.

ReciprocalTransformer

The ReciprocalTransformer() applies the reciprocal transformation 1 / x
to numerical variables.

The ReciprocalTransformer() only works with numerical variables with
non-zero values. If a variable contains the value 0, the transformer will raise
an error.

Let’s load the house prices dataset and separate it into train and test sets (more
details about the dataset here).

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine import transformation as vt

Load dataset
data = data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'], test_size=0.3, random_

→˓state=0)

Now we want to apply the reciprocal transformation to 2 variables in the dataframe:

164 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

set up the variable transformer
tf = vt.ReciprocalTransformer(variables = ['LotArea', 'GrLivArea'])

fit the transformer
tf.fit(X_train)

The transformer does not learn any parameters. So we can go ahead and transform the variables:

transform the data
train_t= tf.transform(X_train)
test_t= tf.transform(X_test)

Finally, we can plot the original variable distribution:

un-transformed variable
X_train['LotArea'].hist(bins=50)

And now the distribution after the transformation:

transformed variable
train_t['LotArea'].hist(bins=50)

10.2. User Guide 165

feature_engine Documentation, Release 1.7.0

Additional resources

You can find more details about the ReciprocalTransformer() here:

• Jupyter notebook

For more details about this and other feature engineering methods check out these resources:

Fig. 49: Feature Engineering for Machine Learning

Or read our book:

166 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/ReciprocalTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 50: Python Feature Engineering
Cookbook

ArcsinTransformer

The ArcsinTransformer() applies the arcsin transformation to numerical
variables.

The arcsine transformation, also called arcsin square root transformation, or
angular transformation, takes the form of arcsin(sqrt(x)) where x is a real num-
ber between 0 and 1.

The arcsin square root transformation helps in dealing with probabilities, per-
centages, and proportions.

The ArcsinTransformer() only works with numerical variables with values
between 0 and 1. If the variable contains a value outside of this range, the
transformer will raise an error.

Example

Let’s load the breast cancer dataset from scikit-learn and separate it into train
and test sets.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer

from␣
→˓feature_engine.transformation import ArcsinTransformer

#Load dataset
breast_cancer = load_breast_cancer()
X = pd.DataFrame(breast_
→˓cancer.data, columns=breast_cancer.feature_names)
y = breast_cancer.target

Separate data into train and test sets
X_train, X_test,␣
→˓y_train, y_test = train_test_split(X, y, random_state=0)

10.2. User Guide 167

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

Now we want to apply the arcsin transformation to some of the variables in
the dataframe. These variables values are in the range 0-1, as we will see in
coming histograms.

First, let’s make a list with the variable names:

vars_ = [
'mean compactness',
'mean concavity',
'mean concave points',
'mean fractal dimension',
'smoothness error',
'compactness error',
'concavity error',
'concave points error',
'symmetry error',
'fractal dimension error',
'worst symmetry',
'worst fractal dimension']

Now, let’s set up the arscin transformer to modify only the previous variables:

set up the arcsin transformer
tf = ArcsinTransformer(variables = vars_)

fit the transformer
tf.fit(X_train)

The transformer does not learn any parameters when applying the fit method.
It does check however that the variables are numericals and with the correct
value range.

We can now go ahead and transform the variables:

transform the data
train_t = tf.transform(X_train)
test_t = tf.transform(X_test)

And that’s it, now the variables have been transformed with the arscin formula.

Finally, let’s make a histogram for each of the original variables to examine
their distribution:

original variables
X_train[vars_].hist(figsize=(20,20))

168 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

You can see in the previous image that many of the variables are skewed. Note
however, that all variables had values between 0 and 1.

Now, let’s examine the distribution after the transformation:

transformed variable
train_t[vars_].hist(figsize=(20,20))

10.2. User Guide 169

feature_engine Documentation, Release 1.7.0

You can see in the previous image that many variables have after the transfor-
mation a more Gaussian looking shape.

Additional resources

For more details about this and other feature engineering methods check out
these resources:

Fig. 51: Feature Engineering for Machine Learning

Or read our book:

170 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 52: Python Feature Engineering
Cookbook

PowerTransformer

The PowerTransformer() applies power or exponential transformations to
numerical variables.

Let’s load the house prices dataset and separate it into train and test sets (more
details about the dataset here).

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine import transformation as vt

Load dataset
data = data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
␣

→˓ data['SalePrice'], test_size=0.3, random_state=0)

Now we want to apply the square root to 2 variables in the dataframe:

set up the variable transformer
tf = vt.PowerTransformer(variables␣
→˓= ['LotArea', 'GrLivArea'], exp=0.5)

fit the transformer
tf.fit(X_train)

The transformer does not learn any parameters. So we can go ahead and trans-
form the variables:

10.2. User Guide 171

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

transform the data
train_t= tf.transform(X_train)
test_t= tf.transform(X_test)

Finally, we can plot the original variable distribution:

un-transformed variable
X_train['LotArea'].hist(bins=50)

And now the distribution after the transformation:

transformed variable
train_t['LotArea'].hist(bins=50)

172 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Additional resources

You can find more details about the PowerTransformer() here:

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 53: Feature Engineering for Machine Learning

Or read our book:

10.2. User Guide 173

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/PowerTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 54: Python Feature Engineering
Cookbook

BoxCoxTransformer

The Box-Cox transformation is a generalization of the power transformations
family and is defined as follows:

y = (x** - 1) / , for != 0
y = log(x), for = 0

Here, y is the transformed data, x is the variable to transform and is the trans-
formation parameter.

The Box Cox transformation is used to reduce or eliminate variable skewness
and obtain features that better approximate a normal distribution.

The Box Cox transformation evaluates commonly used transformations. When
= 1 then we have the original variable, when = 0, we have the logarithm trans-
formation, when = - 1 we have the reciprocal transformation, and when = 0.5
we have the square root.

The Box-Cox transformation evaluates several values of using the maximum
likelihood, and selects the optimal value of the parameter, which is the one
that returns the best transformation. The best transformation occurs when the
transformed data better approximates a normal distribution.

The Box Cox transformation is defined for strictly positive variables. If your
variables are not strictly positive, you can add a constant or use the Yeo-
Johnson transformation instead.

Uses of the Box Cox Transformation

Many statistical methods that we use for data analysis make assumptions about
the data. For example, the linear regression model assumes that the values of
the dependent variable are independent, that there is a linear relationship be-
tween the response variable and the independent variables, and that the resid-
uals are normally distributed and centered at 0.

When these assumptions are not met, we can’t fully trust the results of our
regression analyses. To make data meet the assumptions and improve the trust
in the models, it is common practice in data science projects to transform the
variables before the analysis.

174 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

In time series forecasting, we use the Box Cox transformation to make non-
stationary time series stationary.

References

George Box and David Cox. “An Analysis of Transformations”. Read at a
RESEARCH MEETING, 1964. https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/j.2517-6161.1964.tb00553.x

BoxCoxTransformer

The BoxCoxTransformer() applies the BoxCox transformation to numerical
variables. It uses SciPy.stats under the hood to apply the transformation.

The BoxCox transformation works only for strictly positive variables (>=0).
If the variable contains 0 or negative values, the BoxCoxTransformer() will
return an error. To apply this transformation to non-positive variables, you can
add a constant value. Alternatively, you can apply the Yeo-Johnson transfor-
mation with the YeoJohnsonTransformer().

Python code examples

In this section, we will apply this data transformation to 2 variables of the
Ames house prices dataset.

Let’s start by importing the modules, classes and functions and then loading
the house prices dataset and separating it into train and test sets.

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

from␣
→˓feature_engine.transformation import BoxCoxTransformer

data = fetch_openml(name='house_prices', as_frame=True)
data = data.frame

X = data.drop(['SalePrice', 'Id'], axis=1)
y = data['SalePrice']

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)

print(X_train.head())

In the following output we see the predictor variables of the house prices
dataset:

10.2. User Guide 175

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html

feature_engine Documentation, Release 1.7.0

MSSubClass␣
→˓MSZoning LotFrontage LotArea Street Alley LotShape \
254 ␣
→˓ 20 RL 70.0 8400 Pave NaN Reg
1066 ␣
→˓ 60 RL 59.0 7837 Pave NaN IR1
638 ␣
→˓ 30 RL 67.0 8777 Pave NaN Reg
799 ␣
→˓ 50 RL 60.0 7200 Pave NaN Reg
380 ␣
→˓ 50 RL 50.0 5000 Pave Pave Reg

LandContour Utilities␣
→˓LotConfig ... ScreenPorch PoolArea PoolQC Fence \
254 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN
1066 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN
638 Lvl ␣
→˓AllPub Inside ... 0 0 NaN MnPrv
799 Lvl ␣
→˓AllPub Corner ... 0 0 NaN MnPrv
380 Lvl ␣
→˓AllPub Inside ... 0 0 NaN NaN

MiscFeature␣
→˓MiscVal MoSold YrSold SaleType SaleCondition
254 ␣
→˓ NaN 0 6 2010 WD Normal
1066 ␣
→˓ NaN 0 5 2009 WD Normal
638 ␣
→˓ NaN 0 5 2008 WD Normal
799 ␣
→˓ NaN 0 6 2007 WD Normal
380 ␣
→˓ NaN 0 5 2010 WD Normal

[5 rows x 79 columns]

Let’s inspect the distribution of 2 variables in the original data with histograms.

X_train[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following plots we see that the variables are non-normally distributed:

176 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Now we apply the BoxCox transformation to the 2 indicated variables. First,
we set up the transformer and fit it to the train set, so that it finds the optimal
lambda value.

boxcox =␣
→˓BoxCoxTransformer(variables = ['LotArea', 'GrLivArea'])
boxcox.fit(X_train)

With fit(), the BoxCoxTransformer() learns the optimal lambda for the
transformation. We can inspect these values as follows:

boxcox.lambda_dict_

We see the optimal lambda values below:

{'LotArea': 0.
→˓0028222323212918547, 'GrLivArea': -0.006312580181375803}

Now, we can go ahead and transform the data:

train_t = boxcox.transform(X_train)
test_t = boxcox.transform(X_test)

Let’s now examine the variable distribution after the transformation with his-
tograms:

train_t[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following histograms we see that the variables approximate better the
normal distribution.

10.2. User Guide 177

feature_engine Documentation, Release 1.7.0

If we want to recover the original data representation, we can also do so as
follows:

train_unt = boxcox.inverse_transform(train_t)
test_unt = boxcox.inverse_transform(test_t)

train_unt[['LotArea', 'GrLivArea']].hist(figsize=(10,5))
plt.show()

In the following plots we see that the variables are non-normally distributed,
because they contain the original values, prior to the data transformation:

178 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Tutorials, books and courses

You can find more details about the Box Cox transformation technique with
the BoxCoxTransformer() here:

• Jupyter notebook

For tutorials about this and other data transformation techniques and feature
engineering methods check out our online courses:

Fig. 55: Feature Engineering for Machine Learning

Fig. 56: Feature Engineering for Time Series Forecasting

Or read our book:

10.2. User Guide 179

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/BoxCoxTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Our book and courses are suitable for beginners and more
advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-engine.

Fig. 57: Python Feature Engineering
Cookbook

YeoJohnsonTransformer

The YeoJohnsonTransformer() applies the Yeo-Johnson transformation to
the numerical variables.

The Yeo-Johnson transformation is defined as:

where Y is the response variable and is the transformation parameter.

The Yeo-Johnson transformation implemented by this transformer is that of
SciPy.stats.

Example
Let’s load the house prices dataset and separate it into train and test sets (more
details about the dataset here).

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from feature_engine import transformation as vt

Load dataset
data = data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
␣

→˓ data['SalePrice'], test_size=0.3, random_state=0)

Now we apply the Yeo-Johnson transformation to the 2 indicated variables:

set up the variable transformer
tf = vt.YeoJohnsonTransformer(variables␣
→˓= ['LotArea', 'GrLivArea'])

fit the transformer
tf.fit(X_train)

With fit(), the YeoJohnsonTransformer() learns the optimal lambda for
the transformation. Now we can go ahead and trasnform the data:

180 Chapter 10. Table of Contents

https://packt.link/0ewSo
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html

feature_engine Documentation, Release 1.7.0

transform the data
train_t= tf.transform(X_train)
test_t= tf.transform(X_test)

Next, we make a histogram of the original variable distribution:

un-transformed variable
X_train['LotArea'].hist(bins=50)

And now, we can explore the distribution of the variable after the transforma-
tion:

transformed variable
train_t['LotArea'].hist(bins=50)

10.2. User Guide 181

feature_engine Documentation, Release 1.7.0

Additional resources

You can find more details about the YeoJohnsonTransformer() here:

• Jupyter notebook

For more details about this and other feature engineering methods check out
these resources:

Fig. 58: Feature Engineering for Machine Learning

Or read our book:

182 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/transformation/YeoJohnsonTransformer.ipynb
https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

10.2.2 Creation

Feature Creation

Feature creation, is a common step during data preprocessing, and consists
of constructing new variables from the dataset’s original features. By com-
bining two or more variables, we develop new features that can improve the
performance of a machine learning model, capture additional information or
relationships among variables, or simply make more sense within the domain
we are working on.

One of the most common feature creation methods in data science is one-hot
encoding, which is a feature engineering technique used to transform a cate-
gorical feature into multiple binary variables that represent each category.

Another common feature extraction procedure consist of creating new features
from past values of time series data, for example through the use of lags and
windows.

In general, creating features requires a dose of domain knowledge and signif-
icant time invested in analyzing the raw data, including evaluating the rela-
tionship between the independent or predictor variables and the dependent or
target variable in the dataset.

Feature creation can be one of the more creative aspects of feature engineering,
and the new features can help improve a predictive model’s performance.

Lastly, a data scientist should be mindful that creating new features may in-
crease the dimensionality of the dataset quite dramatically. For example, one
hot encoding of highly cardinal categorical features results in lots of binary
variables, and so does polynomial combinations of high powers. This may
have downstream effects depending on the machine learning algorithm being
used. For example, decision trees are known for not being able to cope with
huge number of features.

10.2. User Guide 183

https://www.blog.trainindata.com/one-hot-encoding-categorical-variables/
https://www.blog.trainindata.com/one-hot-encoding-categorical-variables/

feature_engine Documentation, Release 1.7.0

Creating New Features with Feature-engine

Feature-engine has several transformers that create and add new features to
the dataset. One of the most popular ones is the OneHotEncoder that creates
dummy variables from categorical features.

With Feature-engine we can also create new features from time series data
through lags and windows by using LagFeatures or WindowFeatures.

Feature-engine’s creation module, supports transformers that create and add
new features to a pandas dataframe by either combining existing features
through different mathematical or statistical operations, or through feature
transformations. These transformers operate with numerical variables, that
is, those with integer and float data types.

Summary of Feature-engine’s feature-creation transformers:

• CyclicalFeatures - Creates two new features per variable by applying the
trigonometric operations sine and cosine to the original feature.

• MathFeatures - Combines a set of features into new variables by applying
basic mathematical functions like the sum, mean, maximum or standard devi-
ation.

• RelativeFeatures - Utilizes basic mathematical functions between a group of
variables and one or more reference features, appending the new features to
the pandas dataframe.

Feature creation module

CyclicalFeatures

Some features are inherently cyclical. Clear examples are time features, i.e.,
those features derived from datetime variables like the hours of the day, the
days of the week, or the months of the year.

But that’s not the end of it. Many variables related to natural processes are
also cyclical, like, for example, tides, moon cycles, or solar energy generation
(which coincides with light periods, which are cyclical).

In cyclical features, higher values of the variable are closer to lower values.
For example, December (12) is closer to January (1) than to June (6).

How can we convey to machine learning models like linear regression the cycli-
cal nature of the features?

In the article “Advanced machine learning techniques for building performance
simulation,” the authors engineered cyclical variables by representing them as
(x,y) coordinates on a circle. The idea was that, after preprocessing the cyclical
data, the lowest value of every cyclical feature would appear right next to the
largest value.

To represent cyclical features in (x, y) coordinates, the authors created two new
features, deriving the sine and cosine components of the cyclical variable. We
can call this procedure “cyclical encoding.”

184 Chapter 10. Table of Contents

https://feature-engine.trainindata.com/en/latest/user_guide/encoding/OneHotEncoder.html
https://feature-engine.trainindata.com/en/latest/user_guide/timeseries/forecasting/LagFeatures.html
https://feature-engine.trainindata.com/en/latest/user_guide/timeseries/forecasting/WindowFeatures.html

feature_engine Documentation, Release 1.7.0

Cyclical encoding

The trigonometric functions sine and cosine are periodic and repeat their val-
ues every 2 pi radians. Thus, to transform cyclical variables into (x, y) coor-
dinates using these functions, first we need to normalize them to 2 pi radians.

We achieve this by dividing the variables’ values by their maximum value.
Thus, the two new features are derived as follows:

• var_sin = sin(variable * (2. * pi / max_value))

• var_cos = cos(variable * (2. * pi / max_value))

In Python, we can encode cyclical features by using the Numpy functions sin
and cos:

import numpy as np

X[f"{variable}_sin"] = np.
→˓sin(X["variable"] * (2.0 * np.pi / X["variable"]).max())
X[f"{variable}_cos"] = np.
→˓cos(X["variable"] * (2.0 * np.pi / X["variable"]).max())

We can also use Feature-Engine to automate this process.

Cyclical encoding with Feature-engine

CyclicalFeatures() creates two new features from numerical vari-
ables to better capture the cyclical nature of the original variable.
CyclicalFeatures() returns two new features per variable, according to:

• var_sin = sin(variable * (2. * pi / max_value))

• var_cos = cos(variable * (2. * pi / max_value))

where max_value is the maximum value in the variable, and pi is 3.14. . .

Example

In this example, we obtain cyclical features from the variables days of the week
and months. We first create a toy dataframe with the variables “days” and
“months”:

import pandas as pd
from feature_engine.creation import CyclicalFeatures

df = pd.DataFrame({
'day': [6, 7, 5, 3, 1, 2, 4],
'months': [3, 7, 9, 12, 4, 6, 12],
})

Now we set up the transformer to find the maximum value of each variable
automatically:

10.2. User Guide 185

feature_engine Documentation, Release 1.7.0

cyclical␣
→˓= CyclicalFeatures(variables=None, drop_original=False)

X = cyclical.fit_transform(df)

The maximum values used for the transformation are stored in the attribute
max_values_:

print(cyclical.max_values_)

{'day': 7, 'months': 12}

Let’s have a look at the transformed dataframe:

print(X.head())

We can see that the new variables were added at the right of our dataframe.

day months␣
→˓ day_sin day_cos months_sin months_cos
0 6 ␣
→˓ 3 -7.818315e-01 0.623490 1.000000e+00 6.123234e-17
1 7 ␣
→˓ 7 -2.449294e-16 1.000000 -5.000000e-01 -8.660254e-01
2 5 ␣
→˓ 9 -9.749279e-01 -0.222521 -1.000000e+00 -1.836970e-16
3 3 ␣
→˓ 12 4.338837e-01 -0.900969 -2.449294e-16 1.000000e+00
4 1 ␣
→˓ 4 7.818315e-01 0.623490 8.660254e-01 -5.000000e-01

We set the parameter drop_original to False, which means that we keep
the original variables. If we want them dropped after the feature creation, we
can set the parameter to True.

We can now use the new features, which convey the cyclical nature of the data,
to train machine learning algorithms, like linear or logistic regression, among
others.

Finally, we can obtain the names of the variables of the transformed dataset as
follows:

cyclical.get_feature_names_out()

This returns the name of all the variables in the final output, original and and
new:

['day', 'months
→˓', 'day_sin', 'day_cos', 'months_sin', 'months_cos']

186 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Cyclical feature visualization

We now know how to convert cyclical variables into (x, y) coordinates of a
circle by using the sine and cosine functions. Let’s now carry out some visu-
alizations to better understand the effect of this transformation.

Let’s create a toy dataframe:

import pandas as pd
import matplotlib.pyplot as plt

df␣
→˓= pd.DataFrame([i for i in range(24)], columns=['hour'])

Our dataframe looks like this:

df.head()

hour
0 0
1 1
2 2
3 3
4 4

Let’s now compute the sine and cosine features:

cyclical = CyclicalFeatures(variables=None)

df = cyclical.fit_transform(df)

print(df.head())

These are the sine and cosine features that represent the hour:

hour hour_sin hour_cos
0 0 0.000000 1.000000
1 1 0.269797 0.962917
2 2 0.519584 0.854419
3 3 0.730836 0.682553
4 4 0.887885 0.460065

Let’s now plot the hour variable against its sine transformation. We add per-
pendicular lines to flag the hours 0 and 22.

plt.scatter(df["hour"], df["hour_sin"])

Axis labels
plt.ylabel('Sine of hour')
plt.xlabel('Hour')
plt.title('Sine transformation')

plt.vlines(x=0,
→˓ ymin=-1, ymax=0, color='g', linestyles='dashed')

(continues on next page)

10.2. User Guide 187

feature_engine Documentation, Release 1.7.0

(continued from previous page)

plt.vlines(x=22,
→˓ ymin=-1, ymax=-0.25, color='g', linestyles='dashed')

After the transformation using the sine function, we see that the new values
for the hours 0 and 22 are closer to each other (follow the dashed lines), which
was the expectation:

The problem with trigonometric transformations, is that, because they are pe-
riodic, 2 different observations can also return similar values after the trans-
formation. Let’s explore that:

plt.scatter(df["hour"], df["hour_sin"])

Axis labels
plt.ylabel('Sine of hour')
plt.xlabel('Hour')
plt.title('Sine transformation')

plt.hlines(y=0,
→˓ xmin=0, xmax=11.5, color='r', linestyles='dashed')

plt.vlines(x=0,
→˓ ymin=-1, ymax=0, color='g', linestyles='dashed')
plt.vlines(x=11.
→˓5, ymin=-1, ymax=0, color='g', linestyles='dashed')

188 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

In the plot below, we see that the hours 0 and 11.5 obtain very similar values
after the sine transformation. So how can we differentiate them?

To fully code the information of the hour, we must use the sine and cosine
trigonometric transformations together. Adding the cosine function, which is
out of phase with the sine function, breaks the symmetry and assigns a unique
codification to each hour.

Let’s explore that:

plt.scatter(df["hour"], df["hour_sin"])
plt.scatter(df["hour"], df["hour_cos"])

Axis labels
plt.ylabel('Sine and cosine of hour')
plt.xlabel('Hour')
plt.title('Sine and Cosine transformation')

plt.hlines(y=0,
→˓ xmin=0, xmax=11.5, color='r', linestyles='dashed')

plt.vlines(x=0,
→˓ ymin=-1, ymax=1, color='g', linestyles='dashed')
plt.vlines(x=11.
→˓5, ymin=-1, ymax=1, color='g', linestyles='dashed')

The hour 0, after the transformation, takes the values of sine 0 and cosine 1,

10.2. User Guide 189

feature_engine Documentation, Release 1.7.0

which makes it different from the hour 11.5, which takes the values of sine 0
and cosine -1. In other words, with the two functions together, we are able to
distinguish all observations within our original variable.

Finally, let’s vizualise the (x, y) circle coordinates generated by the sine and
cosine features.

fig, ax = plt.subplots(figsize=(7, 5))
sp =␣
→˓ax.scatter(df["hour_sin"], df["hour_cos"], c=df["hour"])
ax.set(

xlabel="sin(hour)",
ylabel="cos(hour)",

)
_ = fig.colorbar(sp)

190 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

That’s it, you now know how to represent cyclical data through the use of
trigonometric functions and cyclical encoding.

Additional resources

For tutorials on how to create cyclical features, check out the following courses:

Fig. 60: Feature Engineering for Machine Learning

10.2. User Guide 191

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 61: Feature Engineering for Time Series Forecasting

For a comparison between one-hot encoding, ordinal en-
coding, cyclical encoding and spline encoding of cyclical
features check out the following sklearn demo.

Check also these Kaggle demo on the use of cyclical en-
coding with neural networks:

• Encoding Cyclical Features for Deep Learning.

MathFeatures

MathFeatures() applies basic functions to groups of fea-
tures, returning one or more additional variables as a re-
sult. It uses pandas.agg() to create the features, so in
essence, you can pass any function that is accepted by this
method. One exception is that MathFeatures() does not
accept dictionaries for the parameter func.

The functions can be passed as strings, numpy methods,
i.e., np.mean, or any function that you create, as long as, it
returns a scalar from a vector.

For supported aggregation functions, see pandas documentation.

As an example, if we have the variables:

• number_payments_first_quarter
• number_payments_second_quarter
• number_payments_third_quarter
• number_payments_fourth_quarter

we can use MathFeatures() to calculate the total number of payments and mean number of payments as follows:

transformer = MathFeatures(
variables=[

'number_payments_first_quarter',
'number_payments_second_quarter',
'number_payments_third_quarter',
'number_payments_fourth_quarter'

],
func=['sum','mean'],
new_variables_name=[

'total_number_payments',
(continues on next page)

192 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://www.kaggle.com/code/avanwyk/encoding-cyclical-features-for-deep-learning
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.agg.html

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'mean_number_payments'
]

)

Xt = transformer.fit_transform(X)

The transformed dataset, Xt, will contain the additional features total_number_payments and
mean_number_payments, plus the original set of variables.

The variable total_number_payments is obtained by adding up the features indicated in variables, whereas the
variable mean_number_payments is the mean of those 4 features.

Examples

Let’s dive into how we can use MathFeatures() in more details. Let’s first create a toy dataset:

import numpy as np
import pandas as pd
from feature_engine.creation import MathFeatures

df = pd.DataFrame.from_dict(
{

"Name": ["tom", "nick", "krish", "jack"],
"City": ["London", "Manchester", "Liverpool", "Bristol"],
"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],
"dob": pd.date_range("2020-02-24", periods=4, freq="T"),

})

print(df)

The dataset looks like this:

Name City Age Marks dob
0 tom London 20 0.9 2020-02-24 00:00:00
1 nick Manchester 21 0.8 2020-02-24 00:01:00
2 krish Liverpool 19 0.7 2020-02-24 00:02:00
3 jack Bristol 18 0.6 2020-02-24 00:03:00

We can now apply several functions over the numerical variables Age and Marks using strings to indicate the functions:

transformer = MathFeatures(
variables=["Age", "Marks"],
func = ["sum", "prod", "min", "max", "std"],

)

df_t = transformer.fit_transform(df)

print(df_t)

And we obtain the following dataset, where the new variables are named after the function used to obtain them, plus
the group of variables that were used in the computation:

10.2. User Guide 193

feature_engine Documentation, Release 1.7.0

Name City Age Marks dob sum_Age_Marks \
0 tom London 20 0.9 2020-02-24 00:00:00 20.9
1 nick Manchester 21 0.8 2020-02-24 00:01:00 21.8
2 krish Liverpool 19 0.7 2020-02-24 00:02:00 19.7
3 jack Bristol 18 0.6 2020-02-24 00:03:00 18.6

prod_Age_Marks min_Age_Marks max_Age_Marks std_Age_Marks
0 18.0 0.9 20.0 13.505740
1 16.8 0.8 21.0 14.283557
2 13.3 0.7 19.0 12.940054
3 10.8 0.6 18.0 12.303658

For more flexibility, we can pass existing functions to the func argument as follows:

transformer = MathFeatures(
variables=["Age", "Marks"],
func = [np.sum, np.prod, np.min, np.max, np.std],

)

df_t = transformer.fit_transform(df)

print(df_t)

And we obtain the following dataframe:

Name City Age Marks dob sum_Age_Marks \
0 tom London 20 0.9 2020-02-24 00:00:00 20.9
1 nick Manchester 21 0.8 2020-02-24 00:01:00 21.8
2 krish Liverpool 19 0.7 2020-02-24 00:02:00 19.7
3 jack Bristol 18 0.6 2020-02-24 00:03:00 18.6

prod_Age_Marks amin_Age_Marks amax_Age_Marks std_Age_Marks
0 18.0 0.9 20.0 13.505740
1 16.8 0.8 21.0 14.283557
2 13.3 0.7 19.0 12.940054
3 10.8 0.6 18.0 12.303658

We have the option to set the parameter drop_original to True to drop the variables after performing the calculations.

We can obtain the names of all the features in the transformed data as follows:

transformer.get_feature_names_out(input_features=None)

Which will return the names of all the variables in the transformed data:

['Name',
'City',
'Age',
'Marks',
'dob',
'sum_Age_Marks',
'prod_Age_Marks',
'amin_Age_Marks',

(continues on next page)

194 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'amax_Age_Marks',
'std_Age_Marks']

New variables names

Even though the transfomer allows to combine variables automatically, its use is intended to combine variables with
domain knowledge. In this case, we normally want to give meaningful names to the variables. We can do so through
the parameter new_variables_names.

new_variables_names takes a list of strings, with the new variable names. In this parameter, you need to enter a list
of names for the newly created features. You must enter one name for each function indicated in the func parameter.
That is, if you want to perform mean and sum of features, you should enter 2 new variable names. If you compute only
the mean of features, enter 1 variable name.

The name of the variables should coincide with the order of the functions in func. That is, if you set func = ['mean',
'prod'], the first new variable name will be assigned to the mean of the variables and the second variable name to the
product of the variables.

Let’s look at an example. In the following code snippet, we add up, and find the maximum and minimum value of 2
variables, which results in 3 new features. We add the names for the new features in a list:

transformer = MathFeatures(
variables=["Age", "Marks"],
func = ["sum", "min", "max"],
new_variables_names = ["sum_vars", "min_vars", "max_vars"]

)

df_t = transformer.fit_transform(df)

print(df_t)

The resulting dataframe contains the new features under the variable names that we provided:

Name City Age Marks dob sum_vars min_vars \
0 tom London 20 0.9 2020-02-24 00:00:00 20.9 0.9
1 nick Manchester 21 0.8 2020-02-24 00:01:00 21.8 0.8
2 krish Liverpool 19 0.7 2020-02-24 00:02:00 19.7 0.7
3 jack Bristol 18 0.6 2020-02-24 00:03:00 18.6 0.6

max_vars
0 20.0
1 21.0
2 19.0
3 18.0

10.2. User Guide 195

feature_engine Documentation, Release 1.7.0

Additional resources

For more details about this and other feature engineering methods check out these resources:

Fig. 62: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 63: Python Feature Engineering
Cookbook

RelativeFeatures

RelativeFeatures() applies basic mathematical operations between a
group of variables and one or more reference features, adding the resulting
features to the dataframe.

RelativeFeatures() uses the pandas methods pd.DataFrame.add(), pd.
DataFrame.sub(), pd.DataFrame.mul(), pd.DataFrame.div(), pd.
DataFrame.truediv(), pd.DataFrame.floordiv(), pd.DataFrame.
mod() and pd.DataFrame.pow() to transform a group of variables by a
group of reference variables.

196 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

For example, if we have the variables:

• number_payments_first_quarter
• number_payments_second_quarter
• number_payments_third_quarter
• number_payments_fourth_quarter
• total_payments,

we can use RelativeFeatures() to determine the percentage of payments
per quarter as follows:

transformer = RelativeFeatures(
variables=[

'number_payments_first_quarter',
'number_payments_second_quarter',
'number_payments_third_quarter',
'number_payments_fourth_quarter',

],
reference=['total_payments'],
func=['div'],

)

Xt = transformer.fit_transform(X)

The precedent code block will return a new dataframe, Xt, with 4 new variables
that are calculated as the division of each one of the variables in variables
and ‘total_payments’.

Examples

Let’s dive into how we can use RelativeFeatures() in more details. Let’s
first create a toy dataset:

import pandas as pd
from feature_engine.creation import RelativeFeatures

df = pd.DataFrame.from_dict(
{

"Name": ["tom", "nick", "krish", "jack"],
"City

→˓": ["London", "Manchester", "Liverpool", "Bristol"],
"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],
␣

→˓"dob": pd.date_range("2020-02-24", periods=4, freq="T"),
})

print(df)

The dataset looks like this:

10.2. User Guide 197

feature_engine Documentation, Release 1.7.0

Name City Age Marks dob
0 tom London 20 0.9 2020-02-24 00:00:00
1 nick Manchester 21 0.8 2020-02-24 00:01:00
2 krish Liverpool 19 0.7 2020-02-24 00:02:00
3 jack Bristol 18 0.6 2020-02-24 00:03:00

We can now apply several functions between the numerical variables Age and
Marks and Age as follows:

transformer = RelativeFeatures(
variables=["Age", "Marks"],
reference=["Age"],
func = ["sub", "div", "mod", "pow"],

)

df_t = transformer.fit_transform(df)

print(df_t)

And we obtain the following dataset, where the new variables are named after
the variables that were used for the calculation and the function in the middle of
their names. Thus, Mark_sub_Agemeans Mark - Age, and Marks_mod_Age
means Mark % Age.

Name ␣
→˓ City Age Marks dob Age_sub_Age \
0 tom␣
→˓ London 20 0.9 2020-02-24 00:00:00 0
1 nick␣
→˓ Manchester 21 0.8 2020-02-24 00:01:00 0
2 krish␣
→˓ Liverpool 19 0.7 2020-02-24 00:02:00 0
3 jack␣
→˓ Bristol 18 0.6 2020-02-24 00:03:00 0

Marks_sub_Age Age_
→˓div_Age Marks_div_Age Age_mod_Age Marks_mod_Age \
0 -19.1␣
→˓ 1.0 0.045000 0 0.9
1 -20.2␣
→˓ 1.0 0.038095 0 0.8
2 -18.3␣
→˓ 1.0 0.036842 0 0.7
3 -17.4␣
→˓ 1.0 0.033333 0 0.6

Age_pow_Age Marks_pow_Age
0 -2101438300051996672 0.121577
1 -1595931050845505211 0.009223
2 6353754964178307979 0.001140
3 -497033925936021504 0.000102

We can obtain the names of all the features in the transformed data as follows:

198 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

transformer.get_feature_names_out(input_features=None)

Which will return the names of all the variables in the transformed data:

['Name',
'City',
'Age',
'Marks',
'dob',
'Age_sub_Age',
'Marks_sub_Age',
'Age_div_Age',
'Marks_div_Age',
'Age_mod_Age',
'Marks_mod_Age',
'Age_pow_Age',
'Marks_pow_Age']

Additional resources

For more details about this and other feature engineering methods check out
these resources:

Fig. 64: Feature Engineering for Machine Learning

Or read our book:

10.2. User Guide 199

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

Fig. 65: Python Feature Engineering
Cookbook

Feature-engine in Practice

Here, you’ll get a taste of the transformers from the feature creation mod-
ule from Feature-engine. We’ll use the wine quality dataset. The dataset is
comprised of 11 features, including alcohol, ash, and flavonoids, and has
quality as its target variable.

Through exploratory data analysis and our domain knowledge which includes
real-world experimentation, i.e., drinking various brands/types of wine, we
believe that we can create better features to train our algorithm by combining
original features with various mathematical operations.

Let’s load the dataset from Scikit-learn.

import pandas as pd
from sklearn.datasets import load_wine
from feature_
→˓engine.creation import RelativeFeatures, MathFeatures

X, y = load_wine(return_X_y=True, as_frame=True)
print(X.head())

Below we see the wine quality dataset:

alcohol malic_acid␣
→˓ ash alcalinity_of_ash magnesium total_phenols \
0 14.23 ␣
→˓ 1.71 2.43 15.6 127.0 2.80
1 13.20 ␣
→˓ 1.78 2.14 11.2 100.0 2.65
2 13.16 ␣
→˓ 2.36 2.67 18.6 101.0 2.80
3 14.37 ␣
→˓ 1.95 2.50 16.8 113.0 3.85
4 13.24 ␣
→˓ 2.59 2.87 21.0 118.0 2.80

flavanoids nonflavanoid_
→˓phenols proanthocyanins color_intensity hue \
0 3.06 ␣
→˓ 0.28 2.29 5.64 1.04
1 2.76 ␣
→˓ 0.26 1.28 4.38 1.05
2 3.24 ␣

(continues on next page)

200 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

(continued from previous page)

→˓ 0.30 2.81 5.68 1.03
3 3.49 ␣
→˓ 0.24 2.18 7.80 0.86
4 2.69 ␣
→˓ 0.39 1.82 4.32 1.04

od280/od315_of_diluted_wines proline
0 3.92 1065.0
1 3.40 1050.0
2 3.17 1185.0
3 3.45 1480.0
4 2.93 735.0

Now, we create a new feature by removing non-flavonoid phenols from the
total phenols to obtain the phenols that are not flavonoid.

rf = RelativeFeatures(
variables=["total_phenols"],
reference=["nonflavanoid_phenols"],
func=["sub"],

)

rf.fit(X)
X_tr = rf.transform(X)

print(X_tr.head())

We see the new feature and its data points at the right of the pandas dataframe:

alcohol malic_acid␣
→˓ ash alcalinity_of_ash magnesium total_phenols \
0 14.23 ␣
→˓ 1.71 2.43 15.6 127.0 2.80
1 13.20 ␣
→˓ 1.78 2.14 11.2 100.0 2.65
2 13.16 ␣
→˓ 2.36 2.67 18.6 101.0 2.80
3 14.37 ␣
→˓ 1.95 2.50 16.8 113.0 3.85
4 13.24 ␣
→˓ 2.59 2.87 21.0 118.0 2.80

flavanoids nonflavanoid_
→˓phenols proanthocyanins color_intensity hue \
0 3.06 ␣
→˓ 0.28 2.29 5.64 1.04
1 2.76 ␣
→˓ 0.26 1.28 4.38 1.05
2 3.24 ␣
→˓ 0.30 2.81 5.68 1.03
3 3.49 ␣
→˓ 0.24 2.18 7.80 0.86

(continues on next page)

10.2. User Guide 201

feature_engine Documentation, Release 1.7.0

(continued from previous page)

4 2.69 ␣
→˓ 0.39 1.82 4.32 1.04

od280/od315_of_diluted_wines proline \
0 3.92 1065.0
1 3.40 1050.0
2 3.17 1185.0
3 3.45 1480.0
4 2.93 735.0

total_phenols_sub_nonflavanoid_phenols
0 2.52
1 2.39
2 2.50
3 3.61
4 2.41

Let’s now create new features by combining a subset of 3 existing variables:

mf = MathFeatures(
␣

→˓ variables=["flavanoids", "proanthocyanins", "proline"],
func=["sum", "mean"],

)

mf.fit(X_tr)
X_tr = mf.transform(X_tr)

print(X_tr.head())

We see the new features at the right of the resulting pandas dataframe:

alcohol malic_acid␣
→˓ ash alcalinity_of_ash magnesium total_phenols \
0 14.23 ␣
→˓ 1.71 2.43 15.6 127.0 2.80
1 13.20 ␣
→˓ 1.78 2.14 11.2 100.0 2.65
2 13.16 ␣
→˓ 2.36 2.67 18.6 101.0 2.80
3 14.37 ␣
→˓ 1.95 2.50 16.8 113.0 3.85
4 13.24 ␣
→˓ 2.59 2.87 21.0 118.0 2.80

flavanoids nonflavanoid_
→˓phenols proanthocyanins color_intensity hue \
0 3.06 ␣
→˓ 0.28 2.29 5.64 1.04
1 2.76 ␣
→˓ 0.26 1.28 4.38 1.05
2 3.24 ␣

(continues on next page)

202 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

→˓ 0.30 2.81 5.68 1.03
3 3.49 ␣
→˓ 0.24 2.18 7.80 0.86
4 2.69 ␣
→˓ 0.39 1.82 4.32 1.04

od280/od315_of_diluted_wines proline \
0 3.92 1065.0
1 3.40 1050.0
2 3.17 1185.0
3 3.45 1480.0
4 2.93 735.0

total_phenols_sub_nonflavanoid_phenols \
0 2.52
1 2.39
2 2.50
3 3.61
4 2.41

sum_flavanoids_proanthocyanins_proline \
0 1070.35
1 1054.04
2 1191.05
3 1485.67
4 739.51

mean_flavanoids_proanthocyanins_proline
0 356.783333
1 351.346667
2 397.016667
3 495.223333
4 246.503333

In the above examples, we used RelativeFeature() and MathFeatures
to perform automated feature engineering on the input data by applying the
transformations defined in the func parameter on the features identified in
variables and reference parameters.

The original and new features can now be used to train a regression model, or
a multiclass classification algorithm, to predict the quality of the wine.

Summary

Through feature engineering and feature creation, we can optimize the machine
learning algorithm’s learning process and improve its performance metrics.

We’d strongly recommend the creation of features based on domain knowl-
edge, exploratory data analysis and thorough data mining. We also understand
that this is not always possible, particularly with big datasets and limited time
allocated to each project. In this situation, we can combine the creation of
features with feature selection procedures to let machine learning algorithms
select what works best for them.

10.2. User Guide 203

feature_engine Documentation, Release 1.7.0

Good luck with your models!

Tutorials, books and courses

For tutorials about this and other feature engineering for machine learning
methods check out our online course:

Fig. 66: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

204 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 67: Python Feature Engineering
Cookbook

Transformers in other Libraries

Check also the following transformer from Scikit-learn:

• PolynomialFeatures

• SplineTransformer

Datetime Features

Feature-engine’s datetime transformers are able to extract a wide variety of
datetime features from existing datetime or object-like data.

DatetimeFeatures

In datasets commonly used in data science and machine learning projects, the
variables very often contain information about date and time. Date of birth
and time of purchase are two examples of these variables. They are commonly
referred to as “datetime features”, that is, data whose data type is date and time.

We don’t normally use datetime variables in their raw format to train machine
learning models, like those for regression, classification, or clustering. In-
stead, we can extract a lot of information from these variables by extracting
the different date and time components of the datetime variable.

Examples of date and time components are the year, the month, the
week_of_year, the day of the week, the hour, the minutes, and the seconds.

Datetime features with pandas

In Python, we can extract date and time components through the dt module of
the open-source library pandas. For example, by executing the following:

data = pd.DataFrame({"date
→˓": pd.date_range("2019-03-05", periods=20, freq="D")})

data["year"] = data["date"].dt.year
data["quarter"] = data["date"].dt.quarter
data["month"] = data["date"].dt.month

In the former code block we created 3 features from the timestamp variable:
the year, the quarter and the month.

10.2. User Guide 205

https://packt.link/0ewSo
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.SplineTransformer.html

feature_engine Documentation, Release 1.7.0

Datetime features with Feature-engine

DatetimeFeatures() automatically extracts several date and time features
from datetime variables. It works with variables whose dtype is datetime, as
well as with object-like and categorical variables, provided that they can be
parsed into datetime format. It cannot extract features from numerical vari-
ables.

DatetimeFeatures() uses the pandas dt module under the hood, therefore
automating datetime feature engineering. In two lines of code and by speci-
fying which features we want to create with DatetimeFeatures(), we can
create multiple date and time variables from various variables simultaneously.

DatetimeFeatures() can automatically create all features supported by pan-
das dt and a few more, like, for example, a binary feature indicating if the event
occurred on a weekend and also the semester.

With DatetimeFeatures() we can choose which date and time features to
extract from the datetime variables. We can also extract date and time features
from one or more datetime variables at the same time.

Through the following examples we highlight the functionality and versatility
of DatetimeFeatures() for tabular data.

Extract date features

In this example, we are going to extract three date features from a specific
variable in the dataframe. In particular, we are interested in the month, the day
of the year, and whether that day was the last day the month.

First, we will create a toy dataframe with 2 date variables:

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({
"var_date1

→˓": ['May-1989', 'Dec-2020', 'Jan-1999', 'Feb-2002'],
"var_date2": [

→˓'06/21/2012', '02/10/1998', '08/03/2010', '10/31/2020'],
})

Now, we will extract the variables month, month-end and the day of the year
from the second datetime variable in our dataset.

dtfs = DatetimeFeatures(
variables="var_date2",
features_

→˓to_extract=["month", "month_end", "day_of_year"]
)

df_transf = dtfs.fit_transform(toy_df)

df_transf

206 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

With transform(), the features extracted from the datetime variable are
added to the dataframe.

We see the new features in the following output:

var_date1 var_
→˓date2_month var_date2_month_end var_date2_day_of_year
0 May-1989 ␣
→˓ 6 0 173
1 Dec-2020 ␣
→˓ 2 0 41
2 Jan-1999 ␣
→˓ 8 0 215
3 Feb-2002 ␣
→˓ 10 1 305

By default, DatetimeFeatures() drops the variable from which the date
and time features were extracted, in this case, var_date2. To keep the vari-
able, we just need to indicate drop_original=False when initializing the
transformer.

Finally, we can obtain the name of the variables in the returned data as follows:

dtfs.get_feature_names_out()

['var_date1',
'var_date2_month',
'var_date2_month_end',
'var_date2_day_of_year']

Extract time features

In this example, we are going to extract the feature minute from the two time
variables in our dataset.

First, let’s create a toy dataset with 2 time variables and an object variable.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({
"not_a_dt": ['not', 'a', 'date', 'time'],
"var_time1

→˓": ['12:34:45', '23:01:02', '11:59:21', '08:44:23'],
"var_time2

→˓": ['02:27:26', '10:10:55', '17:30:00', '18:11:18'],
})

DatetimeFeatures() automatically finds all variables that can be parsed to
datetime. So if we want to extract time features from all our datetime variables,
we don’t need to specify them.

Note that from version 2.0.0 pandas deprecated the parameter
infer_datetime_format. Hence, if you want pandas to infer the

10.2. User Guide 207

feature_engine Documentation, Release 1.7.0

datetime format and you have different formats, you need to explicitly say so
by passing "mixed" to the format parameter as shown below.

dfts = DatetimeFeatures(features_
→˓to_extract=["minute"], format="mixed")

df_transf = dfts.fit_transform(toy_df)

df_transf

We see the new features in the following output:

not_a_dt var_time1_minute var_time2_minute
0 not 34 27
1 a 1 10
2 date 59 30
3 time 44 11

The transformer found two variables in the dataframe that can be cast to date-
time and proceeded to extract the requested feature from them.

The variables detected as datetime are stored in the transformer’s variables_
attribute:

dfts.variables_

['var_time1', 'var_time2']

The original datetime variables are dropped from the data by default. This
leaves the dataset ready to train machine learning algorithms like linear re-
gression or random forests.

If we want to keep the datetime variables, we just need to indicate
drop_original=False when initializing the transformer.

Finally, if we want to obtain the names of the variables in the output data, we
can use:

dfts.get_feature_names_out()

['not_a_dt', 'var_time1_minute', 'var_time2_minute']

Extract date and time features

In this example, we will combine what we have seen in the previous two ex-
amples and extract a date feature - year - and time feature - hour - from two
variables that contain both date and time information.

Let’s go ahead and create a toy dataset with 3 datetime variables.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({
(continues on next page)

208 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

"var_
→˓dt1": pd.date_range("2018-01-01", periods=3, freq="H"),

"var_dt2": ['08/31/
→˓00 12:34:45', '12/01/90 23:01:02', '04/25/01 11:59:21'],

"var_dt3": ['03/02/
→˓15 02:27:26', '02/28/97 10:10:55', '11/11/03 17:30:00'],
})

Now, we set up the DatetimeFeatures() to extract features from 2 of the
datetime variables. In this case, we do not want to drop the datetime variable
after extracting the features.

dfts = DatetimeFeatures(
variables=["var_dt1", "var_dt3"],
features_to_extract=["year", "hour"],
drop_original=False,
format="mixed",

)
df_transf = dfts.fit_transform(toy_df)

df_transf

We can see the resulting dataframe in the following output:

var_dt1␣
→˓ var_dt2 var_dt3 var_dt1_year \
0 2018-01-01 00:00:00␣
→˓ 08/31/00 12:34:45 03/02/15 02:27:26 2018
1 2018-01-01 01:00:00␣
→˓ 12/01/90 23:01:02 02/28/97 10:10:55 2018
2 2018-01-01 02:00:00␣
→˓ 04/25/01 11:59:21 11/11/03 17:30:00 2018

var_dt1_hour var_dt3_year var_dt3_hour
0 0 2015 2
1 1 1997 10
2 2 2003 17

And that is it. The new features are now added to the dataframe.

Time series

Time series data consists of datapoints indexed in time order. The time is usu-
ally in the index of the dataframe. We can extract features from the timestamp
index and use them for time series regression or classification, as well as for
time series forecasting.

With DatetimeFeatures() we can also create date and time features from
the dataframe index.

Let’s create a toy dataframe with datetime in the index.

10.2. User Guide 209

feature_engine Documentation, Release 1.7.0

import pandas as pd

X = {"ambient_temp":␣
→˓[31.31, 31.51, 32.15, 32.39, 32.62, 32.5, 32.52, 32.68],

"module_temp": [49.
→˓18, 49.84, 52.35, 50.63, 49.61, 47.01, 46.67, 47.52],

"irradiation
→˓": [0.51, 0.79, 0.65, 0.76, 0.42, 0.49, 0.57, 0.56],

"color": ["green"] * 4 + ["blue"] * 4,
}

X = pd.DataFrame(X)
X.index = pd.date_
→˓range("2020-05-15 12:00:00", periods=8, freq="15min")

X.head()

Below we see the output of our toy dataframe:

␣
→˓ ambient_temp module_temp irradiation color
2020-05-15␣
→˓12:00:00 31.31 49.18 0.51 green
2020-05-15␣
→˓12:15:00 31.51 49.84 0.79 green
2020-05-15␣
→˓12:30:00 32.15 52.35 0.65 green
2020-05-15␣
→˓12:45:00 32.39 50.63 0.76 green
2020-05-15␣
→˓13:00:00 32.62 49.61 0.42 blue

We can extract features from the index as follows:

from feature_engine.datetime import DatetimeFeatures

dtf = DatetimeFeatures(variables="index")

Xtr = dtf.fit_transform(X)

Xtr

We can see that the transformer created the default time features and added
them at the end of the dataframe.

␣
→˓ ambient_temp module_temp irradiation color month \
2020-05-15 12:00:00␣
→˓ 31.31 49.18 0.51 green 5
2020-05-15 12:15:00␣
→˓ 31.51 49.84 0.79 green 5
2020-05-15 12:30:00␣
→˓ 32.15 52.35 0.65 green 5

(continues on next page)

210 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:45:00␣
→˓ 32.39 50.63 0.76 green 5
2020-05-15 13:00:00␣
→˓ 32.62 49.61 0.42 blue 5
2020-05-15 13:15:00␣
→˓ 32.50 47.01 0.49 blue 5
2020-05-15 13:30:00␣
→˓ 32.52 46.67 0.57 blue 5
2020-05-15 13:45:00␣
→˓ 32.68 47.52 0.56 blue 5

␣
→˓ year day_of_week day_of_month hour minute second
2020-05-15 12:00:00␣
→˓ 2020 4 15 12 0 0
2020-05-15 12:15:00␣
→˓ 2020 4 15 12 15 0
2020-05-15 12:30:00␣
→˓ 2020 4 15 12 30 0
2020-05-15 12:45:00␣
→˓ 2020 4 15 12 45 0
2020-05-15 13:00:00␣
→˓ 2020 4 15 13 0 0
2020-05-15 13:15:00␣
→˓ 2020 4 15 13 15 0
2020-05-15 13:30:00␣
→˓ 2020 4 15 13 30 0
2020-05-15 13:45:00␣
→˓ 2020 4 15 13 45 0

We can obtain the name of all the variables in the output dataframe as follows:

dtf.get_feature_names_out()

['ambient_temp',
'module_temp',
'irradiation',
'color',
'month',
'year',
'day_of_week',
'day_of_month',
'hour',
'minute',
'second']

10.2. User Guide 211

feature_engine Documentation, Release 1.7.0

Important

We highly recommend specifying the date and time features that you would
like to extract from your datetime variables.

If you have too many time variables, this might not be possible. In this case,
keep in mind that if you extract date features from variables that have only
time, or time features from variables that have only dates, your features will be
meaningless.

Let’s explore the outcome with an example. We create a dataset with only time
variables.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({
"not_a_dt": ['not', 'a', 'date', 'time'],
"var_time1

→˓": ['12:34:45', '23:01:02', '11:59:21', '08:44:23'],
"var_time2

→˓": ['02:27:26', '10:10:55', '17:30:00', '18:11:18'],
})

And now we mistakenly extract only date features:

dfts = DatetimeFeatures(
features_to_extract=["year", "month", "day_of_week"],
format="mixed",

)
df_transf = dfts.fit_transform(toy_df)

df_transf

not_a_dt var_time1_year ␣
→˓var_time1_month var_time1_day_of_week var_time2_year \
0 not 2021␣
→˓ 12 2 2021
1 a 2021␣
→˓ 12 2 2021
2 date 2021␣
→˓ 12 2 2021
3 time 2021␣
→˓ 12 2 2021

var_time2_month var_time2_day_of_week
0 12 2
1 12 2
2 12 2
3 12 2

The transformer will still create features derived from today’s date (the date of
creating the docs).

If instead we have a dataframe with only date variables:

212 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({
"var_date1

→˓": ['May-1989', 'Dec-2020', 'Jan-1999', 'Feb-2002'],
"var_date2

→˓": ['06/21/12', '02/10/98', '08/03/10', '10/31/20'],
})

And we mistakenly extract the hour and the minute:

dfts = DatetimeFeatures(
features_to_extract=["hour", "minute"],
format="mixed",

)
df_transf = dfts.fit_transform(toy_df)

print(df_transf)

var_date1_
→˓hour var_date1_minute var_date2_hour var_date2_minute
0 ␣
→˓ 0 0 0 0
1 ␣
→˓ 0 0 0 0
2 ␣
→˓ 0 0 0 0
3 ␣
→˓ 0 0 0 0

The new features will contain the value 0.

Automating feature extraction

We can indicate which features we want to extract from the datetime variables
as we did in the previous examples, by passing the feature names in lists.

Alternatively, DatetimeFeatures() has default options to extract a group of
commonly used features, or all supported features.

Let’s first create a toy dataframe:

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({
"var_

→˓dt1": pd.date_range("2018-01-01", periods=3, freq="H"),
"var_dt2": ['08/31/

→˓00 12:34:45', '12/01/90 23:01:02', '04/25/01 11:59:21'],
"var_dt3": ['03/02/

(continues on next page)

10.2. User Guide 213

feature_engine Documentation, Release 1.7.0

(continued from previous page)

→˓15 02:27:26', '02/28/97 10:10:55', '11/11/03 17:30:00'],
})

Most common features

Now, we will extract the most common date and time features from one of
the variables. To do this, we leave the parameter features_to_extract to
None.

dfts = DatetimeFeatures(
variables=["var_dt1"],
features_to_extract=None,
drop_original=False,

)

df_transf = dfts.fit_transform(toy_df)

df_transf

var_dt1␣
→˓ var_dt2 var_dt3 var_dt1_month \
0 2018-01-01 00:00:00␣
→˓ 08/31/00 12:34:45 03/02/15 02:27:26 1
1 2018-01-01 01:00:00␣
→˓ 12/01/90 23:01:02 02/28/97 10:10:55 1
2 2018-01-01 02:00:00␣
→˓ 04/25/01 11:59:21 11/11/03 17:30:00 1

var_dt1_year var_
→˓dt1_day_of_week var_dt1_day_of_month var_dt1_hour \
0 2018␣
→˓ 0 1 0
1 2018␣
→˓ 0 1
2 2018␣
→˓ 0 1 2

var_dt1_minute var_dt1_second
0 0 0
1 0 0
2 0 0

Our new dataset contains the original features plus the new variables extracted
from them.

We can find the group of features extracted by the transformer in its attribute:

dfts.features_to_extract_

['month',
'year',

(continues on next page)

214 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'day_of_week',
'day_of_month',
'hour',
'minute',
'second']

All supported features

We can also extract all supported features automatically, by setting the param-
eter features_to_extract to "all":

dfts = DatetimeFeatures(
variables=["var_dt1"],
features_to_extract='all',
drop_original=False,

)

df_transf = dfts.fit_transform(toy_df)

print(df_transf)

var_dt1␣
→˓ var_dt2 var_dt3 var_dt1_month \
0 2018-01-01 00:00:00␣
→˓ 08/31/00 12:34:45 03/02/15 02:27:26 1
1 2018-01-01 01:00:00␣
→˓ 12/01/90 23:01:02 02/28/97 10:10:55 1
2 2018-01-01 02:00:00␣
→˓ 04/25/01 11:59:21 11/11/03 17:30:00 1

var_dt1_quarter var_dt1_semester var_dt1_year \
0 1 1 2018
1 1 1 2018
2 1 1 2018

var_dt1_week var_dt1_day_of_
→˓week ... var_dt1_month_end var_dt1_quarter_start \
0 1 ␣
→˓ 0 ... 0 1
1 1 ␣
→˓ 0 ... 0 1
2 1 ␣
→˓ 0 ... 0 1

var_
→˓dt1_quarter_end var_dt1_year_start var_dt1_year_end \
0 ␣
→˓ 0 1 0
1 ␣
→˓ 0 1 0

(continues on next page)

10.2. User Guide 215

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2 ␣
→˓ 0 1 0

var_dt1_leap_year␣
→˓ var_dt1_days_in_month var_dt1_hour var_dt1_minute \
0 ␣
→˓ 0 31 0 0
1 ␣
→˓ 0 31 1 0
2 ␣
→˓ 0 31 2 0

var_dt1_second
0 0
1 0
2 0

We can find the group of features extracted by the transformer in its attribute:

dfts.features_to_extract_

['month',
'quarter',
'semester',
'year',
'week',
'day_of_week',
'day_of_month',
'day_of_year',
'weekend',
'month_start',
'month_end',
'quarter_start',
'quarter_end',
'year_start',
'year_end',
'leap_year',
'days_in_month',
'hour',
'minute',
'second']

216 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Extract and select features automatically

If we have a dataframe with date variables, time variables and date and time
variables, we can extract all features, or the most common features from all
the variables, and then go ahead and remove the irrelevant features with the
DropConstantFeatures() class.

Let’s create a dataframe with a mix of datetime variables.

import pandas as pd
from sklearn.pipeline import Pipeline
from feature_engine.datetime import DatetimeFeatures
from feature_engine.selection import DropConstantFeatures

toy_df = pd.DataFrame({
"var_

→˓date": ['06/21/12', '02/10/98', '08/03/10', '10/31/20'],
"var_time1

→˓": ['12:34:45', '23:01:02', '11:59:21', '08:44:23'],
"var_dt": ['08/31/00 12:34:45', '12/01/

→˓90 23:01:02', '04/25/01 11:59:21', '04/25/01 11:59:21'],
})

Now, we line up in a Scikit-learn pipeline the DatetimeFeatures and the
DropConstantFeatures(). The DatetimeFeatures will create date fea-
tures derived from today for the time variable, and time features with the value
0 for the date only variable. DropConstantFeatures() will identify and
remove these features from the dataset.

pipe = Pipeline([
('datetime', DatetimeFeatures(format="mixed")),
('drop_constant', DropConstantFeatures()),

])

pipe.fit(toy_df)

Pipeline(steps=[('datetime', DatetimeFeatures()),
␣

→˓ ('drop_constant', DropConstantFeatures())])

df_transf = pipe.transform(toy_df)

print(df_transf)

var_date_month var_date_
→˓year var_date_day_of_week var_date_day_of_month \
0 6 ␣
→˓ 2012 3 21
1 2 ␣
→˓ 1998 1 10
2 8 ␣
→˓ 2010 1 3
3 10 ␣

(continues on next page)

10.2. User Guide 217

feature_engine Documentation, Release 1.7.0

(continued from previous page)

→˓ 2020 5 31

var_time1_hour␣
→˓ var_time1_minute var_time1_second var_dt_month \
0 ␣
→˓ 12 34 45 8
1 ␣
→˓ 23 1 2 12
2 ␣
→˓ 11 59 21 4
3 ␣
→˓ 8 44 23 4

var_dt_year␣
→˓ var_dt_day_of_week var_dt_day_of_month var_dt_hour \
0 2000␣
→˓ 3 31 12
1 1990␣
→˓ 5 1 23
2 2001␣
→˓ 2 25 11
3 2001␣
→˓ 2 25 11

var_dt_minute var_dt_second
0 34 45
1 1 2
2 59 21
3 59 21

As you can see, we do not have the constant features in the transformed dataset.

Working with different timezones

Time-aware datetime variables can be particularly cumbersome to work with
as far as the format goes. We will briefly show how DatetimeFeatures()
deals with such variables in three different scenarios.

Case 1: our dataset contains a time-aware variable in object format, with po-
tentially different timezones across different observations. We pass utc=True
when initializing the transformer to make sure it converts all data to UTC time-
zone.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

toy_df = pd.DataFrame({
"var_tz":␣

→˓['12:34:45+3', '23:01:02-6', '11:59:21-8', '08:44:23Z']
})

dfts = DatetimeFeatures(
(continues on next page)

218 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

features_to_extract=["hour", "minute"],
drop_original=False,
utc=True,
format="mixed",

)

df_transf = dfts.fit_transform(toy_df)

df_transf

var_tz var_tz_hour var_tz_minute
0 12:34:45+3 9 34
1 23:01:02-6 5 1
2 11:59:21-8 19 59
3 08:44:23Z 8 44

Case 2: our dataset contains a variable that is cast as a localized datetime in a
particular timezone. However, we decide that we want to get all the datetime
information extracted as if it were in UTC timezone.

import pandas as pd
from feature_engine.datetime import DatetimeFeatures

var_tz = pd.Series(['08/31/
→˓00 12:34:45', '12/01/90 23:01:02', '04/25/01 11:59:21'])
var_tz = pd.to_datetime(var_tz, format="mixed")
var_tz = var_tz.dt.tz_localize("US/eastern")
var_tz

0 2000-08-31 12:34:45-04:00
1 1990-12-01 23:01:02-05:00
2 2001-04-25 11:59:21-04:00
dtype: datetime64[ns, US/Eastern]

We need to pass utc=True when initializing the transformer to revert back to
the UTC timezone.

toy_df = pd.DataFrame({"var_tz": var_tz})

dfts = DatetimeFeatures(
features_to_extract=["day_of_month", "hour"],
drop_original=False,
utc=True,

)

df_transf = dfts.fit_transform(toy_df)

df_transf

␣
→˓ var_tz var_tz_day_of_month var_tz_hour
0 2000-

(continues on next page)

10.2. User Guide 219

feature_engine Documentation, Release 1.7.0

(continued from previous page)

→˓08-31 12:34:45-04:00 31 16
1 1990-
→˓12-01 23:01:02-05:00 2 4
2 2001-
→˓04-25 11:59:21-04:00 25 15

Case 3: given a variable like var_tz in the example above, we now want to
extract the features keeping the original timezone localization, therefore we
pass utc=False or None. In this case, we leave it to None which is the default
option.

dfts = DatetimeFeatures(
features_to_extract=["day_of_month", "hour"],
drop_original=False,
utc=None,

)

df_transf = dfts.fit_transform(toy_df)

print(df_transf)

␣
→˓ var_tz var_tz_day_of_month var_tz_hour
0 2000-
→˓08-31 12:34:45-04:00 31 12
1 1990-
→˓12-01 23:01:02-05:00 1 23
2 2001-
→˓04-25 11:59:21-04:00 25 11

Note that the hour extracted from the variable differ in this dataframe respect
to the one obtained in Case 2.

Missing timestamps

DatetimeFeatures has the option to ignore missing timestamps, or raise an
error when a missing value is encountered in a datetime variable.

Additional resources

You can find an example of how to use DatetimeFeatures() with a real
dataset in the following Jupyter notebook

For tutorials on how to create and use features from datetime columns, check
the following courses:

220 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/datetime/DatetimeFeatures.ipynb

feature_engine Documentation, Release 1.7.0

Fig. 68: Feature Engineering for Machine Learning

Fig. 69: Feature Engineering for Time Series Forecasting

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

10.2. User Guide 221

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Fig. 70: Python Feature Engineering
Cookbook

DatetimeSubtraction

Very often, we have datetime variables in our datasets, and we want to deter-
mine the time difference between them. For example, if we work with financial
data, we may have the variable date of loan application, with the date and time
when the customer applied for a loan, and also the variable date of birth, with
the customer’s date of birth. With those two variables, we want to infer the
age of the customer at the time of application. In order to do this, we can
compute the difference in years between date_of_loan_application and
date_of_birth and capture it in a new variable.

In a different example, if we are trying to predict the price of the house and
we have information about the year in which the house was built, we can infer
the age of the house at the point of sale. Generally, older houses cost less. To
calculate the age of the house, we’d simply compute the difference in years
between the sale date and the date at which it was built.

The Python program offers many options for making operations between date-
time objects, like, for example, the datetime module. Since most likely you
will be working with Pandas dataframes, we will focus this guide on pandas
and then how we can automate the procedure with Feature-engine.

Subtracting datetime features with pandas

In Python, we can subtract datetime objects with pandas. To work with date-
time variables in pandas, we need to make sure that the timestamp, which can
be represented in various formats, like strings (str), objects ("O"), or datetime,
is cast as a datetime. If not, we can convert strings to datetime objects by
executing pd.to_datetime(df[variable_of_interest]).

Let’s create a toy dataframe with 2 datetime variables for a short demo:

import numpy as np
import pandas as pd

data = pd.DataFrame({
"date1

→˓": pd.date_range("2019-03-05", periods=5, freq="D"),
"date2

→˓": pd.date_range("2018-03-05", periods=5, freq="W")})

print(data)

This is the data that we created, containing two datetime variables:

date1 date2
0 2019-03-05 2018-03-11
1 2019-03-06 2018-03-18
2 2019-03-07 2018-03-25
3 2019-03-08 2018-04-01
4 2019-03-09 2018-04-08

Now, we can subtract date2 from date1 and capture the difference in a new
variable by utilizing the pandas subtraction operator:

222 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

data["diff"] = data["date1"].sub(data["date2"])

print(data)

The new variable, which expresses the difference in number of days, is at the
right of the dataframe:

date1 date2 diff
0 2019-03-05 2018-03-11 359 days
1 2019-03-06 2018-03-18 353 days
2 2019-03-07 2018-03-25 347 days
3 2019-03-08 2018-04-01 341 days
4 2019-03-09 2018-04-08 335 days

If we want the units in something other than days, we can use numpy’s
timedelta. The following example shows how to use this syntax:

data[
→˓"diff"] = data["date1"].sub(data["date2"], axis=0).div(

np.timedelta64(1, "Y").astype("timedelta64[ns]"))

print(data)

We see the new variable now expressing the difference in years, at the right of
the dataframe:

date1 date2 diff
0 2019-03-05 2018-03-11 0.982909
1 2019-03-06 2018-03-18 0.966481
2 2019-03-07 2018-03-25 0.950054
3 2019-03-08 2018-04-01 0.933626
4 2019-03-09 2018-04-08 0.917199

If you wanted to subtract various datetime variables, you would have to write
lines of code for every subtraction. Fortunately, we can automate this proce-
dure with DatetimeSubstraction().

Datetime subtraction with Feature-engine

DatetimeSubstraction() automatically subtracts several date and time fea-
tures from each other. You just need to indicate the features at the right of the
subtraction operation in the variables parameters and those on the left in
the reference parameter. You can also change the output unit through the
output_unit parameter.

DatetimeSubstraction() works with variables whose dtype is datetime,
as well as with object-like and categorical variables, provided that they can be
parsed into datetime format. This will be done under the hood by the trans-
former.

Following up with the former example, here is how we obtain the difference in
number of days using DatetimeSubstraction():

10.2. User Guide 223

feature_engine Documentation, Release 1.7.0

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"date1

→˓": pd.date_range("2019-03-05", periods=5, freq="D"),
"date2

→˓": pd.date_range("2018-03-05", periods=5, freq="W")})

dtf = DatetimeSubtraction(
variables="date1",
reference="date2",
output_unit="Y")

data = dtf.fit_transform(data)

print(data)

With transform(), DatetimeSubstraction() returns a new dataframe
containing the original variables and also the new variables with the time dif-
ference:

date1 date2 date1_sub_date2
0 2019-03-05 2018-03-11 0.982909
1 2019-03-06 2018-03-18 0.966481
2 2019-03-07 2018-03-25 0.950054
3 2019-03-08 2018-04-01 0.933626
4 2019-03-09 2018-04-08 0.917199

Drop original variables after computation

We have the option to drop the original datetime variables after the computa-
tion:

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"date1

→˓": pd.date_range("2019-03-05", periods=5, freq="D"),
"date2

→˓": pd.date_range("2018-03-05", periods=5, freq="W")})

dtf = DatetimeSubtraction(
variables="date1",
reference="date2",
output_unit="M",
drop_original=True

)

data = dtf.fit_transform(data)
(continues on next page)

224 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

print(data)

In this case, the resulting dataframe contains only the time difference between
the two original variables:

date1_sub_date2
0 11.794903
1 11.597774
2 11.400645
3 11.203515
4 11.006386

Subtract multiple variables simultaneously

We can perform multiple subtractions at the same time. In this example, we
will add new datetime variables to the toy dataframe as strings. The idea is to
show that DatetimeSubstraction() will convert those strings to datetime
under the hood to carry out the subtraction operation.

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"date1" : ["2022-09-01", "2022-10-01", "2022-12-01"],
"date2" : ["2022-09-15", "2022-10-15", "2022-12-15"],
"date3" : ["2022-08-01", "2022-09-01", "2022-11-01"],
"date4" : ["2022-08-15", "2022-09-15", "2022-11-15"],

})

dtf = DatetimeSubtraction(variables=[
→˓"date1", "date2"], reference=["date3", "date4"])

data = dtf.fit_transform(data)

print(data)

The resulting dataframe contains the original variables plus the new variables
expressing the time difference between the date objects.

date1␣
→˓ date2 date3 date4 date1_sub_date3 \
0 2022-09-
→˓01 2022-09-15 2022-08-01 2022-08-15 31.0
1 2022-10-
→˓01 2022-10-15 2022-09-01 2022-09-15 30.0
2 2022-12-
→˓01 2022-12-15 2022-11-01 2022-11-15 30.0

date2_sub_date3 date1_sub_date4 date2_sub_date4
0 45.0 17.0 31.0

(continues on next page)

10.2. User Guide 225

feature_engine Documentation, Release 1.7.0

(continued from previous page)

1 44.0 16.0 30.0
2 44.0 16.0 30.0

Working with missing values

By default, DatetimeSubstraction() will raise an error if the dataframe
passed to the fit() or transform() methods contains NA in the variables
to subtract. We can override this behaviour and allow computations between
variables with nan by setting the parameter missing_values to "ignore".
Here is a code example:

import numpy as np
import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"date1" : ["2022-09-01", "2022-10-01", "2022-12-01"],
"date2" : ["2022-09-15", np.nan, "2022-12-15"],
"date3" : ["2022-08-01", "2022-09-01", "2022-11-01"],
"date4" : ["2022-08-15", "2022-09-15", np.nan],

})

dtf = DatetimeSubtraction(
variables=["date1", "date2"],
reference=["date3", "date4"],
missing_values="ignore")

data = dtf.fit_transform(data)

print(data)

When any of the variables contains NAN, the new features with the time dif-
ference will also display NANs:

date1␣
→˓ date2 date3 date4 date1_sub_date3 \
0 2022-09-
→˓01 2022-09-15 2022-08-01 2022-08-15 31.0
1 2022-10-
→˓01 NaN 2022-09-01 2022-09-15 30.0
2 2022-12-
→˓01 2022-12-15 2022-11-01 NaN 30.0

date2_sub_date3 date1_sub_date4 date2_sub_date4
0 45.0 17.0 31.0
1 NaN 16.0 NaN
2 44.0 NaN NaN

226 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Working with different timezones

If we have timestamps in different timezones or variables in dif-
ferent timezones, we can still perform subtraction operations with
DatetimeSubstraction() by first setting all timestamps to the uni-
versal central time zone. Here is a code example, were we return the time
difference in microseconds:

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"date1":␣

→˓['12:34:45+3', '23:01:02-6', '11:59:21-8', '08:44:23Z'],
"date2": ['09:34:45+1

→˓', '23:01:02-6+1', '11:59:21-8-2', '08:44:23+3']
})

dfts = DatetimeSubtraction(
variables="date1",
reference="date2",
utc=True,
output_unit="ms",
format="mixed"

)

new = dfts.fit_transform(data)

print(new)

We see the resulting dataframe with the time difference in microseconds:

date1 date2 date1_sub_date2
0 12:34:45+3 09:34:45+1 3600000.0
1 23:01:02-6 23:01:02-6+1 25200000.0
2 11:59:21-8 11:59:21-8-2 21600000.0
3 08:44:23Z 08:44:23+3 10800000.0

Adding arbitrary names to the new variables

Often, we want to compute just a few time differences. In this case, we may
want as well to assign the new variables specific names. In this code example,
we do so:

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"date1

→˓": pd.date_range("2019-03-05", periods=5, freq="D"),
"date2

→˓": pd.date_range("2018-03-05", periods=5, freq="W")})
(continues on next page)

10.2. User Guide 227

feature_engine Documentation, Release 1.7.0

(continued from previous page)

dtf = DatetimeSubtraction(
variables="date1",
reference="date2",
new_variables_names=["my_new_var"]
)

data = dtf.fit_transform(data)

print(data)

In the resulting dataframe, we see that the time difference was captured in a
variable called my_new_var:

date1 date2 my_new_var
0 2019-03-05 2018-03-11 359.0
1 2019-03-06 2018-03-18 353.0
2 2019-03-07 2018-03-25 347.0
3 2019-03-08 2018-04-01 341.0
4 2019-03-09 2018-04-08 335.0

We should be mindful to pass a list of variales containing as many names as
new variables. The number of variables that will be created is obtained by mul-
tiplying the number of variables in the parameter variables by the number
of variables in the parameter reference.

get_feature_names_out()

Finally, we can extract the names of the transformed dataframe for compatibil-
ity with the Scikit-learn pipeline:

import pandas as pd
from feature_engine.datetime import DatetimeSubtraction

data = pd.DataFrame({
"date1" : ["2022-09-01", "2022-10-01", "2022-12-01"],
"date2" : ["2022-09-15", "2022-10-15", "2022-12-15"],
"date3" : ["2022-08-01", "2022-09-01", "2022-11-01"],
"date4" : ["2022-08-15", "2022-09-15", "2022-11-15"],

})

dtf = DatetimeSubtraction(variables=[
→˓"date1", "date2"], reference=["date3", "date4"])
dtf.fit(data)

dtf.get_feature_names_out()

Below the name of the variables that will appear in any dataframe resulting
from applying the transform() method:

['date1',
'date2',

(continues on next page)

228 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'date3',
'date4',
'date1_sub_date3',
'date2_sub_date3',
'date1_sub_date4',
'date2_sub_date4']

Combining extraction and subtraction of datetime features

We can also combine the creation of numerical variables from datetime fea-
tures with the creation of new features by subtraction of datetime variables:

import pandas as pd
from sklearn.pipeline import Pipeline
from feature_engine.
→˓datetime import DatetimeFeatures, DatetimeSubtraction

data = pd.DataFrame({
"date1" : ["2022-09-01", "2022-10-01", "2022-12-01"],
"date2" : ["2022-09-15", "2022-10-15", "2022-12-15"],
"date3" : ["2022-08-01", "2022-09-01", "2022-11-01"],
"date4" : ["2022-08-15", "2022-09-15", "2022-11-15"],

})

dtf = DatetimeFeatures(variables=[
→˓"date1", "date2"], drop_original=False)
dts = DatetimeSubtraction(

variables=["date1", "date2"],
reference=["date3", "date4"],
drop_original=True,

)

pipe = Pipeline([
("features", dtf),("subtraction", dts)

])

data = pipe.fit_transform(data)

print(data)

In the following output we see the new dataframe contaning the features that
were extracted from the different datetime variables followed by those created
by capturing the time difference:

date1_month date1_year␣
→˓ date1_day_of_week date1_day_of_month date1_hour \
0 9 ␣
→˓ 2022 3 1 0
1 10 ␣
→˓ 2022 5 1 0
2 12 ␣

(continues on next page)

10.2. User Guide 229

feature_engine Documentation, Release 1.7.0

(continued from previous page)

→˓ 2022 3 1 0

date1_minute date1_
→˓second date2_month date2_year date2_day_of_week \
0 0 ␣
→˓ 0 9 2022 3
1 0 ␣
→˓ 0 10 2022 5
2 0 ␣
→˓ 0 12 2022 3

date2_
→˓day_of_month date2_hour date2_minute date2_second \
0 ␣
→˓ 15 0 0 0
1 ␣
→˓ 15 0 0 0
2 ␣
→˓ 15 0 0 0

date1_sub_
→˓date3 date2_sub_date3 date1_sub_date4 date2_sub_date4
0 ␣
→˓ 31.0 45.0 17.0 31.0
1 ␣
→˓ 30.0 44.0 16.0 30.0
2 ␣
→˓ 30.0 44.0 16.0 30.0

Additional resources

For tutorials on how to create and use features from datetime columns, check
the following courses:

Fig. 71: Feature Engineering for Machine Learning

230 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 72: Feature Engineering for Time Series Forecasting

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

10.2.3 Selection

Feature Selection

Feature-engine’s feature selection transformers identify features with low pre-
dictive performance and drop them from the dataset. Most of the feature se-
lection algorithms supported by Feature-engine are not yet available in other
libraries. These algorithms have been gathered from data science competitions
or used in the industry.

10.2. User Guide 231

https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Selection Mechanism Overview

Feature-engine’s transformers select features based on different strategies.

The first strategy evaluates the features intrinsic characteristics, like their dis-
tributions. For example, we can remove constant or quasi-constant features.
Or we can remove features whose distribution in unstable in time by using the
Population Stability Index.

A second strategy consists in determining the relationships between features.
Among these, we can remove features that are duplicated or correlated.

We can also select features based on their relationship with the target. To assess
this, we can replace the feature values by the target mean, or calculate the
information value.

Some feature selection procedures involve training machine learning mod-
els. We can assess features individually, or collectively, through various al-
gorithms, as shown in the following diagram:

Fig. 74: Selection mechanisms - Overview

Algorithms that select features based on their performance within a group of
variables, will normally train a model with all the features, and then remove
or add or shuffle a feature and re-evaluate the model performance.

These methods are normally geared towards improving the overall perfor-
mance of the final machine learning model as well as reducing the feature
space.

232 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Selectors Characteristics Overview

Some Feature-engine’s selectors work with categorical variables off-the-shelf
and/or allow missing data in the variables. These gives you the opportunity to
quickly screen features before jumping into any feature engineering.

In the following tables, we highlight the main Feature-engine selectors char-
acteristics:

Selection based on feature characteristics

Transformer Categorical vari-
ables

Allows
NA

Description

DropFeatures() Drops arbitrary features determined by user
DropConstantFeatures() Drops constant and quasi-constant features
DropDuplicateFeatures() Drops features that are duplicated
DropCorrelatedFeatures()× Drops features that are correlated
SmartCorrelatedSelection()× From a correlated feature group drops the less use-

ful features

Methods that determine duplication or the number of unique values, can work
with both numerical and categorical variables and support missing data as well.

Selection procedures based on correlation work only with numerical variables
but allow missing data.

Selection based on a machine learning model

Transformer Categorical
variables

Allows
NA

Description

SelectBySingleFeaturePerformance()× × Selects features based on single feature model
performance

RecursiveFeatureElimination()× × Removes features recursively by evaluating
model performance

RecursiveFeatureAddition() × × Adds features recursively by evaluating model
performance

Selection procedures that require training a machine learning model from
Scikit-learn require numerical variables without missing data.

Selection methods commonly used in finance

Transformer Categorical vari-
ables

Allows
NA

Description

DropHighPSIFeatures() × Drops features with high Population Stability
Index

SelectByInformationValue() x Drops features with low information value

10.2. User Guide 233

feature_engine Documentation, Release 1.7.0

DropHighPSIFeatures() allows to remove features with changes in their
distribution. This is done by splitting the input dataframe in two parts and
comparing the distribution of each feature in the two parts. The metric used
to assess distribution shift is the Population Stability Index (PSI). Removing
unstable features may lead to more robust models. In fields like Credit Risk
Modelling, the Regulator often requires the PSI of the final feature set to be
below are given threshold.

Alternative feature selection methods

Transformer Categorical
variables

Allows
NA

Description

SelectByShuffling() × × Selects features if shuffling their values causes a drop
in model performance

SelectByTargetMeanPerformance() × Using the target mean as performance proxy, selects
high performing features

ProbeFeatureSelection() × × Selects features whose importance is greater than
those of random variables

The SelectByTargetMeanPerformance() uses the target mean value as
proxy for prediction, replacing categories or variable intervals by these val-
ues and then determining a performance metric. Thus, it is suitable for both
categorical and numerical variables. In its current implementation, it does not
support missing data.

The ProbeFeatureSelection() introduces random variables to the dataset,
then creates a model and derives the feature importance. It selects all variables
whose importance is grater than the mean importance of the random features.

Throughout the rest of user guide, you will find more details about each of the
feature selection procedures.

Feature Selection Algorithms

Click below to find more details on how to use each one of the transformers.

DropFeatures

The DropFeatures() drops a list of variables indicated by the user from the
original dataframe. The user can pass a single variable as a string or list of
variables to be dropped.

DropFeatures() offers similar functionality to pandas.dataframe.drop, but
the difference is that DropFeatures() can be integrated into a Scikit-learn
pipeline.

When is this transformer useful?
Sometimes, we create new variables combining other variables in
the dataset, for example, we obtain the variable age by subtracting
date_of_application from date_of_birth. After we obtained our

234 Chapter 10. Table of Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html

feature_engine Documentation, Release 1.7.0

new variable, we do not need the date variables in the dataset any more. Thus,
we can add DropFeatures() in the Pipeline to have these removed.

Example
Let’s see how to use DropFeatures() in an example with the Titanic dataset.
We first load the data and separate it into train and test:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.selection import DropFeatures

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,

)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0,

)

print(X_train.head())

Now, we go ahead and print the dataset column names:

X_train.columns

Index(['pclass', 'name
→˓', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare',

'cabin', 'embarked', 'boat', 'body', 'home.dest'],
dtype='object')

Now, with DropFeatures() we can very easily drop a group of variables.
Below we set up the transformer to drop a list of 6 variables:

set up the transformer
transformer = DropFeatures(

features_to_drop=[
→˓'sibsp', 'parch', 'ticket', 'fare', 'body', 'home.dest']
)

fit the transformer
transformer.fit(X_train)

With fit() this transformer does not learn any parameter. We can go ahead
and remove the variables as follows:

train_t = transformer.transform(X_train)
test_t = transformer.transform(X_test)

And now, if we print the variable names of the transformed dataset, we see that
it has been reduced:

train_t.columns

10.2. User Guide 235

feature_engine Documentation, Release 1.7.0

Index(['pclass', 'name', 'sex
→˓', 'age', 'cabin', 'embarked', 'boat'], dtype='object')

Additional resources

In this Kaggle kernel we feature 3 different end-to-end machine learning
pipelines using DropFeatures():

• Kaggle Kernel

All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these
resources:

Fig. 75: Feature Selection for Machine Learning

Or read our book:

Fig. 76: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

236 Chapter 10. Table of Contents

https://www.kaggle.com/solegalli/feature-engineering-and-model-stacking
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

DropConstantFeatures

Constant features are variables that show zero variability, or, in other words,
have the same value in all rows. A key step towards training a machine learning
model is to identify and remove constant features.

Features with no or low variability rarely constitute useful predictors. Hence,
removing them right at the beginning of the data science project is a good way
of simplifying your dataset and subsequent data preprocessing pipelines.

Filter methods are selection algorithms that select or remove features based
solely on their characteristics. In this light, removing constant features could
be considered part of the filter group of selection algorithms.

In Python, we can find constant features by using pandas std or unique meth-
ods, and then remove them with drop.

With Scikit-learn, we can find and remove constant variables with
VarianceThreshold to quickly reduce the number of features.
VarianceThreshold is part of sklearn.feature_selection’s API.

VarianceThreshold, however, would only work with numerical variables.
Hence, we could only evaluate categorical variables after encoding them,
which requires a prior step of data preprocessing just to remove redundant
variables.

Feature-engine introduces DropConstantFeatures() to find and remove constant and quasi-constant features from a
dataframe. DropConstantFeatures() works with numerical, categorical, or datetime variables. It is therefore more
versatile than Scikit-learn’s transformer because it allows us to drop all duplicate variables without the need for prior
data transformations.

By default, DropConstantFeatures() drops constant variables. We also have the option to drop quasi-constant
features, which are those that show mostly constant values and some other values in a very small percentage of rows.

Because DropConstantFeatures() works with numerical and categorical variables alike, it offers a straightforward
way of reducing the feature subset.

Be mindful, though, that depending on the context, quasi-constant variables could be useful.

Example
Let’s see how to use DropConstantFeatures() by using the Titanic dataset. This dataset does not contain constant
or quasi-constant variables, so for the sake of the demonstration, we will consider quasi-constant those features that
show the same value in more than 70% of the rows.

We first load the data and separate it into a training set and a test set:

from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.selection import DropConstantFeatures

X, y = load_titanic(
return_X_y_frame=True,
handle_missing=True,

)

X_train, X_test, y_train, y_test = train_test_split(
(continues on next page)

10.2. User Guide 237

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X, y, test_size=0.3, random_state=0,
)

Now, we set up the DropConstantFeatures() to remove features that show the same value in more than 70% of the
observations. We do this through the parameter tol. The default value for this parameter is zero, in which case it will
remove constant features.

set up the transformer
transformer = DropConstantFeatures(tol=0.7)

With fit() the transformer finds the variables to drop:

fit the transformer
transformer.fit(X_train)

The variables to drop are stored in the attribute features_to_drop_:

transformer.features_to_drop_

['parch', 'cabin', 'embarked', 'body']

We can check that the variables parch and embarked show the same value in more than 70% of the observations as
follows:

X_train['embarked'].value_counts(normalize = True)

S 0.711790
C 0.195415
Q 0.090611
Missing 0.002183
Name: embarked, dtype: float64

Based on the previous results, 71% of the passengers embarked in S.

Let’s now evaluate parch:

X_train['parch'].value_counts(normalize = True)

0 0.771834
1 0.125546
2 0.086245
3 0.005459
4 0.004367
5 0.003275
6 0.002183
9 0.001092
Name: parch, dtype: float64

Based on the previous results, 77% of the passengers had 0 parent or child. Because of this, these features were deemed
quasi-constant and will be removed in the next step.

We can also identify quasi-constant variables as follows:

238 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

import pandas

X_train["embarked"].value_counts(normalize=True).plot.bar()

After executing the previous code, we observe the following plot, with more than 70% of passengers embarking in S:

With transform(), we drop the quasi-constant variables from the dataset:

train_t = transformer.transform(X_train)
test_t = transformer.transform(X_test)

print(train_t.head())

We see the resulting dataframe below:

pclass name sex age sibsp \
501 2 Mellinger, Miss. Madeleine Violet female 13.000000 0
588 2 Wells, Miss. Joan female 4.000000 1
402 2 Duran y More, Miss. Florentina female 30.000000 1

(continues on next page)

10.2. User Guide 239

feature_engine Documentation, Release 1.7.0

(continued from previous page)

1193 3 Scanlan, Mr. James male 29.881135 0
686 3 Bradley, Miss. Bridget Delia female 22.000000 0

ticket fare boat \
501 250644 19.5000 14
588 29103 23.0000 14
402 SC/PARIS 2148 13.8583 12
1193 36209 7.7250 Missing
686 334914 7.7250 13

home.dest
501 England / Bennington, VT
588 Cornwall / Akron, OH
402 Barcelona, Spain / Havana, Cuba
1193 Missing
686 Kingwilliamstown, Co Cork, Ireland Glens Falls...

Like sklearn, Feature-engine transformers have the fit_transform method that allows us to find and remove constant
or quasi-constant variables in a single line of code for convenience.

Like sklearn as well, DropConstantFeatures() has the get_support() method, which returns a vector with values
True for features that will be retained and False for those that will be dropped.

transformer.get_support()

[True, True, True, True, True, False, True, True, False, False,
True, False, True]

This and other feature selection methods may not necessarily avoid overfitting, but they contribute to simplifying our
machine learning pipelines and creating more interpretable machine learning models.

Additional resources

In this Kaggle kernel we use DropConstantFeatures() together with other feature selection algorithms and then
train a Logistic regression estimator:

• Kaggle kernel

For more details about this and other feature selection methods check out these resources:

240 Chapter 10. Table of Contents

https://www.kaggle.com/solegalli/feature-selection-with-feature-engine

feature_engine Documentation, Release 1.7.0

Fig. 77: Feature Selection for Machine Learning

Or read our book:

Fig. 78: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

DropDuplicateFeatures

Duplicate features are columns in a dataset that are identical, or, in other words,
that contain exactly the same values. Duplicate features can be introduced
accidentally, either through poor data management processes or during data
manipulation.

For example, duplicated new records can be created by one-hot encoding a
categorical variable or by adding missing data indicators. We can also acci-
dentally generate duplicate records when we merge different data sources that
show some variable overlap.

Checking for and removing duplicate features is a standard procedure in any
data analysis workflow that helps us reduce the dimension of the dataset
quickly and ensure data quality. In Python, we can find duplicate values in
an attribute table very easily with Pandas. Dropping those duplicate features,
however, requires a few more lines of code.

Feature-engine aims to accelerate the process of data validation by finding
and removing duplicate features with the DropDuplicateFeatures() class,
which is part of the selection API.

DropDuplicateFeatures() does exactly that; it finds and removes dupli-
cated variables from a dataframe. DropDuplicateFeatures() will automatically

evaluate all variables, or alternatively, you can pass a list with the variables you wish to have examined. And it works
with numerical and categorical features alike.

So let’s see how to set up DropDuplicateFeatures().

Example

10.2. User Guide 241

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

In this demo, we will use the Titanic dataset and introduce a few duplicated features manually:

import pandas as pd
from sklearn.model_selection import train_test_split
from feature_engine.datasets import load_titanic
from feature_engine.selection import DropDuplicateFeatures

data = load_titanic(
handle_missing=True,
predictors_only=True,

)

Lets duplicate some columns
data = pd.concat([data, data[['sex', 'age', 'sibsp']]], axis=1)
data.columns = ['pclass', 'survived', 'sex', 'age',

'sibsp', 'parch', 'fare','cabin', 'embarked',
'sex_dup', 'age_dup', 'sibsp_dup']

We then split the data into a training and a testing set:

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['survived'], axis=1),
data['survived'],
test_size=0.3,
random_state=0,

)

print(X_train.head())

Below we see the resulting data:

pclass sex age sibsp parch fare cabin embarked \
501 2 female 13.000000 0 1 19.5000 Missing S
588 2 female 4.000000 1 1 23.0000 Missing S
402 2 female 30.000000 1 0 13.8583 Missing C
1193 3 male 29.881135 0 0 7.7250 Missing Q
686 3 female 22.000000 0 0 7.7250 Missing Q

sex_dup age_dup sibsp_dup
501 female 13.000000 0
588 female 4.000000 1
402 female 30.000000 1
1193 male 29.881135 0
686 female 22.000000 0

As expected, the variables sex and sex_dup have duplicate field values throughout all the rows. The same is true for
the variables age and age_dup.

Now, we set up DropDuplicateFeatures() to find the duplicate features:

transformer = DropDuplicateFeatures()

With fit() the transformer finds the duplicated features:

242 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

transformer.fit(X_train)

The features that are duplicated and will be removed are stored in the features_to_drop_ attribute:

transformer.features_to_drop_

{'age_dup', 'sex_dup', 'sibsp_dup'}

With transform() we remove the duplicated variables:

train_t = transformer.transform(X_train)
test_t = transformer.transform(X_test)

We can go ahead and check the variables in the transformed dataset, and we will see that the duplicated features are
not there any more:

train_t.columns

Index(['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare', 'cabin', 'embarked'], dtype=
→˓'object')

The transformer also stores the groups of duplicated features, which is useful for data analysis and validation.

transformer.duplicated_feature_sets_

[{'sex', 'sex_dup'}, {'age', 'age_dup'}, {'sibsp', 'sibsp_dup'}]

Additional resources

In this Kaggle kernel we use DropDuplicateFeatures() in a pipeline with other feature selection algorithms:

• Kaggle kernel

For more details about this and other feature selection methods check out these resources:

Fig. 79: Feature Selection for Machine Learning

Or read our book:

10.2. User Guide 243

https://www.kaggle.com/solegalli/feature-selection-with-feature-engine
https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 80: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

DropCorrelatedFeatures

The DropCorrelatedFeatures() finds and removes correlated variables
from a dataframe. Correlation is calculated with pandas.corr(). All cor-
relation methods supported by pandas.corr() can be used in the selection,
including Spearman, Kendall, or Spearman. You can also pass a bespoke cor-
relation function, provided it returns a value between -1 and 1.

Features are removed on first found first removed basis, without any further
insight. That is, the first feature will be retained an all subsequent features that
are correlated with this, will be removed.

The transformer will examine all numerical variables automatically. Note that
you could pass a dataframe with categorical and datetime variables, and these
will be ignored automatically. Alternatively, you can pass a list with the vari-
ables you wish to evaluate.

Example
Let’s create a toy dataframe where 4 of the features are correlated:

import pandas as pd
from sklearn.datasets import make_classification
from␣
→˓feature_engine.selection import DropCorrelatedFeatures

make dataframe with some correlated variables
def make_data():

X, y = make_classification(n_samples=1000,
n_features=12,
n_redundant=4,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,

(continues on next page)

244 Chapter 10. Table of Contents

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

(continued from previous page)

random_state=1)

trasform arrays into pandas df and series
colnames = ['var_'+str(i) for i in range(12)]
X = pd.DataFrame(X, columns =colnames)
return X

X = make_data()

Now, we set up DropCorrelatedFeatures() to find and remove variables which (absolute) correlation coefficient is
bigger than 0.8:

tr = DropCorrelatedFeatures(variables=None, method='pearson', threshold=0.8)

With fit() the transformer finds the correlated variables and with transform() it drops them from the dataset:

Xt = tr.fit_transform(X)

The correlated feature groups are stored in the transformer’s attributes:

tr.correlated_feature_sets_

[{'var_0', 'var_8'}, {'var_4', 'var_6', 'var_7', 'var_9'}]

We can identify from each group which feature will be retained and which ones removed by inspecting the dictionary:

tr.correlated_feature_dict_

In the dictionary below we see that from the first correlated group, var_0 is a key, hence it will be retained, whereas
var_8 is a value, which means that it is correlated to var_0 and will therefore be removed.

{'var_0': {'var_8'}, 'var_4': {'var_6', 'var_7', 'var_9'}}

Similarly, var_4 is a key and will be retained, whereas the variables 6, 7 and 8 were found correlated to var_4 and
will therefore be removed.

The features that will be removed from the dataset are stored in a different attribute as well:

tr.features_to_drop_

['var_8', 'var_6', 'var_7', 'var_9']

If we now go ahead and print the transformed data, we see that the correlated features have been removed.

print(print(Xt.head()))

var_0 var_1 var_2 var_3 var_4 var_5 var_10 \
0 1.471061 -2.376400 -0.247208 1.210290 -3.247521 0.091527 2.070526
1 1.819196 1.969326 -0.126894 0.034598 -2.910112 -0.186802 1.184820
2 1.625024 1.499174 0.334123 -2.233844 -3.399345 -0.313881 -0.066448
3 1.939212 0.075341 1.627132 0.943132 -4.783124 -0.468041 0.713558
4 1.579307 0.372213 0.338141 0.951526 -3.199285 0.729005 0.398790

(continues on next page)

10.2. User Guide 245

feature_engine Documentation, Release 1.7.0

(continued from previous page)

var_11
0 -1.989335
1 -1.309524
2 -0.852703
3 0.484649
4 -0.186530

Additional resources

In this notebook, we show how to use DropCorrelatedFeatures() with a different relation metric:

• Jupyter notebook

All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these resources:

Fig. 81: Feature Selection for Machine Learning

Or read our book:

246 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Drop-Correlated-Features.ipynb
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 82: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

SmartCorrelatedSelection

When dealing with datasets containing numerous features, it’s common for
more than two features to exhibit correlations with each other. This correla-
tion might manifest among three, four, or even more features within the dataset.
Consequently, determining which features to retain and which ones to elimi-
nate becomes a crucial consideration.

Deciding which features to retain from a correlated group involves several
strategies, such us:

1. Model Performance: Some features returns model with higher perfor-
mance than others.

2. Variability and Cardinality: Features with higher variability or cardi-
nality often provide more information about the target variable.

3. Missing Data: Features with less missing data are generally more reli-
able and informative.

We can apply this selection strategies out of the box with the
SmartCorrelatedSelection.

From a group of correlated variables, the SmartCorrelatedSelection will
retain the variable with:

• the highest variance

• the highest cardinality

• the least missing data

• the best performing model (based on a single feature)

The remaining features within each correlated group will be dropped.

Features with higher diversity of values (higher variance or cardinality), tend to be more predictive, whereas features
with least missing data, tend to be more useful.

Alternatively, directly training a model using each feature within the group and retaining the one that trains the best
performing model, directly evaluates the influence of the feature on the target.

Procedure

SmartCorrelatedSelection first finds correlated feature groups using any correlation method supported by
pandas.corr(), or a user defined function that returns a value between -1 and 1.

Then, from each group of correlated features, it will try and identify the best candidate based on the above criteria.

If the criteria is based on model performance, SmartCorrelatedSelection will train a single feature machine learn-
ing model, using each one of the features in a correlated group, calculate the model’s performance, and select the feature
that returned the highest performing model. In simpler words, it trains single feature models, and retains the feature of
the highest performing model.

10.2. User Guide 247

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

If the criteria is based on variance or cardinality, SmartCorrelatedSelection will determine these attributes for each
feature in the group and retain that one with the highest. Note however, that variability is dominated by the variable’s
scale. Hence, variables with larger scales will dominate the selection procedure, unless you have a scaled dataset.

If the criteria is based on missing data, SmartCorrelatedSelection will determine the number of NA in each feature
from the correlated group and keep the one with less NA.

Variance

Let’s see how to use SmartCorrelatedSelection in a toy example. Let’s create a toy dataframe with 4 correlated
features:

import pandas as pd
from sklearn.datasets import make_classification
from feature_engine.selection import SmartCorrelatedSelection

make dataframe with some correlated variables
def make_data():

X, y = make_classification(n_samples=1000,
n_features=12,
n_redundant=4,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1)

transform arrays into pandas df and series
colnames = ['var_'+str(i) for i in range(12)]
X = pd.DataFrame(X, columns=colnames)
return X

X = make_data()

Now, we set up SmartCorrelatedSelection to find features groups which (absolute) correlation coefficient is >0.8.
From these groups, we want to retain the feature with highest variance:

set up the selector
tr = SmartCorrelatedSelection(

variables=None,
method="pearson",
threshold=0.8,
missing_values="raise",
selection_method="variance",
estimator=None,

)

With fit(), the transformer finds the correlated variables and selects the ones to keep. With transform(), it drops
the remaining features in the correlated group from the dataset:

Xt = tr.fit_transform(X)

The correlated feature groups are stored in the one of the transformer’s attributes:

248 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

tr.correlated_feature_sets_

In the first group, 4 features are correlated to at least one of them. In the second group, 2 features are correlated.

[{'var_4', 'var_6', 'var_7', 'var_9'}, {'var_0', 'var_8'}]

SmartCorrelatedSelection picks a feature, and then determines the correlation of other features in the dataframe
to it. Hence, all features in a group will be correlated to this one feature, but they may or may not be correlated to the
other features within the group, because correlation is not transitive.

This feature that was used in the assessment, was either the one with the higher variance, higher cardinality or smaller
number of missing data. Or, if model performance was selected, it was the one that came first in alphabetic order.

We can identify from each group which feature will be retained and which ones removed by inspecting the following
attribute:

tr.correlated_feature_dict_

In the dictionary below we see that from the first correlated group, var_7 is a key, hence it will be retained, whereas
variables 4, 6 and 9 are values, which means that they are correlated to var_7 and will therefore be removed.

Because we are selecting features based on variability, var_7 has the higher variability from the group.

{'var_7': {'var_4', 'var_6', 'var_9'}, 'var_8': {'var_0'}}

Similarly, var_8 is a key and will be retained, whereas the var_0 is a value, which means that it was found correlated
to var_8 and will therefore be removed.

We can corroborate that, for example, var_7 had the highest variability as follows:

X[list(tr.correlated_feature_sets_[0])].std()

That command returns the following output, where we see that the variability of var_7 is the highest:

var_4 1.810273
var_7 2.159634
var_9 1.764249
var_6 2.032947
dtype: float64

The features that will be removed from the dataset are stored in the following attribute:

tr.features_to_drop_

['var_6', 'var_4', 'var_9', 'var_0']

If we now go ahead and print the transformed data, we see that the correlated features have been removed.

print(Xt.head())

var_1 var_2 var_3 var_5 var_7 var_8 var_10 \
0 -2.376400 -0.247208 1.210290 0.091527 -2.230170 2.070483 2.070526
1 1.969326 -0.126894 0.034598 -0.186802 -1.447490 2.421477 1.184820
2 1.499174 0.334123 -2.233844 -0.313881 -2.240741 2.263546 -0.066448
3 0.075341 1.627132 0.943132 -0.468041 -3.534861 2.792500 0.713558

(continues on next page)

10.2. User Guide 249

feature_engine Documentation, Release 1.7.0

(continued from previous page)

4 0.372213 0.338141 0.951526 0.729005 -2.053965 2.186741 0.398790

var_11
0 -1.989335
1 -1.309524
2 -0.852703
3 0.484649
4 -0.186530

Performance

Let’s now select the feature that returns a machine learning model with the highest performance, from each group.
We’ll use a decision tree.

We start by creating a toy dataframe:

import pandas as pd
from sklearn.datasets import make_classification
from sklearn.tree import DecisionTreeClassifier
from feature_engine.selection import SmartCorrelatedSelection

make dataframe with some correlated variables
def make_data():

X, y = make_classification(n_samples=1000,
n_features=12,
n_redundant=4,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1)

transform arrays into pandas df and series
colnames = ['var_'+str(i) for i in range(12)]
X = pd.DataFrame(X, columns=colnames)
return X, y

X, y = make_data()

Let’s now set up the selector:

tr = SmartCorrelatedSelection(
variables=None,
method="pearson",
threshold=0.8,
missing_values="raise",
selection_method="model_performance",
estimator=DecisionTreeClassifier(random_state=1),
scoring='roc_auc',
cv=3,

)

Next, we fit the selector to the data. Here, as we are training a model, we also need to pass the target variable:

250 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Xt = tr.fit_transform(X, y)

Let’s explore the correlated feature groups:

tr.correlated_feature_sets_

We see that the groups of correlated features are slightly different, because in this cases, the features were assessed in
alphabetical order, whereas when we used the variance the features we sorted based on their standard deviation for the
assessment.

[{'var_0', 'var_8'}, {'var_4', 'var_6', 'var_7', 'var_9'}]

We can find the feature that will be retained as the key in the following attribute:

tr.correlated_feature_dict_

The variables var_0 and var_7 will be retained, and the remaining ones will be dropped.

{'var_0': {'var_8'}, 'var_7': {'var_4', 'var_6', 'var_9'}}

We find the variables that will be dropped in the following attribute:

tr.features_to_drop_

['var_8', 'var_4', 'var_6', 'var_9']

And now we can print the resulting dataframe after the transformation:

print(Xt.head())

var_0 var_1 var_2 var_3 var_5 var_7 var_10 \
0 1.471061 -2.376400 -0.247208 1.210290 0.091527 -2.230170 2.070526
1 1.819196 1.969326 -0.126894 0.034598 -0.186802 -1.447490 1.184820
2 1.625024 1.499174 0.334123 -2.233844 -0.313881 -2.240741 -0.066448
3 1.939212 0.075341 1.627132 0.943132 -0.468041 -3.534861 0.713558
4 1.579307 0.372213 0.338141 0.951526 0.729005 -2.053965 0.398790

var_11
0 -1.989335
1 -1.309524
2 -0.852703
3 0.484649
4 -0.186530

Let’s examine other attributes that may be useful. Like with any Scikit-learn transformer we can obtain the names of
the features in the resulting dataframe as follows:

tr.get_feature_names_out()

['var_0', 'var_1', 'var_2', 'var_3', 'var_5', 'var_7', 'var_10', 'var_11']

We also find the get_support method that flags the features that will be retained from the dataframe:

10.2. User Guide 251

feature_engine Documentation, Release 1.7.0

tr.get_support()

[True, True, True, True, False, True, False, True, False, False, True, True]

And that’s it!

Additional resources

In this notebook, we show how to use SmartCorrelatedSelection with a different relation metric:

• Jupyter notebook

All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these resources:

Fig. 83: Feature Selection for Machine Learning

Or read our book:

Fig. 84: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data

252 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Smart-Correlation-Selection.ipynb
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

SelectBySingleFeaturePerformance

The SelectBySingleFeaturePerformance() selects features based on the
performance of machine learning models trained using individual features.
That is, it selects features based on their individual performance. In short,
the selection algorithms works as follows:

1. Train a machine learning model per feature (using only 1 feature)

2. Determine the performance metric of choice

3. Retain features which performance is above a threshold

If the parameter threshold is left to None, it will select features which per-
formance is above the mean performance of all features.

Example
Let’s see how to use this transformer with the diabetes dataset that comes in
Scikit-learn. First, we load the data:

import pandas as pd
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression
from feature_
→˓engine.selection import SelectBySingleFeaturePerformance

load dataset
diabetes_X, diabetes_y = load_diabetes(return_X_y=True)
X = pd.DataFrame(diabetes_X)
y = pd.Series(diabetes_y)

Now, we start SelectBySingleFeaturePerformance() to select features based on the r2 returned by a Linear re-
gression, using 3 fold cross-validation. We want to select features which r2 > 0.01.

initialize feature selector
sel = SelectBySingleFeaturePerformance(

estimator=LinearRegression(), scoring="r2", cv=3, threshold=0.01)

With fit() the transformer fits 1 model per feature, determines the performance and selects the important features:

fit transformer
sel.fit(X, y)

The features that will be dropped are stored in an attribute:

sel.features_to_drop_

[1]

SelectBySingleFeaturePerformance() also stores the performace of each one of the models, in case we want to
study those further:

10.2. User Guide 253

feature_engine Documentation, Release 1.7.0

sel.feature_performance_

{0: 0.029231969375784466,
1: -0.003738551760264386,
2: 0.336620809987693,
3: 0.19219056680145055,
4: 0.037115559827549806,
5: 0.017854228256932614,
6: 0.15153886177526896,
7: 0.17721609966501747,
8: 0.3149462084418813,
9: 0.13876602125792703}

With transform() we go ahead and remove the features from the dataset:

drop variables
Xt = sel.transform(X)

If we now print the transformed data, we see that the features above were removed.

print(Xt.head())

0 2 3 4 5 6 7 \
0 0.038076 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592
1 -0.001882 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493
2 0.085299 0.044451 -0.005670 -0.045599 -0.034194 -0.032356 -0.002592
3 -0.089063 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309
4 0.005383 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592

8 9
0 0.019907 -0.017646
1 -0.068332 -0.092204
2 0.002861 -0.025930
3 0.022688 -0.009362
4 -0.031988 -0.046641

Additional resources

Check also:

• Jupyter notebook

All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these resources:

For more details about this and other feature selection methods check out these resources:

254 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Select-by-Single-Feature-Performance.ipynb
https://github.com/feature-engine/feature-engine-examples

feature_engine Documentation, Release 1.7.0

Fig. 85: Feature Selection for Machine Learning

Or read our book:

Fig. 86: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

RecursiveFeatureElimination

RecursiveFeatureElimination implements recursive feature elimination.
Recursive feature elimination (RFE) is a backward feature selection process.
In Feature-engine’s implementation of RFE, a feature will be kept or removed
based on the performance of a machine learning model without that feature.
This differs from Scikit-learn’s implementation of RFE where a feature will be
kept or removed based on the feature importance.

This technique begins by building a model on the entire set of variables, then
calculates and stores a model performance metric, and finally computes an
importance score for each variable. Features are ranked by the model’s coef_
or feature_importances_ attributes.

In the next step, the least important feature is removed, the model is re-built,
and a new performance metric is determined. If this performance metric is
worse than the original one, then, the feature is kept, (because eliminating the
feature clearly caused a drop in model performance) otherwise, it removed.

The procedure removes now the second to least important feature, trains a new
model, determines a new performance metric, and so on, until it evaluates all

10.2. User Guide 255

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

feature_engine Documentation, Release 1.7.0

the features, from the least to the most important.

Note that, in Feature-engine’s implementation of RFE, the feature importance
is used just to rank features and thus determine the order in which the features will be eliminated. But whether to retain
a feature is determined based on the decrease in the performance of the model after the feature elimination.

By recursively eliminating features, RFE attempts to eliminate dependencies and collinearity that may exist in the
model.

Parameters
Feature-engine’s RFE has 2 parameters that need to be determined somewhat arbitrarily by the user: the first one is the
machine learning model which performance will be evaluated. The second is the threshold in the performance drop
that needs to occur, to remove a feature.

RFE is not machine learning model agnostic, this means that the feature selection depends on the model, and different
models may have different subsets of optimal features. Thus, it is recommended that you use the machine learning
model that you finally intend to build.

Regarding the threshold, this parameter needs a bit of hand tuning. Higher thresholds will of course return fewer
features.

Example
Let’s see how to use this transformer with the diabetes dataset that comes in Scikit-learn. First, we load the data:

import pandas as pd
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression
from feature_engine.selection import RecursiveFeatureElimination

load dataset
diabetes_X, diabetes_y = load_diabetes(return_X_y=True)
X = pd.DataFrame(diabetes_X)
y = pd.Series(diabetes_y)

Now, we set up RecursiveFeatureElimination to select features based on the r2 returned by a Linear Regression
model, using 3 fold cross-validation. In this case, we leave the parameter threshold to the default value which is
0.01.

initialize linear regresion estimator
linear_model = LinearRegression()

initialize feature selector
tr = RecursiveFeatureElimination(estimator=linear_model, scoring="r2", cv=3)

With fit() the model finds the most useful features, that is, features that when removed cause a drop in model perfor-
mance bigger than 0.01. With transform(), the transformer removes the features from the dataset.

fit transformer
Xt = tr.fit_transform(X, y)

RecursiveFeatureElimination stores the performance of the model trained using all the features in its attribute:

get the initial linear model performance, using all features
tr.initial_model_performance_

256 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

0.488702767247119

RecursiveFeatureElimination also stores the change in the performance caused by removing every feature.

Get the performance drift of each feature
tr.performance_drifts_

{0: -0.0032796652347705235,
9: -0.00028200591588534163,
6: -0.0006752869546966522,
7: 0.00013883578730117252,
1: 0.011956170569096924,
3: 0.028634492035512438,
5: 0.012639090879036363,
2: 0.06630127204137715,
8: 0.1093736570697495,
4: 0.024318093565432353}

RecursiveFeatureElimination also stores the features that will be dropped based n the given threshold.

the features to remove
tr.features_to_drop_

[0, 6, 7, 9]

If we now print the transformed data, we see that the features above were removed.

print(Xt.head())

1 2 3 4 5 8
0 0.050680 0.061696 0.021872 -0.044223 -0.034821 0.019907
1 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 -0.068332
2 0.050680 0.044451 -0.005670 -0.045599 -0.034194 0.002861
3 -0.044642 -0.011595 -0.036656 0.012191 0.024991 0.022688
4 -0.044642 -0.036385 0.021872 0.003935 0.015596 -0.031988

Additional resources

More details on recursive feature elimination in this article:

• Recursive feature elimination with Python

For more details about this and other feature selection methods check out these resources:

For more details about this and other feature selection methods check out these resources:

10.2. User Guide 257

https://www.blog.trainindata.com/recursive-feature-elimination-with-python/

feature_engine Documentation, Release 1.7.0

Fig. 87: Feature Selection for Machine Learning

Or read our book:

Fig. 88: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

RecursiveFeatureAddition

RecursiveFeatureAddition implements recursive feature addition. Recur-
sive feature addition (RFA) is a forward feature selection process.

This technique begins by building a model on the entire set of variables and
computing an importance score for each variable. Features are ranked by the
model’s coef_ or feature_importances_ attributes.

In the next step, it trains a model only using the feature with the highest im-
portance and stores the model performance.

Then, it adds the second most important, trains a new model and determines a
new performance metric. If the performance increases beyond the threshold,
compared to the previous model, then that feature is important and will be kept.
Otherwise, that feature is removed.

It proceeds to evaluate the next most important feature, and so on, until all
features are evaluated.

Note that feature importance is used just to rank features and thus determine
the order in which the features will be added. But whether to retain a feature

258 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

is determined based on the increase in the performance of the model after the
feature addition.

Parameters
Feature-engine’s RFA has 2 parameters that need to be determined somewhat arbitrarily by the user: the first one is the
machine learning model which performance will be evaluated. The second is the threshold in the performance increase
that needs to occur, to keep a feature.

RFA is not machine learning model agnostic, this means that the feature selection depends on the model, and different
models may have different subsets of optimal features. Thus, it is recommended that you use the machine learning
model that you finally intend to build.

Regarding the threshold, this parameter needs a bit of hand tuning. Higher thresholds will of course return fewer
features.

Example
Let’s see how to use this transformer with the diabetes dataset that comes in Scikit-learn. First, we load the data:

import pandas as pd
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression
from feature_engine.selection import RecursiveFeatureAddition

load dataset
diabetes_X, diabetes_y = load_diabetes(return_X_y=True)
X = pd.DataFrame(diabetes_X)
y = pd.Series(diabetes_y)

Now, we set up RecursiveFeatureAddition to select features based on the r2 returned by a Linear Regression
model, using 3 fold cross-validation. In this case, we leave the parameter threshold to the default value which is
0.01.

initialize linear regresion estimator
linear_model = LinearRegression()

initialize feature selector
tr = RecursiveFeatureAddition(estimator=linear_model, scoring="r2", cv=3)

With fit() the model finds the most useful features, that is, features that when added cause an increase in model
performance bigger than 0.01. With transform(), the transformer removes the features from the dataset.

fit transformer
Xt = tr.fit_transform(X, y)

RecursiveFeatureAddition stores the performance of the model trained using all the features in its attribute:

get the initial linear model performance, using all features
tr.initial_model_performance_

0.488702767247119

RecursiveFeatureAddition also stores the change in the performance caused by adding each feature.

Get the performance drift of each feature
tr.performance_drifts_

10.2. User Guide 259

feature_engine Documentation, Release 1.7.0

{4: 0,
8: 0.28371458794131676,
2: 0.1377714799388745,
5: 0.0023327265047610735,
3: 0.018759914615172735,
1: 0.0027996354657459643,
7: 0.002695149440021638,
6: 0.002683934134630306,
9: 0.000304067408860742,
0: -0.007387230783454768}

RecursiveFeatureAddition also stores the features that will be dropped based n the given threshold.

the features to drop
tr.features_to_drop_

[0, 1, 5, 6, 7, 9]

If we now print the transformed data, we see that the features above were removed.

print(Xt.head())

2 3 4 8
0 0.061696 0.021872 -0.044223 0.019907
1 -0.051474 -0.026328 -0.008449 -0.068332
2 0.044451 -0.005670 -0.045599 0.002861
3 -0.011595 -0.036656 0.012191 0.022688
4 -0.036385 0.021872 0.003935 -0.031988

Additional resources

For more details about this and other feature selection methods check out these resources:

Fig. 89: Feature Selection for Machine Learning

Or read our book:

260 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 90: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

SelectByShuffling

The SelectByShuffling() selects important features if a random permuta-
tion of their values decreases the model performance. If the feature is predic-
tive, a random shuffle of the values across the rows, should return predictions
that are off the truth. If the feature is not predictive, their values should have a
minimal impact on the prediction.

Procedure

The algorithm works as follows:

1. Train a machine learning model using all features

2. Determine a model performance metric of choice

3. Shuffle the order of 1 feature values

4. Use the model trained in 1 to obtain new predictions

5. Determine the performance with the predictions in 4

6. If there is a drop in performance beyond a threshold, keep the feature.

7. Repeat 3-6 until all features are examined.

Example
Let’s see how to use this transformer with the diabetes dataset that comes in
Scikit-learn. First, we load the data:

import pandas as pd
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression
from feature_engine.selection import SelectByShuffling

(continues on next page)

10.2. User Guide 261

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

(continued from previous page)

load dataset
diabetes_X, diabetes_y = load_diabetes(return_X_y=True)
X = pd.DataFrame(diabetes_X)
y = pd.Series(diabetes_y)

Now, we set up the model for which we want to have the performance drop evaluated:

initialize linear regresion estimator
linear_model = LinearRegression()

Now, we instantiate SelectByShuffling() to select features by shuffling, based on the r2 of the model from the
previous cell, using 3 fold cross-validation. The parameter threshold was left to None, which means that features
will be selected if the performance drop is bigger than the mean drop caused by all features.

initialize feature selector
tr = SelectByShuffling(estimator=linear_model, scoring="r2", cv=3)

With fit() the transformer finds the important variables, that is, those which values permutations caused a drop in
the model performance. With transform() it drops them from the dataset:

fit transformer
Xt = tr.fit_transform(X, y)

SelectByShuffling() stores the performance of the model trained using all the features in its attribute:

tr.initial_model_performance_

0.488702767247119

SelectByShuffling() also stores the performance change caused by every single feature after shuffling. In case you
are not satisfied with the threshold used, you can get an idea of where the threshold could be by looking at these values:

tr.performance_drifts_

{0: -0.0035681361984126747,
1: 0.041170843574652394,
2: 0.1920054944393057,
3: 0.07007527443645178,
4: 0.49871458125373913,
5: 0.1802858704499694,
6: 0.025536233845966705,
7: 0.024058931694668884,
8: 0.40901959802129045,
9: 0.004487448637912506}

SelectByShuffling() also stores the features that will be dropped based on the threshold indicated.

tr.features_to_drop_

[0, 1, 3, 6, 7, 9]

If we now print the transformed data, we see that the features above were removed.

262 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

print(Xt.head())

2 4 5 8
0 0.061696 -0.044223 -0.034821 0.019907
1 -0.051474 -0.008449 -0.019163 -0.068332
2 0.044451 -0.045599 -0.034194 0.002861
3 -0.011595 0.012191 0.024991 0.022688
4 -0.036385 0.003935 0.015596 -0.031988

Additional resources

For more details about this and other feature selection methods check out these resources:

Fig. 91: Feature Selection for Machine Learning

Or read our book:

Fig. 92: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

10.2. User Guide 263

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

SelectByTargetMeanPerformance

SelectByTargetMeanPerformance() selects features based on perfor-
mance metrics like the ROC-AUC or accuracy for classification, or mean
squared error and R-squared for regression.

To obtain performance metrics, we compare an estimate of the target, returned
by a machine learning model, with the real target. The closer the values of the
estimate to the real target, the better the performance of the model.

SelectByTargetMeanPerformance(), like
SelectBySingleFeaturePerformance() train models based on sin-
gle features. Or in other words, they train and test one model per feature.
With SelectBySingleFeaturePerformance(), we can use any machine
learning classifier or regressor available in Scikit-learn to evaluate each
feature’s performance. The downside is that Scikit-learn models only work
with numerical variables, thus, if our data has categorical variables, we need
to encode them into numbers first.

SelectByTargetMeanPerformance(), on the other hand, can select both
numerical and categorical variables. SelectByTargetMeanPerformance()
uses a very simple “machine learning model” to estimate the target. It estimates
the target by returning the mean target value per category or per interval. And

with this prediction, it determines a performance metric for each feature.

These feature selection idea is very simple; it involves taking the mean of the responses (target) for each level (category
or interval), and so amounts to a least squares fit on a single categorical variable against a response variable, with the
categories in the continuous variables defined by intervals.

SelectByTargetMeanPerformance() works with cross-validation. It uses the k-1 folds to define the numerical
intervals and learn the mean target value per category or interval. Then, it uses the remaining fold to evaluate the
performance of the feature: that is, in the last fold it sorts numerical variables into the bins, replaces bins and categories
by the learned target estimates, and calculates the performance of each feature.

Despite its simplicity, the method has a number of advantages:

• Speed: Computing means and intervals is fast, straightforward and efficient.

• Stability with respect to feature magnitude: Extreme values for continuous variables do not skew predictions as
they would in many models.

• Comparability between continuous and categorical variables.

• Accommodation of non-linearities.

• Does not require encoding categorical variables into numbers.

The method has also some limitations. First, the selection of the number of intervals as well as the threshold is arbitrary.
And also, rare categories and very skewed variables will raise errors when NAN are accidentally introduced during the
evaluation.

264 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Important

SelectByTargetMeanPerformance() automatically identifies numerical and categorical variables. It will select as
categorical variables, those cast as object or categorical, and as numerical variables those of type numeric. Therefore,
make sure that your variables are of the correct data type.

Troubleshooting

The main problem that you may encounter using this selector is having missing data introduced in the variables when
replacing the categories or the intervals by the target mean estimates.

Categorical variables

NAN are introduced in categorical variables when a category present in the kth fold was not present in the k-1 fold used
to calculate the mean target value per category. This is probably due to the categorical variable having high cardinality
(a lot of categories) or rare categories, that is, categories present in a small fraction of the observations.

If this happens, try reducing the cardinality of the variable, for example by grouping rare labels into a single group.
Check the RareLabelEncoder for more details.

Numerical variables

NAN are introduced in numerical variables when an interval present in the kth cross-validation fold was not present in
the k-1 fold used to calculate the mean target value per interval. This is probably due to the numerical variable being
highly skewed, or having few unique values, for example, if the variable is discrete instead of continuous.

If this happens, check the distribution of the problematic variable and try to identify the problem. Try using equal-
frequency intervals instead of equal-width and also reducing the number of bins.

If the variable is discrete and has few unique values, another thing you could do is casting the variable as object, so that
the selector evaluates the mean target value per unique value.

Finally, if a numerical variable is truly continuous and not skewed, check that it is not accidentally cast as object.

Example

Let’s see how to use this method to select variables in the Titanic dataset. This data has a mix of numerical and
categorical variables, then it is a good option to showcase this selector.

Let’s import the required libraries and classes, and prepare the titanic dataset:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

from feature_engine.datasets import load_titanic
from feature_engine.encoding import RareLabelEncoder
from feature_engine.selection import SelectByTargetMeanPerformance

data = load_titanic(
handle_missing=True,
predictors_only=True,

(continues on next page)

10.2. User Guide 265

feature_engine Documentation, Release 1.7.0

(continued from previous page)

cabin="letter_only",
)

replace infrequent cabins by N
data['cabin'] = np.where(data['cabin'].isin(['T', 'G']), 'N', data['cabin'])

cap maximum values
data['parch'] = np.where(data['parch']>3,3,data['parch'])
data['sibsp'] = np.where(data['sibsp']>3,3,data['sibsp'])

cast variables as object to treat as categorical
data[['pclass','sibsp','parch']] = data[['pclass','sibsp','parch']].astype('O')

print(data.head())

We can see the first 5 rows of data below:

pclass survived sex age sibsp parch fare cabin embarked
0 1 1 female 29.0000 0 0 211.3375 B S
1 1 1 male 0.9167 1 2 151.5500 C S
2 1 0 female 2.0000 1 2 151.5500 C S
3 1 0 male 30.0000 1 2 151.5500 C S
4 1 0 female 25.0000 1 2 151.5500 C S

Let’s now go ahead and split the data into train and test sets:

separate train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['survived'], axis=1),
data['survived'],
test_size=0.1,
random_state=0)

X_train.shape, X_test.shape

We see the sizes of the datasets below:

((1178, 8), (131, 8))

Now, we set up SelectByTargetMeanPerformance(). We will examine the roc-auc using 3 fold cross-validation.
We will separate numerical variables into equal-frequency intervals. And we will retain those variables where the
roc-auc is bigger than the mean ROC-AUC of all features (default functionality).

sel = SelectByTargetMeanPerformance(
variables=None,
scoring="roc_auc",
threshold=None,
bins=3,
strategy="equal_frequency",
cv=3,
regression=False,

)
(continues on next page)

266 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

sel.fit(X_train, y_train)

With fit() the transformer:

• replaces categories by the target mean

• sorts numerical variables into equal-frequency bins

• replaces bins by the target mean

• calculates the the roc-auc for each transformed variable

• selects features which roc-auc bigger than the average

In the attribute variables_ we find the variables that were evaluated:

sel.variables_

['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare', 'cabin', 'embarked']

In the attribute features_to_drop_ we find the variables that were not selected:

sel.features_to_drop_

['age', 'sibsp', 'parch', 'embarked']

In the attribute feature_performance_ we find the ROC-AUC for each feature. Remember that this is the average
ROC-AUC in each cross-validation fold:

sel.feature_performance_

{'pclass': 0.668151138112005,
'sex': 0.764831274819234,
'age': 0.535490029737471,
'sibsp': 0.5815934176199077,
'parch': 0.5721327969642238,
'fare': 0.6545985745474006,
'cabin': 0.630092526712033,
'embarked': 0.5765961846034091}

The mean ROC-AUC of all features is 0.62, we can calculate it as follows:

pd.Series(sel.feature_performance_).mean()

0.6229357428894605

So we can see that the transformer correclty selected the features with ROC-AUC above that value.

With transform() we can go ahead and drop the features:

Xtr = sel.transform(X_test)

Xtr.head()

10.2. User Guide 267

feature_engine Documentation, Release 1.7.0

pclass sex fare cabin
1139 3 male 7.8958 M
533 2 female 21.0000 M
459 2 male 27.0000 M
1150 3 male 14.5000 M
393 2 male 31.5000 M

And finally, we can also obtain the names of the features in the final transformed data:

sel.get_feature_names_out()

['pclass', 'sex', 'fare', 'cabin']

Additional resources

Check also:

• Jupyter notebook

All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these resources: For more details about this
and other feature selection methods check out these resources:

Fig. 93: Feature Selection for Machine Learning

Or read our book:

268 Chapter 10. Table of Contents

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Select-by-Target-Mean-Encoding.ipynb
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 94: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

DropHighPSIFeatures

The DropHighPSIFeatures() finds and removes features with changes in
their distribution, i.e. “unstable values”, from a pandas dataframe. The stabil-
ity of the distribution is computed using the Population Stability Index (PSI)
and all features having a PSI value above a given threshold are removed.

Unstable features may introduce an additional bias in a model if the training
population significantly differs from the population in production. Removing
features for which a shift in the distribution is suspected leads to more ro-
bust models and therefore to better performance. In the field of Credit Risk
modelling, eliminating features with high PSI is common practice and usually
required by the Regulator.

Population Stability Index - PSI

The PSI is a measure of how much a population has changed in time or how
different the distributions are between two different population samples.

To determine the PSI, continuous features are sorted into discrete intervals,
the fraction of observations per interval is then determined, and finally those
values are compared between the 2 groups, or as we call them in Feature-
engine, between the basis and test sets, to obtain the PSI.

In other words, the PSI is computed as follows:

• Define the intervals into which the observations will be sorted.

• Sort the feature values into those intervals.

• Determine the fraction of observations within each interval.

• Compute the PSI.

The PSI is determined as:

𝑃𝑆𝐼 =

𝑛∑︁
𝑖=1

(𝑡𝑒𝑠𝑡𝑖 − 𝑏𝑎𝑠𝑖𝑠𝑖).𝑙𝑛(
𝑡𝑒𝑠𝑡𝑖
𝑏𝑎𝑠𝑖𝑠𝑖

)

where basis and test are the “reference” and “evaluation” datasets, respectively, and i refers to the interval.

In other words, the PSI determines the difference in the proportion of observations in each interval, between the refer-
ence (aka, original) and test datasets.

In the PSI equation, n is the total number of intervals.

10.2. User Guide 269

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

Important

When working with the PSI it is worth highlighting the following:

• The PSI is not symmetric; switching the order of the basis and test dataframes in the PSI calculation will lead to
different values.

• The number of bins used to define the distributions has an impact on the PSI values.

• The PSI is a suitable metric for numerical features (i.e., either continuous or with high cardinality).

• For categorical or discrete features, the change in distributions is better assessed with Chi-squared.

Threshold

Different thresholds can be used to assess the magnitude of the distribution shift according to the PSI value. The most
commonly used thresholds are:

• Below 10%, the variable has not experienced a significant shift.

• Above 25%, the variable has experienced a major shift.

• Between those two values, the shift is intermediate.

• ‘auto’: the threshold will be calculated based on the size of the base and target datasets and the number of bins.

When ‘auto’, the threshold is calculated using the chi2 approximation, proposed by B. Yurdakul:

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜒2
(𝑞,𝐵−1).(

1

𝑁
+

1

𝑀
)

where q is the percentile, B is the number of bins, N is the size of basis dataset, N is the size of test dataset.

In our implementation, we are using the 99.9th percentile.

As mentioned above, the number of bins has an impact on PSI value, because with a higher number of bins it is easier
to find divergence in data and vice versa. The same could be said about dataset size - the more data we have, the harder
it is to find the difference (if the shift is not drastic). This formula tries to catch these relationships and adjust threshold
to correctly detect feature drift.

Procedure

To compute the PSI, the DropHighPSIFeatures() splits the input dataset in two: a basis data set (aka the reference
data) and a test set. The basis data set is assumed to contain the expected or original feature distributions. The test set
will be assessed against the basis data set.

In the next step, the interval boundaries are determined based on the features in the basis or reference data. These
intervals can be determined to be of equal with, or equal number of observations.

Next, DropHighPSIFeatures() sorts each of the variable values into those intervals, both in the basis and test datasets,
and then determines the proportion (percentage) of observations within each interval.

Finally, the PSI is determined as indicated in the previous paragraph for each feature. With the PSI value per feature,
DropHighPSIFeatures() can now select the features that are unstable and drop them, based on a threshold.

270 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Splitting the data

DropHighPSIFeatures() allows us to determine how much a feature distribution has changed in time, or how much
it differs between 2 groups.

If we want to evaluate the distribution change in time, we can use a datetime variable as splitting reference and provide
a datetime cut-off as split point.

If we want to compare the distribution change between 2 groups, DropHighPSIFeatures() offers 3 different ap-
proaches to split the input dataframe:

• Based on proportion of observations.

• Based on proportions of unique observations.

• Using a cut-off value.

Proportion of observations

Splitting by proportion of observations will result in a certain proportion of observations allocated to either the reference
and test datasets. For example, if we set split_frac=0.75, then 75% and 25% of the observations will be put into
the reference and test data, respectively.

If we select this method, we can pass a variable in the parameter split_col or leave it to None.

Note that the data split is not done at random, but instead guided by the values in the reference variable indicated
in split_col. Under the hood, the reference variable indicated in split_col is ordered, and the percentage of
observations is determined with NumPy quantile. This means that the observations with smaller values in split_col
will land in the reference dataset, and those with bigger values will go to the test set.

If the rows in your dataset are sorted in time, this could be a good default option to split the dataframe in 2 and compute
the PSI. This will for example be the case if your data set contains daily (or any other frequency) sales information on
a company’s products.

Proportions of unique observations

If we split based on proportion of unique observations, it is important that we indicate which column we want to use as
reference in the split_col parameter, to make a meaningful split. If we leave this to None, DropHighPSIFeatures()
will use the dataframe index as reference. This makes sense only if the index in the dataframe has meaningful values.

DropHighPSIFeatures()will first identify the unique values of the variable in split_col. Then it will put a certain
proportion of those values into the reference dataset and the remaining to the test dataset. The proportion is indicated
in the parameter split_frac.

Under the hood, DropHighPSIFeatures() will sort the unique values of the reference variable, and then use NumPy
quantiles to determine the fraction that should be allocated to the reference and test sets. Thus, it is important to consider
that the order of the unique values matters in the split.

This split makes sense when we have for example unique customer identifiers and multiple rows per customer in the
dataset. We want to make sure that all rows belonging to the same customer are allocated either in the reference or test
data, but the same customer cannot be in both data sets. This way of splitting the data will also ensure that we have a
certain percentage, indicated in split_frac of customers in either data set after the split.

Thus, if split_frac=0.6 and split_distinct=True, DropHighPSIFeatures() will send the first 60% of cus-
tomers to the reference data set, and the remaining 40% to the test set. And it will ensure that rows belonging to the
same customer are just in one of the 2 data sets.

10.2. User Guide 271

feature_engine Documentation, Release 1.7.0

Using a cut-off value

We have the option to pass a reference variable to use to split the dataframe using split_col and also a cut-off value
in the cut_off parameter. The cut-off value can be a number, integer or float, a date or a list of values.

If we pass a datetime column in split_col and a datetime value in the cut_off, we can split the data in a temporal
manner. Observations collected before the time indicated will be sent to the reference dataframe, and the remaining to
the test set.

If we pass a list of values in the cut_off all observations which values are included in the list will go into the ref-
erence data set, and the remaining to the test set. This split is useful if we have a categorical variable indicating a
portfolio from which the observations have been collected. For example, if we set split_col='portfolio' and
cut_off=['port_1', 'port_2'], all observations that belong to the first and second portfolio will be sent to the
reference data set, and the observations from other portfolios to the test set.

Finally, if we pass a number to cut_off, all observations which value in the variable indicated in split_col is <=
cut-off, will be sent to the reference data set, alternatively to the test set. This can be useful for example when dates are
defined as integer (for example 20200411) or when using an ordinal customer segmentation to split the dataframe (1:
retail customers, 2: private banking customers, 3: SME and 4: Wholesale).

split_col

To split the data set, we recommend that you indicate which column you want to use as reference in the split_col
parameter. If you don’t, the split will be done based on the values of the dataframe index. This might be a good option
if the index contains meaningful values or if splitting just based on split_frac.

Examples

The versatility of the class lies in the different options to split the input dataframe in a reference or basis data set with
the “expected” distributions, and a test set which will be evaluated against the reference.

After splitting the data, DropHighPSIFeatures() goes ahead and compares the feature distributions in both data sets
by computing the PSI.

To illustrate how to best use DropHighPSIFeatures() depending on your data, we provide various examples illus-
trating the different possibilities.

Case 1: split data based on proportions (split_frac)

In this case, DropHighPSIFeatures() will split the dataset in 2, based on the indicated proportion. The proportion
is indicated in the split_frac parameter. You have the option to select a variable in split_col or leave it to None.
In the latter, the dataframe index will be used to split.

Let’s first create a toy dataframe containing 5 random variables and 1 variable with a shift in its distribution (var_3 in
this case).

import pandas as pd
import seaborn as sns

from sklearn.datasets import make_classification
from feature_engine.selection import DropHighPSIFeatures

Create a dataframe with 500 observations and 6 random variables
(continues on next page)

272 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X, y = make_classification(
n_samples=500,
n_features=6,
random_state=0

)

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Add a column with a shift.
X['var_3'][250:] = X['var_3'][250:] + 1

The default approach in DropHighPSIFeatures() is to split the input dataframe X in two equally sized data sets. You
can adjust the proportions by changing the value in the split_frac parameter.

For example, let’s split the input dataframe into a reference data set containing 60% of the observations and a test set
containing 40% of the observations.

Remove the features with high PSI values using a 60-40 split.

transformer = DropHighPSIFeatures(split_frac=0.6)
transformer.fit(X)

The value of split_frac tells DropHighPSIFeatures() to split X according to a 60% - 40% ratio. The fit()
method performs the split of the dataframe and the calculation of the PSI.

Because we created random variables, these features will have low PSI values (i.e., no distribution change). However,
we manually added a distribution shift in the variable var_3 and therefore expect the PSI for this particular feature to
be above the 0.25 PSI threshold.

The PSI values are accessible through the psi_values_ attribute:

transformer.psi_values_

The analysis of the PSI values below shows that only feature 3 (called var_3) has a PSI above the 0.25 threshold
(default value) and will be removed by the transform method.

{'var_0': 0.07405459925568803,
'var_1': 0.09124093185820083,
'var_2': 0.16985790067687764,
'var_3': 1.342485289730313,
'var_4': 0.0743442762545251,
'var_5': 0.06809060587241555}

From the output, we see that the PSI value for var_0 is around 7%. This means that, when comparing the first 300 and
the last 200 observations of the dataframe, there is only a small difference in the distribution of the var_0 feature. A
similar conclusion applies to var_1, var_2, var_4 and var_5. Looking at the PSI value for var_3, we see that it exceeds
by far the 0.25 threshold. We can then conclude the population of this feature has shifted and it is wise not to include
it in the feature set for modelling.

The cut-off value used to split the dataframe is stored in the cut_off_ attribute:

transformer.cut_off_

This yields the following answer

10.2. User Guide 273

feature_engine Documentation, Release 1.7.0

299.4

The value of 299.4 means that observations with index from 0 to 299 are used to define the basis data set. This
corresponds to 60% (300 / 500) of the original dataframe (X). The value of 299.4 may seem strange because it is not
one of the value present in (the (index of) the dataframe. Intuitively, we would expect the cut_off to be an integer in the
present case. However, the cut_off is computed using quantiles and the quantiles are computed using extrapolation.

Splitting with proportions will order the index or the reference column first, and then determine the data that will go into
each dataframe. In other words, the order of the index or the variable indicated in split_col matters. Observations
with the lowest values will be sent to the basis dataframe and the ones with the highest values to the test set.

The features_to_drop_ attribute provides the list with the features to be dropped when executing the transform
method.

The command

transformer.features_to_drop_

Yields the following result:

['var_3']

That the var_3 feature is dropped during the procedure is illustrated when looking at the columns from the
X_transformed dataframe.

X_transformed = transformer.transform(X)

X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_4', 'var_5'], dtype='object')

DropHighPSIFeatures() also contains a fit_transform method that combines the fit and the transform meth-
ods.

The difference in distribution between a non-shifted and a shifted distribution is clearly visible when plotting the
cumulative density function.

For the shifted variable:

X['above_cut_off'] = X.index > transformer.cut_off_
sns.ecdfplot(data=X, x='var_3', hue='above_cut_off')

and a non-shifted variable (for example var_1)

sns.ecdfplot(data=X, x='var_1', hue='above_cut_off')

274 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

10.2. User Guide 275

feature_engine Documentation, Release 1.7.0

Case 2: split data based on variable (numerical cut_off)

In the previous example, we wanted to split the input dataframe in 2 datasets, with the reference dataset containing 60%
of the observations. We let DropHighPSIFeatures() find the cut-off to achieve this.

We can instead, provide ourselves the numerical cut-off that determines which observations will go to the reference or
basis data set, and which to the test set. Using the cut_off parameter, we can define the specific threshold for the split.

A real life example for this case is the use of the customer ID or contract ID to split the dataframe. These IDs are often
increasing in value over time which justifies their use to assess distribution shifts in the features.

Let’s create a toy dataframe representing the customers’ characteristics of a company. This dataset contains six random
variables (in real life this are variables like age or postal code), the seniority of the customer (i.e. the number of months
since the start of the relationship between the customer and the company) and the customer ID (i.e. the number (integer)
used to identify the customer). Generally the customer ID grows over time which means that early customers have a
lower customer ID than late customers.

From the definition of the variables, we expect the seniority to increase with the customer ID and therefore to have a
high PSI value when comparing early and late customer,

import pandas as pd
from sklearn.datasets import make_classification
from feature_engine.selection import DropHighPSIFeatures

X, y = make_classification(
n_samples=500,
n_features=6,
random_state=0

)

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Let's add a variable for the customer ID
X['customer_id'] = [customer_id for customer_id in range(1, 501)]

Add a column with the seniority... that is related to the customer ID
X['seniority'] = 100 - X['customer_id'] // 10

transformer = DropHighPSIFeatures(split_col='customer_id', cut_off=250)
transformer.fit(X)

In this case, DropHighPSIFeatures() will allocate in the basis or reference data set, all observations which values
in customer_id are <= 250. The test dataframe contains the remaining observations.

The method fit() will determine the PSI values, which are stored in the class:

transformer.psi_values_

We see that DropHighPSIFeatures() does not provide any PSI value for the customer_id feature, because this
variable was used as a reference to split the data.

{'var_0': 0.07385590683974477,
'var_1': 0.061155637727757485,
'var_2': 0.1736694458621651,
'var_3': 0.044965387331530465,

(continues on next page)

276 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'var_4': 0.0904519893659045,
'var_5': 0.027545195437270797,
'seniority': 7.8688986006052035}

transformer.features_to_drop_

Gives

['seniority']

Executing the dataframe transformation leads to the exclusion of the seniority feature but not to the exclusion of the
customer_id.

X_transformed = transformer.transform(X)

X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'customer_id'], dtype=
→˓'object')

Case 3: split data based on time (date as cut_off)

DropHighPSIFeatures() can handle different types of split_col variables. The following case illustrates how it
works with a date variable. In fact, we often want to determine if the distribution of a feature changes in time, for
example after a certain event like the start of the Covid-19 pandemic.

This is how to do it. Let’s create a toy dataframe with 6 random numerical variables and two date variables. One will
be use to specific the split of the dataframe while the second one is expected to have a high PSI value.

import pandas as pd
from datetime import date
from sklearn.datasets import make_classification
from feature_engine.selection import DropHighPSIFeatures

X, y = make_classification(
n_samples=1000,
n_features=6,
random_state=0

)

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Add two time variables to the dataframe
X['time'] = [date(year, 1, 1) for year in range(1000, 2000)]
X['century'] = X['time'].apply(lambda x: ((x.year - 1) // 100) + 1)

Let's shuffle the dataframe and reset the index to remove the correlation
between the index and the time variables.

X = X.sample(frac=1).reset_index(drop=True)

10.2. User Guide 277

feature_engine Documentation, Release 1.7.0

Dropping features with high PSI values comparing two periods of time is done simply by providing the name of the
column with the date and a cut-off date. In the example below the PSI calculations will be done comparing the periods
up to the French revolution and after.

transformer = DropHighPSIFeatures(split_col='time', cut_off=date(1789, 7, 14))
transformer.fit(X)

Important: if the date variable is in pandas or NumPy datetime format, you may need to pass the cut_off value as
pd.to_datetime(1789-07-14).

The PSI values shows the century variables in unstable as its value is above the 0.25 threshold.

transformer.psi_values_

{'var_0': 0.0181623637463045,
'var_1': 0.10595496570984747,
'var_2': 0.05425659114295842,
'var_3': 0.09720689210928271,
'var_4': 0.07917647542638032,
'var_5': 0.10122468631060424,
'century': 8.272395772368412}

The class has correctly identified the feature to be dropped.

transformer.features_to_drop_

['century']

And the transform method correctly removes the feature.

X_transformed = transformer.transform(X)

X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'time'], dtype='object')

The difference in distribution between a non-shifted and a shifted distribution is clearly visible when plotting the
cumulative density function for each of the group.

We can plot the cumulative distribution of the shifted variable like this:

X['above_cut_off'] = X.time > pd.to_datetime(transformer.cut_off_)
sns.ecdfplot(data=X, x='century', hue='above_cut_off')

and the distribution of a non-shifted variable, for example var_2, like this:

sns.ecdfplot(data=X, x='var_2', hue='above_cut_off')

And below we can compare both plots:

278 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

10.2. User Guide 279

feature_engine Documentation, Release 1.7.0

Case 4: split data based on a categorical variable (category or list as cut_off)

DropHighPSIFeatures() can also split the original dataframe based on a categorical variable. The cut-off can then
be defined in two ways:

• Using a single string.

• Using a list of values.

In the first case, the column with the categorical variable is sorted alphabetically and the split is determined by the
cut-off. We recommend being very careful when using a single category as cut-off, because alphabetical sorting in
combination with a cut-off does not always provide obvious results. In other words, for this way of splitting the data to
be meaningful, the alphabetical order of the categories in the reference variable should have an intrinsic meaning.

A better purpose for splitting the data based on a categorical variable would be to pass a list with the values of the
variable that want in the reference dataframe. A real life example for this case is the computation of the PSI between
different customer segments like ‘Retail’, ‘SME’ or ‘Wholesale’. In this case, if we indicate [‘Retail’] as cut-off,
observations for Retail will be sent to the basis data set, and those for ‘SME’ and ‘Wholesale’ will be added to the test
set.

Split passing a category value

Let’s show how to set up the transformer in this case. The example data set contains 6 randoms variables, a categorical
variable with the labels of the different categories and 2 category related features.

import pandas as pd
import seaborn as sns

from sklearn.datasets import make_classification
from feature_engine.selection import DropHighPSIFeatures

X, y = make_classification(
n_samples=1000,
n_features=6,
random_state=0

)

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Add a categorical column
X['group'] = ["A", "B", "C", "D", "E"] * 200

And two category related features
X['group_means'] = X.group.map({"A": 1, "B": 2, "C": 0, "D": 1.5, "E": 2.5})
X['shifted_feature'] = X['group_means'] + X['var_2']

We can define a simple cut-off value (for example the letter C). In this case, observations with values that come before
C, alphabetically, will be allocated to the reference data set.

transformer = DropHighPSIFeatures(split_col='group', cut_off='C')
X_transformed = transformer.fit_transform(X)

The PSI values are provided in the psi_values_ attribute.

280 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

transformer.psi_values_

{'var_0': 0.06485778974895254,
'var_1': 0.03605540598761757,
'var_2': 0.040632784917352296,
'var_3': 0.023845405645510645,
'var_4': 0.028007185972248064,
'var_5': 0.07009152672971862,
'group_means': 6.601444547497699,
'shifted_feature': 0.48428009522119164}

From these values we see that the last 2 features should be removed. We can corroborate that in the
features_to_drop_ attribute:

transformer.features_to_drop_

['group_means', 'shifted_feature']

And these columns are removed from the original dataframe by the transform method that, in the present case, has been
applied through the fit_transform method a couple of block cells above.

X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'group'], dtype='object')

Split passing a list of categories

Instead of passing a category value, we can instead pass a list of values to the cut_off. Using the same data set let’s set
up the DropHighPSIFeatures() to split the dataframe according to the list [‘A’, ‘C’, ‘E’] for the categorical variable
group.

In this case, the PSI’s will be computed by comparing two dataframes: the first one containing only the values A, C
and E for the group variable and the second one containing only the values B and D.

trans = DropHighPSIFeatures(split_col='group', cut_off=['A', 'C', 'E'])
X_no_drift = trans.fit_transform(X)

trans.psi_values_

'var_0': 0.04322345673014104,
'var_1': 0.03534439253617049,
'var_2': 0.05220272785661243,
'var_3': 0.04550964862452317,
'var_4': 0.04492720670343145,
'var_5': 0.044886435640028144,
'group_means': 6.601444547497699,
'shifted_features': 0.3683642099948127}

Here again, the object will remove the group_means and the shifted_features columns from the dataframe.

trans.features_to_drop_

['group_means', 'shifted_features']

10.2. User Guide 281

feature_engine Documentation, Release 1.7.0

And these columns are removed from the original dataframe by the transform method that has been applied through
the fit_transform method.

X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'group'], dtype='object')

In the following plots, we can compare the distribution of a feature with high PSI and one with low PSI, in the different
categories of the categorical variable.

With this code we plot the cumulative distribution of a feature which distribution is different among the different
categories of the variable:

sns.ecdfplot(data=X, x='shifted_feature', hue='group')

With this code we plot the cumulative distribution of a feature which distribution is the same across the different
categories of the categorical variable:

sns.ecdfplot(data=X, x='var_0', hue='group')

And below we can compare the plots of both features:

282 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

10.2. User Guide 283

feature_engine Documentation, Release 1.7.0

Case 5: split data based on unique values (split_distinct)

A variant to the previous example is the use of the split_distinct functionality. In this case, the split is not done
based on the number observations from split_col but from the number of distinct values in the reference variable
indicated in split_col.

A real life example for this case is when dealing with groups of different sizes like customers income classes (‘1000’,
‘2000’, ‘3000’, ‘4000’, . . .). Split_distinct allows to control the numbers of classes in the basis and test dataframes
regardless of the number of observations in each class.

This case is illustrated in the toy data for this case. The data set contains 6 random variable and 1 income variable that
is larger for one of the 6 group defined (the F group).

import numpy as np
import pandas as pd
import seaborn as sns

from sklearn.datasets import make_classification
from feature_engine.selection import DropHighPSIFeatures

X, y = make_classification(
n_samples=1000,
n_features=6,
random_state=0

)

colnames = ["var_" + str(i) for i in range(6)]
X = pd.DataFrame(X, columns=colnames)

Add a categorical column
X['group'] = ["A", "B", "C", "D", "E"] * 100 + ["F"] * 500

And an income variable that is category dependent.
np.random.seed(0)
X['income'] = np.random.uniform(1000, 2000, 500).tolist() +

np.random.uniform(1250, 2250, 500).tolist()

Shuffle the dataframe to make the dataset more real life case.
X = X.sample(frac=1).reset_index(drop=True)

The group column contains 500 observations in the (A, B, C, D, E) group and 500 in the (F) group.

When we pass split_distinct=True when initializing the DropHighPSIFeatures object, the two dataframes used
to compute the PSI will contain the same number of unique values in the group column (i.e., one dataframe will contain
300 rows associated to groups A, B and C while the other will contain 700 rows associated to groups D, E and F).

transformer = DropHighPSIFeatures(split_col='group', split_distinct=True)
transformer.fit(X)

transformer.psi_values_

This yields the following PSI values:

{'var_0': 0.014825303242393804,
'var_1': 0.03818316821350485,

(continues on next page)

284 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'var_2': 0.029635981271458896,
'var_3': 0.021700399485890084,
'var_4': 0.061194837255216114,
'var_5': 0.04119583769297253,
'income': 0.46191580731264914}

And we can find the feature that will be dropped, income, here:

transformer.features_to_drop_

['income']

The former feature will be removed from the dataset when calling the transform() method.

X_transformed = transformer.transform(X)

X_transformed.columns

Index(['var_0', 'var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'group'], dtype='object')

The difference in distribution between a non-shifted and a shifted distribution is clearly visible when plotting the
cumulative density function for each of the group.

For the shifted variable (income):

sns.ecdfplot(data=X, x='income', hue='group')

and a non-shifted variable (for example var_4)

sns.ecdfplot(data=X, x="var_4", hue="group")

10.2. User Guide 285

feature_engine Documentation, Release 1.7.0

286 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Additional resources

In this notebook, we show how to use DropHighPSIFeatures on a real dataset and give more detail about the under-
lying base and reference sub-dataframes used to determine the PSI.

• Jupyter notebook

All notebooks can be found in a dedicated repository.

For more details about this and other feature selection methods check out these resources:

Fig. 95: Feature Selection for Machine Learning

Or read our book:

Fig. 96: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

10.2. User Guide 287

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/selection/Drop-High-PSI-Features.ipynb
https://github.com/feature-engine/feature-engine-examples
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

SelectByInformationValue

SelectByInformationValue() selects features based on whether the fea-
ture’s information value score is greater than the threshold passed by the user.

The IV is calculated as:

𝐼𝑉 = (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑎𝑠𝑒𝑠− 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑎𝑠𝑒𝑠) *𝑊𝑜𝐸

where:

• the fraction of positive cases is the proportion of observations of class
1, from the total class 1 observations.

• the fraction of negative cases is the proportion of observations of class
0, from the total class 0 observations.

• WoE is the weight of the evidence.

The WoE is calculated as:

𝑊𝑜𝐸 = 𝑙𝑛(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑎𝑠𝑒𝑠/𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑎𝑠𝑒𝑠)

Information value (IV) is used to assess a feature’s predictive power of a binary-
class dependent variable. To derive a feature’s IV, the weight of evidence

(WoE) must first be calculated for each unique category or bin that comprises the feature. If a category or bin contains
a large percentage of true or positive labels compared to the percentage of false or negative labels, then that category
or bin will have a high WoE value.

Once the WoE is derived, SelectByInformationValue() calculates the IV for each variable. A variable’s IV is
essentially the weighted sum of the individual WoE values for each category or bin within that variable where the
weights incorporate the absolute difference between the numerator and denominator. This value assesses the feature’s
predictive power in capturing the binary dependent variable.

The table below presents a general framework for using IV to determine a variable’s predictive power:

Information Value Predictive Power
< 0.02 Useless
0.02 to 0.1 Weak
0.1 to 0.3 Medium
0.3 to 0.5 Strong
> 0.5 Suspicious, too good to be true

Table taken from listendata.

Example

Let’s see how to use this transformer to select variables from UC Irvine’s credit approval data set which can be found
here. This dataset concerns credit card applications. All attribute names and values have been changed to meaningless
symbols to protect confidentiality.

The data is comprised of both numerical and categorical data.

Let’s import the required libraries and classes:

288 Chapter 10. Table of Contents

https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html
https://archive-beta.ics.uci.edu/ml/datasets/credit+approval

feature_engine Documentation, Release 1.7.0

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from feature_engine.selection import SelectByInformationValue

Let’s now load and prepare the credit approval data:

load data
data = pd.read_csv('crx.data', header=None)

name variables
var_names = ['A' + str(s) for s in range(1,17)]
data.columns = var_names
data.rename(columns={'A16': 'target'}, inplace=True)

preprocess data
data = data.replace('?', np.nan)
data['A2'] = data['A2'].astype('float')
data['A14'] = data['A14'].astype('float')
data['target'] = data['target'].map({'+':1, '-':0})

drop rows with missing data
data.dropna(axis=0, inplace=True)

data.head()

Let’s now review the first 5 rows of the dataset:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 target
0 b 30.83 0.000 u g w v 1.25 t t 1 f g 202.0 0 1
1 a 58.67 4.460 u g q h 3.04 t t 6 f g 43.0 560 1
2 a 24.50 0.500 u g q h 1.50 t f 0 f g 280.0 824 1
3 b 27.83 1.540 u g w v 3.75 t t 5 t g 100.0 3 1
4 b 20.17 5.625 u g w v 1.71 t f 0 f s 120.0 0 1

Let’s now split the data into train and test sets:

separate train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['target'], axis=1),
data['target'],
test_size=0.2,
random_state=0)

X_train.shape, X_test.shape

We see the size of the datasets below.

((522, 15), (131, 15))

Now, we set up SelectByInformationValue(). We will pass six categorical variables to the parameter variables.
We will set the parameter threshold to 0.2. We see from the above mentioned table that an IV score of 0.2 signifies
medium predictive power.

10.2. User Guide 289

feature_engine Documentation, Release 1.7.0

sel = SelectByInformationValue(
variables=['A1', 'A6', 'A9', 'A10', 'A12', 'A13'],
threshold=0.2,

)

sel.fit(X_train, y_train)

With fit(), the transformer:

• calculates the WoE for each variable

• calculates the the IV for each variable

• identifies the variables that have an IV score below the threshold

In the attribute variables_, we find the variables that were evaluated:

['A1', 'A6', 'A7', 'A9', 'A10', 'A12', 'A13']

In the attribute features_to_drop_, we find the variables that were not selected:

sel.features_to_drop_

['A1', 'A12', 'A13']

The attribute information_values_ shows the IV scores for each variable.

{'A1': 0.0009535686492270659,
'A6': 0.6006252129425703,
'A9': 2.9184484098456807,
'A10': 0.8606638171665587,
'A12': 0.012251943759377052,
'A13': 0.04383964979386022}

We see that the transformer correctly selected the features that have an IV score greater than the threshold which was
set to 0.2.

The transformer also has the method get_support with similar functionality to Scikit-learn’s selectors method. If
you execute sel.get_support(), you obtain:

[False, True, True, True, True, True, True,
True, True, True, True, False, False, True,
True]

With transform(), we can go ahead and drop the features that do not meet the threshold:

Xtr = sel.transform(X_test)

Xtr.head()

A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A14 A15
564 42.17 5.04 u g q h 12.750 t f 0 92.0 0
519 39.17 1.71 u g x v 0.125 t t 5 480.0 0
14 45.83 10.50 u g q v 5.000 t t 7 0.0 0
257 20.00 0.00 u g d v 0.500 f f 0 144.0 0
88 34.00 4.50 u g aa v 1.000 t f 0 240.0 0

290 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Note that Xtr includes all the numerical features - i.e., A2, A3, A8, A11, and A14 - because we only evaluated a few
of the categorical features.

And, finally, we can also obtain the names of the features in the final transformed dataset:

sel.get_feature_names_out()

['A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10', 'A11', 'A14', 'A15']

If we want to select from categorical and numerical variables, we can do so as well by sorting the numerical variables
into bins first. Let’s sort them into 5 bins of equal-frequency:

sel = SelectByInformationValue(
bins=5,
strategy="equal_frequency",
threshold=0.2,

)

sel.fit(X_train.drop(["A4", "A5", "A7"], axis=1), y_train)

If we now inspect the information values:

sel.information_values_

We see the following:

{'A1': 0.0009535686492270659,
'A2': 0.10319123021570434,
'A3': 0.2596258749173557,
'A6': 0.6006252129425703,
'A8': 0.7291628533346297,
'A9': 2.9184484098456807,
'A10': 0.8606638171665587,
'A11': 1.0634602064399297,
'A12': 0.012251943759377052,
'A13': 0.04383964979386022,
'A14': 0.3316668794040285,
'A15': 0.6228678069374612}

And if we inspect the features to drop:

sel.features_to_drop_

We see the following:

['A1', 'A2', 'A12', 'A13']

10.2. User Guide 291

feature_engine Documentation, Release 1.7.0

Note

The WoE is given by a logarithm of a fraction. Thus, if for any category or bin, the fraction of observations of class 0
is 0, the WoE is not defined, and the transformer will raise an error.

If you encounter this problem try grouping variables into fewer bins if they are numerical, or grouping rare categories
with the RareLabelEncoder if they are categorical.

Additional resources

For more details about this and other feature selection methods check out these resources:

Fig. 97: Feature Selection for Machine Learning

Or read our book:

Fig. 98: Feature Selection in Machine
Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

292 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

ProbeFeatureSelection

ProbeFeatureSelection() generates one or more random variables based
on the user-selected parameters. Next, the transformer derives the feature im-
portance for each variable and probe feature. Finally, it eliminates the features
that have a lower feature importance score than the probe feature(s).

In the case of there being more than one probe feature, the average feature
importance score of all the probe features is used.

In summary, this is how ProbeFeatureSelection() selects features:

1. Create 1 or more random features

2. Train a machine learning model with all features including the random
ones

3. Derive feature importance for all features

4. Take the average importance of the random features (only if more than
1 random feature were used)

5. Select features whose importance is greater than the importance of the
random variables (step 4)

One of the primary goals of feature selection is to remove noise from the
dataset. A randomly generated variable, i.e., probe feature, inherently pos-
sesses a high level of noise. Consequently, any variable that demonstrates less

importance than a probe feature is assumed to be noise and can be discarded from the dataset.

When initiating the ProbeFeatureSelection() class, the user has the option of selecting which distribution is to be
assumed to create the probe feature(s) and the number of probe features to be created. The possible distributions are
‘normal’, ‘binary’, ‘uniform’, or ‘all’. ‘all’ creates 1 or more probe features comprised of each distribution type, i.e.,
normal, binomial, and uniform.

Example

Let’s see how to use this transformer to select variables from UC Irvine’s Breast Cancer Wisconsin (Diagnostic) dataset,
which can be found here. We will use Scikit-learn to load the dataset. This dataset concerns breast cancer diagnoses.
The target variable is binary, i.e., malignant or benign.

The data is solely comprised of numerical data.

Let’s import the required libraries and classes:

import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from feature_engine.selection import ProbeFeatureSelection

Let’s now load the cancer diagnostic data:

cancer_X, cancer_y = load_breast_cancer(return_X_y=True, as_frame=True)

Let’s check the shape of cancer_X:

print(cancer_X.shape)

10.2. User Guide 293

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

feature_engine Documentation, Release 1.7.0

We see that the dataset is comprised of 569 observations and 30 features:

(569, 30)

Let’s now split the data into train and test sets:

separate train and test sets
X_train, X_test, y_train, y_test = train_test_split(

cancer_X,
cancer_y,
test_size=0.2,
random_state=3

)

X_train.shape, X_test.shape

We see the size of the datasets below. Note that there are 30 features in both the training and test sets.

((455, 30), (114, 30))

Now, we set up ProbeFeatureSelection().

We will pass RandomForestClassifier() as the estimator. We will use precision as the scoring parameter
and 5 as cv parameter, both parameters to be used in the cross validation.

In this example, we will introduce just 1 random feature with a normal distribution. Thus, we pass 1 for the n_probes
parameter and normal as the distribution.

sel = ProbeFeatureSelection(
estimator=RandomForestClassifier(),
variables=None,
scoring="precision",
n_probes=1,
distribution="normal",
cv=5,
random_state=150,
confirm_variables=False

)

sel.fit(X_train, y_train)

With fit(), the transformer:

• creates n_probes number of probe features using provided distribution(s)

• uses cross-validation to fit the provided estimator

• calculates the feature importance score for each variable, including probe features

• if there are multiple probe features, the transformer calculates the average importance score

• identifies features to drop because their importance scores are less than that of the probe feature(s)

In the attribute probe_features, we find the pseudo-randomly generated variable(s):

sel.probe_features_.head()

294 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

gaussian_probe_0
0 -0.694150
1 1.171840
2 1.074892
3 1.698733
4 0.498702

We can go ahead and display a histogram of the probe feature:

sel.probe_features_.hist(bins=30)

As we can see, it shows a normal distribution:

The attribute feature_importances_ shows each variable’s feature importance:

sel.feature_importances_.head()

These are the first 5 features:

mean radius 0.058463
mean texture 0.011953

(continues on next page)

10.2. User Guide 295

feature_engine Documentation, Release 1.7.0

(continued from previous page)

mean perimeter 0.069516
mean area 0.050947
mean smoothness 0.004974

At the end of the series, we see the importance of the probe feature:

sel.feature_importances_.tail()

These are the importance of the last 5 features including the probe:

worst concavity 0.037844
worst concave points 0.102769
worst symmetry 0.011587
worst fractal dimension 0.007456
gaussian_probe_0 0.003783
dtype: float64

In the attribute features_to_drop_, we find the variables that were not selected:

sel.features_to_drop_

These are the variables that will be removed from the dataframe:

['mean symmetry',
'mean fractal dimension',
'texture error',
'smoothness error',
'concave points error',
'fractal dimension error']

We see that the features_to_drop_ have feature importance scores that are less than the probe feature’s score:

sel.feature_importances_.loc[sel.features_to_drop_+["gaussian_probe_0"]]

The previous command returns the following output:

mean symmetry 0.003698
mean fractal dimension 0.003455
texture error 0.003595
smoothness error 0.003333
concave points error 0.003548
fractal dimension error 0.003576
gaussian_probe_0 0.003783

With transform(), we can go ahead and drop the six features with feature importance score less than
gaussian_probe_0 variable:

Xtr = sel.transform(X_test)

Xtr.shape

The final shape of the data after removing the features:

296 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(114, 24)

And, finally, we can also obtain the names of the features in the final transformed dataset:

sel.get_feature_names_out()

['mean radius',
'mean texture',
'mean perimeter',
'mean area',
'mean smoothness',
'mean compactness',
'mean concavity',
'mean concave points',
'radius error',
'perimeter error',
'area error',
'compactness error',
'concavity error',
'symmetry error',
'worst radius',
'worst texture',
'worst perimeter',
'worst area',
'worst smoothness',
'worst compactness',
'worst concavity',
'worst concave points',
'worst symmetry',
'worst fractal dimension']

For compatibility with Scikit-learn selection transformers, ProbeFeatureSelection() also supports the method
get_support():

sel.get_support()

which returns the following output:

[True, True, True, True, True, True, True, True, False, False, True, False, True,
True, False, True, True, False, True, False, True, True, True, True, True, True,
True, True, True, True]

Using several probe features

Let’s now repeat the selection process, but using more than 1 probe feature.

sel = ProbeFeatureSelection(
estimator=RandomForestClassifier(),
variables=None,
scoring="precision",
n_probes=3,
distribution="all",

(continues on next page)

10.2. User Guide 297

feature_engine Documentation, Release 1.7.0

(continued from previous page)

cv=5,
random_state=150,
confirm_variables=False

)

sel.fit(X_train, y_train)

Let’s display the random features that the transformer created:

sel.probe_features_.head()

Here we find some example values of the probe features:

gaussian_probe_0 binary_probe_0 uniform_probe_0
0 -0.694150 1 0.983610
1 1.171840 1 0.765628
2 1.074892 1 0.991439
3 1.698733 0 0.668574
4 0.498702 0 0.192840

Let’s go ahead and plot histograms:

sel.probe_features_.hist(bins=30)

In the histograms we recognise the 3 well defined distributions:

Let’s display the importance of the random features

sel.feature_importances_.tail()

worst symmetry 0.009176
worst fractal dimension 0.007825
gaussian_probe_0 0.003765
binary_probe_0 0.000354
uniform_probe_0 0.002377
dtype: float64

We see that the binary feature has an extremely low importance, hence, when we take the average, the value is so small,
that no feature will be dropped:

sel.features_to_drop_

The previous command returns and empty list:

[]

It is important to select a suitable probe feature distribution when trying to remove variables. If most variables are
continuous, introduce features with normal and uniform distributions. If you have one hot encoded features or sparse
matrices, binary features might be a better option.

298 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

10.2. User Guide 299

feature_engine Documentation, Release 1.7.0

Additional resources

More info about this method can be found in these resources:

• Kaggle Tips for Feature Engineering and Selection, by Gilberto Titericz.

• Feature Selection: Beyond feature importance?, KDDNuggets.

For more details about this and other feature selection methods check out these resources:

Fig. 99: Feature Selection for Machine Learning

Or read our book:

Fig. 100: Feature Selection in Ma-
chine Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

300 Chapter 10. Table of Contents

https://www.youtube.com/watch?v=RtqtM1UJfZc&t=3150s
https://www.kdnuggets.com/2019/10/feature-selection-beyond-feature-importance.html
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

Additional Resources

More details about feature selection can be found in the following resources:

Or read our book:

Fig. 101: Feature Selection for Machine Learning

10.2. User Guide 301

https://www.trainindata.com/p/feature-selection-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 102: Feature Selection in Ma-
chine Learning

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

10.2.4 Time series

Time Series Features

Feature-engine’s time series transformers create features from time series data.

Forecasting Features

Feature-engine’s time series forecasting transformers create and add new fea-
tures to the dataframe by lagging features or calculating statistics over windows
of the features in the past.

LagFeatures

Lag features are commonly used in data science to forecast time series with
traditional

machine learning models, like linear regression or random forests. A lag fea-
ture is a feature with information about a prior time step of the time series.

When forecasting the future values of a variable, the past values of that same
variable are likely to be predictive. Past values of other predictive features can
also be useful for our forecast. Thus, in forecasting, it is common practice
to create lag features from time series data and use them as input to machine
learning algorithms or forecasting models.

What is a lag feature?

A lag feature is the value of the time series k period(s) in the past, where k is the lag and is to be set by the user. For
example, a lag of 1 is a feature that contains the previous time point value of the time series. A lag of 3 contains the
value 3 time points before, and so on. By varying k, we can create features with multiple lags.

In Python, we can create lag features by using the pandas method shift. For example, by executing X[my_variable].
shift(freq=”1H”, axis=0), we create a new feature consisting of lagged values of my_variable by 1 hour.

Feature-engine’s LagFeatures automates the creation of lag features from multiple variables and by using multiple
lags. It uses pandas shift under the hood, and automatically concatenates the new features to the input dataframe.

302 Chapter 10. Table of Contents

https://leanpub.com/feature-selection-in-machine-learning

feature_engine Documentation, Release 1.7.0

Automating lag feature creation

There are 2 ways in which we can indicate the lag k using LagFeatures. Just like with pandas shift, we can indicate
the lag using the parameter periods. This parameter takes integers that indicate the number of rows forward that the
features will be lagged.

Alternatively, we can use the parameter freq, which takes a string with the period and frequency, and lags features
based on the datetime index. For example, if we pass freq="1D", the values of the features will be moved 1 day
forward.

The LagFeatures transformer works very similarly to pandas.shift, but unlike pandas.shift we can indicate the
lag using either periods or freq but not both at the same time. Also, unlike pandas.shift, we can only lag features
forward.

LagFeatures has several advantages over pandas.shift:

• First, it can create features with multiple values of k at the same time.

• Second, it adds the features with a name to the original dataframe.

• Third, it has the methods fit() and transform() that make it compatible with the Scikit-learn’s Pipeline
and cross-validation functions.

Note that, in the current implementation, LagFeatures only works with dataframes whose index, containing the time
series timestamp, contains unique values and no NaN.

Examples

Let’s create a toy dataset to show how to add lag features with LagFeatures. The dataframe contains 3 numerical
variables, a categorical variable, and a datetime index. We also create an arbitrary target.

import pandas as pd

X = {"ambient_temp": [31.31, 31.51, 32.15, 32.39, 32.62, 32.5, 32.52, 32.68],
"module_temp": [49.18, 49.84, 52.35, 50.63, 49.61, 47.01, 46.67, 47.52],
"irradiation": [0.51, 0.79, 0.65, 0.76, 0.42, 0.49, 0.57, 0.56],
"color": ["green"] * 4 + ["blue"] * 4,
}

X = pd.DataFrame(X)
X.index = pd.date_range("2020-05-15 12:00:00", periods=8, freq="15min")
y = pd.Series([1, 2, 3, 4, 5, 6, 7, 8])
y.index = X.index

X.head()

Below we see the output of our toy dataframe:

ambient_temp module_temp irradiation color
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

And here we print and show the target variable:

10.2. User Guide 303

feature_engine Documentation, Release 1.7.0

y

2020-05-15 12:00:00 1
2020-05-15 12:15:00 2
2020-05-15 12:30:00 3
2020-05-15 12:45:00 4
2020-05-15 13:00:00 5
2020-05-15 13:15:00 6
2020-05-15 13:30:00 7
2020-05-15 13:45:00 8
Freq: 15min, dtype: int64

Shift a row forward

Now we will create lag features by lagging all numerical variables 1 row forward. Note that LagFeatures automatically
finds all numerical variables.

from feature_engine.timeseries.forecasting import LagFeatures

lag_f = LagFeatures(periods=1)

X_tr = lag_f.fit_transform(X)

X_tr.head()

We can find the lag features on the right side of the dataframe. Note that the values have been shifted a row forward.

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

ambient_temp_lag_1 module_temp_lag_1 irradiation_lag_1
2020-05-15 12:00:00 NaN NaN NaN
2020-05-15 12:15:00 31.31 49.18 0.51
2020-05-15 12:30:00 31.51 49.84 0.79
2020-05-15 12:45:00 32.15 52.35 0.65
2020-05-15 13:00:00 32.39 50.63 0.76

The variables to lag are stored in the variables_ attribute of the LagFeatures:

lag_f.variables_

['ambient_temp', 'module_temp', 'irradiation']

We can obtain the names of the original variables plus the lag features that are the returned in the transformed dataframe
using the get_feature_names_out() method:

lag_f.get_feature_names_out()

304 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

['ambient_temp',
'module_temp',
'irradiation',
'color',
'ambient_temp_lag_1',
'module_temp_lag_1',
'irradiation_lag_1']

When we create lag features, we introduce nan values for the first rows of the training data set, because there are no
past values for those data points. We can impute those nan values with an arbitrary value as follows:

lag_f = LagFeatures(periods=1, fill_value=0)

X_tr = lag_f.fit_transform(X)

print(X_tr.head())

We see that the nan values were replaced by 0:

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

ambient_temp_lag_1 module_temp_lag_1 irradiation_lag_1
2020-05-15 12:00:00 0.00 0.00 0.00
2020-05-15 12:15:00 31.31 49.18 0.51
2020-05-15 12:30:00 31.51 49.84 0.79
2020-05-15 12:45:00 32.15 52.35 0.65
2020-05-15 13:00:00 32.39 50.63 0.76

Alternatively, we can drop the rows with missing values in the lag features, like this:

lag_f = LagFeatures(periods=1, drop_na=True)

X_tr = lag_f.fit_transform(X)

print(X_tr.head())

ambient_temp module_temp irradiation color \
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue
2020-05-15 13:15:00 32.50 47.01 0.49 blue

ambient_temp_lag_1 module_temp_lag_1 irradiation_lag_1
2020-05-15 12:15:00 31.31 49.18 0.51
2020-05-15 12:30:00 31.51 49.84 0.79
2020-05-15 12:45:00 32.15 52.35 0.65
2020-05-15 13:00:00 32.39 50.63 0.76

(continues on next page)

10.2. User Guide 305

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 13:15:00 32.62 49.61 0.42

We can also drop the rows with nan in the lag features and then adjust the target variable like this:

X_tr, y_tr = lag_f.transform_x_y(X, y)

X_tr.shape, y_tr.shape, X.shape, y.shape

We created a lag feature of 1, hence there is only 1 row with nan, which was removed from train set and target:

((7, 7), (7,), (8, 4), (8,))

Create multiple lag features

We can create multiple lag features with one transformer by passing the lag periods in a list.

lag_f = LagFeatures(periods=[1, 2])

X_tr = lag_f.fit_transform(X)

X_tr.head()

Note how multiple lag features were created for each of the numerical variables and added at the right side of the
dataframe.

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

ambient_temp_lag_1 module_temp_lag_1 irradiation_lag_1 \
2020-05-15 12:00:00 NaN NaN NaN
2020-05-15 12:15:00 31.31 49.18 0.51
2020-05-15 12:30:00 31.51 49.84 0.79
2020-05-15 12:45:00 32.15 52.35 0.65
2020-05-15 13:00:00 32.39 50.63 0.76

ambient_temp_lag_2 module_temp_lag_2 irradiation_lag_2
2020-05-15 12:00:00 NaN NaN NaN
2020-05-15 12:15:00 NaN NaN NaN
2020-05-15 12:30:00 31.31 49.18 0.51
2020-05-15 12:45:00 31.51 49.84 0.79
2020-05-15 13:00:00 32.15 52.35 0.65

We can get the names of features in the resulting dataframe as follows:

lag_f.get_feature_names_out()

306 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

['ambient_temp',
'module_temp',
'irradiation',
'color',
'ambient_temp_lag_1',
'module_temp_lag_1',
'irradiation_lag_1',
'ambient_temp_lag_2',
'module_temp_lag_2',
'irradiation_lag_2']

We can replace the nan introduced in the lag features as well. In this opportunity, we’ll use a string. Not that this is a
suitable solution to train machine learning algorithms, but the idea here is to showcase LagFeatures’s functionality.

lag_f = LagFeatures(periods=[1, 2], fill_value='None')

X_tr = lag_f.fit_transform(X)

print(X_tr.head())

In this case, we replaced the nan in the lag features with the string None:

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

ambient_temp_lag_1 module_temp_lag_1 irradiation_lag_1 \
2020-05-15 12:00:00 None None None
2020-05-15 12:15:00 31.31 49.18 0.51
2020-05-15 12:30:00 31.51 49.84 0.79
2020-05-15 12:45:00 32.15 52.35 0.65
2020-05-15 13:00:00 32.39 50.63 0.76

ambient_temp_lag_2 module_temp_lag_2 irradiation_lag_2
2020-05-15 12:00:00 None None None
2020-05-15 12:15:00 None None None
2020-05-15 12:30:00 31.31 49.18 0.51
2020-05-15 12:45:00 31.51 49.84 0.79
2020-05-15 13:00:00 32.15 52.35 0.65

Alternatively, we can drop rows containing nan in the lag features and then adjust the target variable:

lag_f = LagFeatures(periods=[1, 2], drop_na=True)

lag_f.fit(X)

X_tr, y_tr = lag_f.transform_x_y(X, y)

X_tr.shape, y_tr.shape, X.shape, y.shape

We see that 2 rows were dropped from train set and target:

10.2. User Guide 307

feature_engine Documentation, Release 1.7.0

((6, 10), (6,), (8, 4), (8,))

Lag features based on datetime

We can also lag features utilizing information in the timestamp of the dataframe, which is commonly cast as datetime.

Let’s for example create features by lagging 2 of the numerical variables 30 minutes forward.

lag_f = LagFeatures(variables = ["module_temp", "irradiation"], freq="30min")

X_tr = lag_f.fit_transform(X)

X_tr.head()

Note that the features were moved forward 30 minutes.

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

module_temp_lag_30min irradiation_lag_30min
2020-05-15 12:00:00 NaN NaN
2020-05-15 12:15:00 NaN NaN
2020-05-15 12:30:00 49.18 0.51
2020-05-15 12:45:00 49.84 0.79
2020-05-15 13:00:00 52.35 0.65

We can replace the nan in the lag features with a number like this:

lag_f = LagFeatures(
variables=["module_temp", "irradiation"], freq="30min", fill_value=100)

X_tr = lag_f.fit_transform(X)

print(X_tr.head())

Here, we replaced nan by 100:

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

module_temp_lag_30min irradiation_lag_30min
2020-05-15 12:00:00 100.00 100.00
2020-05-15 12:15:00 100.00 100.00
2020-05-15 12:30:00 49.18 0.51

(continues on next page)

308 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:45:00 49.84 0.79
2020-05-15 13:00:00 52.35 0.65

Alternatively, we can remove the nan introduced in the lag features and adjust the target:

lag_f = LagFeatures(
variables=["module_temp", "irradiation"], freq="30min", drop_na=True)

lag_f.fit(X)

X_tr, y_tr = lag_f.transform_x_y(X, y)

X_tr.shape, y_tr.shape, X.shape, y.shape

Two rows were removed from the training data set and the target:

((6, 6), (6,), (8, 4), (8,))

Drop variable after lagging features

Similarly, we can lag multiple time intervals forward, but this time, let’s drop the original variable after creating the
lag features.

lag_f = LagFeatures(variables="irradiation",
freq=["30min", "45min"],
drop_original=True,
)

X_tr = lag_f.fit_transform(X)

X_tr.head()

We now see the multiple lag features at the back of the dataframe, and also that the original variable is not present in
the output dataframe.

ambient_temp module_temp color irradiation_lag_30min \
2020-05-15 12:00:00 31.31 49.18 green NaN
2020-05-15 12:15:00 31.51 49.84 green NaN
2020-05-15 12:30:00 32.15 52.35 green 0.51
2020-05-15 12:45:00 32.39 50.63 green 0.79
2020-05-15 13:00:00 32.62 49.61 blue 0.65

irradiation_lag_45min
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 NaN
2020-05-15 12:45:00 0.51
2020-05-15 13:00:00 0.79

This is super useful in time series forecasting, because the original variable is usually the one that we are trying to
forecast, that is, the target variable. The original variables also contain values that are NOT available at the time points
that we are forecasting.

10.2. User Guide 309

feature_engine Documentation, Release 1.7.0

Working with pandas series

If your time series is a pandas Series instead of a pandas Dataframe, you need to transform it into a dataframe before
using LagFeatures.

The following is a pandas Series:

X['ambient_temp']

2020-05-15 12:00:00 31.31
2020-05-15 12:15:00 31.51
2020-05-15 12:30:00 32.15
2020-05-15 12:45:00 32.39
2020-05-15 13:00:00 32.62
2020-05-15 13:15:00 32.50
2020-05-15 13:30:00 32.52
2020-05-15 13:45:00 32.68
Freq: 15T, Name: ambient_temp, dtype: float64

We can use LagFeatures to create, for example, 3 features by lagging the pandas Series if we convert it to a pandas
Dataframe using the method to_frame():

lag_f = LagFeatures(periods=[1, 2, 3])

X_tr = lag_f.fit_transform(X['ambient_temp'].to_frame())

X_tr.head()

ambient_temp ambient_temp_lag_1 ambient_temp_lag_2 \
2020-05-15 12:00:00 31.31 NaN NaN
2020-05-15 12:15:00 31.51 31.31 NaN
2020-05-15 12:30:00 32.15 31.51 31.31
2020-05-15 12:45:00 32.39 32.15 31.51
2020-05-15 13:00:00 32.62 32.39 32.15

ambient_temp_lag_3
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 NaN
2020-05-15 12:45:00 31.31
2020-05-15 13:00:00 31.51

And if we do not want the original values of time series in the returned dataframe, we just need to remember to drop
the original series after the transformation:

lag_f = LagFeatures(periods=[1, 2, 3], drop_original=True)

X_tr = lag_f.fit_transform(X['ambient_temp'].to_frame())

X_tr.head()

ambient_temp_lag_1 ambient_temp_lag_2 \
2020-05-15 12:00:00 NaN NaN

(continues on next page)

310 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:15:00 31.31 NaN
2020-05-15 12:30:00 31.51 31.31
2020-05-15 12:45:00 32.15 31.51
2020-05-15 13:00:00 32.39 32.15

ambient_temp_lag_3
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 NaN
2020-05-15 12:45:00 31.31
2020-05-15 13:00:00 31.51

Getting the name of the lag features

We can easily obtain the name of the original and new variables with the method get_feature_names_out. By using
the method with the default parameters, we obtain all the features in the output dataframe.

lag_f = LagFeatures(periods=[1, 2])

lag_f.fit(X)

lag_f.get_feature_names_out()

['ambient_temp',
'module_temp',
'irradiation',
'color',
'ambient_temp_lag_1',
'module_temp_lag_1',
'irradiation_lag_1',
'ambient_temp_lag_2',
'module_temp_lag_2',
'irradiation_lag_2']

Determining the right lag

We can create multiple lag features by utilizing various lags. But how do we decide which lag is a good lag?

There are multiple ways to do this.

We can create features by using multiple lags and then determine the best features by using feature selection.

Alternatively, we can determine the best lag through time series analysis by evaluating the autocorrelation or partial
autocorrelation of the time series.

For tutorials on how to create lag features for forecasting, check the course Feature Engineering for Time Series Fore-
casting. In the course, we also show how to detect and remove outliers from time series data, how to use features that
capture seasonality and trend, and much more.

10.2. User Guide 311

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Lags from the target vs lags from predictor variables

Very often, we want to forecast the values of just one time series. For example, we want to forecast sales in the next
month. The sales variable is our target variable, and we can create features by lagging past sales values.

We could also create lag features from accompanying predictive variables. For example, if we want to predict pollutant
concentration in the next few hours, we can create lag features from past pollutant concentrations. In addition, we can
create lag features from accompanying time series values, like the concentrations of other gases, or the temperature or
humidity.

See also

Check out the additional transformers to create window features through the use of rolling windows (WindowFeatures)
or expanding windows (ExpandingWindowFeatures).

If you want to use LagFeatures as part of a feature engineering pipeline, check out Feature-engine’s Pipeline.

Tutorials and courses

For tutorials about this and other feature engineering methods for time series forecasting check out our online courses:

Fig. 103: Feature Engineering for Time Series Forecast-
ing

Fig. 104: Forecasting with Machine Learning

Our courses are suitable for beginners and more advanced
data scientists looking to forecast time series using tradi-
tional machine learning models, like linear regression or
gradient boosting machines.

312 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://www.courses.trainindata.com/p/forecasting-with-machine-learning

feature_engine Documentation, Release 1.7.0

By purchasing them you are supporting Sole, the main de-
veloper of Feature-engine.

WindowFeatures

Window features are commonly used in data science to
forecast time series with traditional machine learning mod-
els, like linear regression or gradient boosting machines.
Window features are created by performing mathematical
operations over windows of past data.

For example, the mean “sales” value of the previous 3
months of data is a window feature. The maximum “rev-
enue” of the previous three rows of data is another window
feature.

In time series forecasting, we want to predict future values of the time series. To do this, we can create window features
by performing mathematical operations over windows of past values of the time series data. Then, we would use this
features to predict the time series with any regression model.

Rolling window features with pandas

Window features are the result of window operations over the variables. Rolling window operations are operations that
perform an aggregation over a sliding partition of past values of the time series data.

A window feature is, then, a feature created after computing mathematical functions (e.g., mean, min, max, etc.) within
a window over the past data.

In Python, we can create window features by utilizing pandas method rolling. For example, by executing:

X[["var_1", "var_2"].rolling(window=3).agg(["max", "mean"])

With the previous command, we create 2 window features for each variable, var_1 and var_2, by taking the maximum
and average value of the current and 2 previous rows of data.

If we want to use those features for forecasting using traditional machine learning algorithms, we also need to shift the
window forward with pandas method shift:

X[["var_1", "var_2"].rolling(window=3).agg(["max", "mean"]).shift(period=1)

Shifting is important to ensure that we are using values strictly in the past, respect to the point that we want to forecast.

Sliding window features with Feature-engine

WindowFeatures can automatically create and add window features to the dataframe, by performing multiple mathe-
matical operations over different window sizes over various numerical variables.

Thus, WindowFeatures creates and adds new features to the data set automatically through the use of windows over
historical data.

10.2. User Guide 313

feature_engine Documentation, Release 1.7.0

Window features: parameters

To create window features we need to determine a number of parameters. First, we need to identify the size of the
window or windows in which we will perform the operations. For example, we can take the average of the variable
over 3 months, or 6 weeks.

We also need to determine how far back is the window located respect to the data point we want to forecast. For
example, I can take the average of the last 3 weeks of data to forecast this week of data, or I can take the average of
the last 3 weeks of data to forecast next weeks data, leaving a gap of a window in between the window feature and the
forecasting point.

WindowFeatures: under the hood

WindowFeatures works on top of pandas.rolling, pandas.aggregate and pandas.shift. With pandas.
rolling, WindowFeatures determines the size of the windows for the operations. With pandas.rolling we can
specify the window size with an integer, a string or a function. With WindowFeatures, in addition, we can pass a list
of integers, strings or functions, to perform computations over multiple window sizes.

WindowFeatures uses pandas.aggregate to perform the mathematical operations over the windows. Therefore,
you can use any operation supported by pandas. For supported aggregation functions, see Rolling Window Functions.

With pandas.shift, WindowFeatures places the value derived from the past window, at the place of the value that
we want to forecast. So if we want to forecast this week with the average of the past 3 weeks of data, we should shift
the value 1 week forward. If we want to forecast next week with the last 3 weeks of data, we should forward the value
2 weeks forward.

WindowFeatures will add the new features with a representative name to the original dataframe. It also has the
methods fit() and transform() that make it compatible with the Scikit-learn’s Pipeline and cross-validation
functions.

Note that, in the current implementation, WindowFeatures only works with dataframes whose index, containing the
time series timestamp, contains unique values and no NaN.

Examples

Let’s create a time series dataset to see how to create window features with WindowFeatures. The dataframe contains
3 numerical variables, a categorical variable, and a datetime index. We also create a target variable.

import pandas as pd

X = {"ambient_temp": [31.31, 31.51, 32.15, 32.39, 32.62, 32.5, 32.52, 32.68],
"module_temp": [49.18, 49.84, 52.35, 50.63, 49.61, 47.01, 46.67, 47.52],
"irradiation": [0.51, 0.79, 0.65, 0.76, 0.42, 0.49, 0.57, 0.56],
"color": ["green"] * 4 + ["blue"] * 4,
}

X = pd.DataFrame(X)
X.index = pd.date_range("2020-05-15 12:00:00", periods=8, freq="15min")

y = pd.Series([1,2,3,4,5,6,7,8])
y.index = X.index

X.head()

314 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/window.html

feature_engine Documentation, Release 1.7.0

Below we see the dataframe:

ambient_temp module_temp irradiation color
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

Let’s now print out the target:

y

Below we see the target variable:

2020-05-15 12:00:00 1
2020-05-15 12:15:00 2
2020-05-15 12:30:00 3
2020-05-15 12:45:00 4
2020-05-15 13:00:00 5
2020-05-15 13:15:00 6
2020-05-15 13:30:00 7
2020-05-15 13:45:00 8
Freq: 15min, dtype: int64

Now we will create window features from the numerical variables. By setting window=["30min", "60min"] we
perform calculations over windows of 30 and 60 minutes, respectively.

If you look at our toy dataframe, you’ll notice that 30 minutes corresponds to 2 rows of data, and 60 minutes are 4 rows
of data. So, we will perform calculations over 2 and then 4 rows of data, respectively.

In functions, we indicate all the operations that we want to perform over those windows. In our example below, we
want to calculate the mean and the standard deviation of the data within those windows and also find the maximum
value within the windows.

With freq="15min" we indicate that we need to shift the calculations 15 minutes forward. In other words, we are
using the data available in windows defined up to 15 minutes before the forecasting point.

from feature_engine.timeseries.forecasting import WindowFeatures

win_f = WindowFeatures(
window=["30min", "60min"], functions=["mean", "max", "std"], freq="15min",

)

X_tr = win_f.fit_transform(X)

X_tr.head()

We find the window features on the right side of the dataframe.

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

(continues on next page)

10.2. User Guide 315

feature_engine Documentation, Release 1.7.0

(continued from previous page)

ambient_temp_window_30min_mean \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 31.31
2020-05-15 12:30:00 31.41
2020-05-15 12:45:00 31.83
2020-05-15 13:00:00 32.27

ambient_temp_window_30min_max \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 31.31
2020-05-15 12:30:00 31.51
2020-05-15 12:45:00 32.15
2020-05-15 13:00:00 32.39

ambient_temp_window_30min_std \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 0.141421
2020-05-15 12:45:00 0.452548
2020-05-15 13:00:00 0.169706

module_temp_window_30min_mean \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 49.180
2020-05-15 12:30:00 49.510
2020-05-15 12:45:00 51.095
2020-05-15 13:00:00 51.490

module_temp_window_30min_max \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 49.18
2020-05-15 12:30:00 49.84
2020-05-15 12:45:00 52.35
2020-05-15 13:00:00 52.35

module_temp_window_30min_std ... \
2020-05-15 12:00:00 NaN ...
2020-05-15 12:15:00 NaN ...
2020-05-15 12:30:00 0.466690 ...
2020-05-15 12:45:00 1.774838 ...
2020-05-15 13:00:00 1.216224 ...

irradiation_window_30min_std \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 0.197990
2020-05-15 12:45:00 0.098995
2020-05-15 13:00:00 0.077782

ambient_temp_window_60min_mean \
2020-05-15 12:00:00 NaN

(continues on next page)

316 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:15:00 31.310000
2020-05-15 12:30:00 31.410000
2020-05-15 12:45:00 31.656667
2020-05-15 13:00:00 31.840000

ambient_temp_window_60min_max \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 31.31
2020-05-15 12:30:00 31.51
2020-05-15 12:45:00 32.15
2020-05-15 13:00:00 32.39

ambient_temp_window_60min_std \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 0.141421
2020-05-15 12:45:00 0.438786
2020-05-15 13:00:00 0.512640

module_temp_window_60min_mean \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 49.180000
2020-05-15 12:30:00 49.510000
2020-05-15 12:45:00 50.456667
2020-05-15 13:00:00 50.500000

module_temp_window_60min_max \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 49.18
2020-05-15 12:30:00 49.84
2020-05-15 12:45:00 52.35
2020-05-15 13:00:00 52.35

module_temp_window_60min_std \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 0.466690
2020-05-15 12:45:00 1.672553
2020-05-15 13:00:00 1.368381

irradiation_window_60min_mean \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 0.5100
2020-05-15 12:30:00 0.6500
2020-05-15 12:45:00 0.6500
2020-05-15 13:00:00 0.6775

irradiation_window_60min_max \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 0.51
2020-05-15 12:30:00 0.79
2020-05-15 12:45:00 0.79

(continues on next page)

10.2. User Guide 317

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 13:00:00 0.79

irradiation_window_60min_std
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 0.197990
2020-05-15 12:45:00 0.140000
2020-05-15 13:00:00 0.126853

[5 rows x 22 columns]

The variables used as input for the window features are stored in the variables_ attribute of the WindowFeatures:

win_f.variables_

['ambient_temp', 'module_temp', 'irradiation']

We can obtain the names of the variables in the transformed dataframe using the get_feature_names_out()method:

win_f.get_feature_names_out()

['ambient_temp',
'module_temp',
'irradiation',
'color',
'ambient_temp_window_30min_mean',
'ambient_temp_window_30min_max',
'ambient_temp_window_30min_std',
'module_temp_window_30min_mean',
'module_temp_window_30min_max',
'module_temp_window_30min_std',
'irradiation_window_30min_mean',
'irradiation_window_30min_max',
'irradiation_window_30min_std',
'ambient_temp_window_60min_mean',
'ambient_temp_window_60min_max',
'ambient_temp_window_60min_std',
'module_temp_window_60min_mean',
'module_temp_window_60min_max',
'module_temp_window_60min_std',
'irradiation_window_60min_mean',
'irradiation_window_60min_max',
'irradiation_window_60min_std']

318 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Dropping rows with nan

When we create window features, we may introduce nan values for those data points where there isn’t enough data in
the past to create the windows. We can automatically drop the rows with nan values in the window features both in the
train set and in the target variable as follows:

win_f = WindowFeatures(
window=["30min", "60min"],
functions=["mean",],
freq="15min",
drop_na=True,

)

win_f.fit(X)

X_tr, y_tr = win_f.transform_x_y(X, y)

X.shape, y.shape, X_tr.shape, y_tr.shape

We see that the resulting dataframe contains less rows than the original dataframe:

((8, 4), (8,), (7, 10), (7,))

Imputing rows with nan

If instead of removing the row with nan in the window features, we want to impute those values, we can do
so with any of Feature-engine’s imputers. Here, we will replace nan with the arbitrary value -99, using the
ArbitraryNumberImputer within a pipeline:

from feature_engine.imputation import ArbitraryNumberImputer
from feature_engine.pipeline import Pipeline

win_f = WindowFeatures(
window=["30min", "60min"],
functions=["mean",],
freq="15min",

)

pipe = Pipeline([
("windows", win_f),
("imputer", ArbitraryNumberImputer(arbitrary_number=-99))

])

X_tr = pipe.fit_transform(X, y)

print(X_tr.head())

We see the resulting dataframe, where the nan values were replaced by -99:

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green

(continues on next page)

10.2. User Guide 319

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

ambient_temp_window_30min_mean \
2020-05-15 12:00:00 -99.00
2020-05-15 12:15:00 31.31
2020-05-15 12:30:00 31.41
2020-05-15 12:45:00 31.83
2020-05-15 13:00:00 32.27

module_temp_window_30min_mean \
2020-05-15 12:00:00 -99.000
2020-05-15 12:15:00 49.180
2020-05-15 12:30:00 49.510
2020-05-15 12:45:00 51.095
2020-05-15 13:00:00 51.490

irradiation_window_30min_mean \
2020-05-15 12:00:00 -99.000
2020-05-15 12:15:00 0.510
2020-05-15 12:30:00 0.650
2020-05-15 12:45:00 0.720
2020-05-15 13:00:00 0.705

ambient_temp_window_60min_mean \
2020-05-15 12:00:00 -99.000000
2020-05-15 12:15:00 31.310000
2020-05-15 12:30:00 31.410000
2020-05-15 12:45:00 31.656667
2020-05-15 13:00:00 31.840000

module_temp_window_60min_mean \
2020-05-15 12:00:00 -99.000000
2020-05-15 12:15:00 49.180000
2020-05-15 12:30:00 49.510000
2020-05-15 12:45:00 50.456667
2020-05-15 13:00:00 50.500000

irradiation_window_60min_mean
2020-05-15 12:00:00 -99.0000
2020-05-15 12:15:00 0.5100
2020-05-15 12:30:00 0.6500
2020-05-15 12:45:00 0.6500
2020-05-15 13:00:00 0.6775

320 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Working with pandas series

If your time series is a pandas Series instead of a pandas Dataframe, you need to transform it into a dataframe before
using WindowFeatures.

The following is a pandas Series:

X['ambient_temp']

2020-05-15 12:00:00 31.31
2020-05-15 12:15:00 31.51
2020-05-15 12:30:00 32.15
2020-05-15 12:45:00 32.39
2020-05-15 13:00:00 32.62
2020-05-15 13:15:00 32.50
2020-05-15 13:30:00 32.52
2020-05-15 13:45:00 32.68
Freq: 15T, Name: ambient_temp, dtype: float64

We can use WindowFeatures to create, for example, 2 new window features by finding the mean and maximum value
within a 45 minute windows of a pandas Series if we convert it to a pandas Dataframe using the method to_frame():

win_f = WindowFeatures(
window=["45min"],
functions=["mean", "max"],
freq="30min",

)

X_tr = win_f.fit_transform(X['ambient_temp'].to_frame())

X_tr.head()

ambient_temp ambient_temp_window_45min_mean \
2020-05-15 12:00:00 31.31 NaN
2020-05-15 12:15:00 31.51 NaN
2020-05-15 12:30:00 32.15 31.310000
2020-05-15 12:45:00 32.39 31.410000
2020-05-15 13:00:00 32.62 31.656667

ambient_temp_window_45min_max
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 31.31
2020-05-15 12:45:00 31.51
2020-05-15 13:00:00 32.15

And if we do not want the original values of time series in the returned dataframe, we just need to remember to drop
the original series after the transformation:

win_f = WindowFeatures(
window=["45min"],
functions=["mean", "max"],
freq="30min",

(continues on next page)

10.2. User Guide 321

feature_engine Documentation, Release 1.7.0

(continued from previous page)

drop_original=True,
)

X_tr = win_f.fit_transform(X['ambient_temp'].to_frame())

X_tr.head()

ambient_temp_window_45min_mean \
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 31.310000
2020-05-15 12:45:00 31.410000
2020-05-15 13:00:00 31.656667

ambient_temp_window_45min_max
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 31.31
2020-05-15 12:45:00 31.51
2020-05-15 13:00:00 32.15

Getting the name of the new features

We can easily obtain the name of the original and new variables with the method get_feature_names_out. By using
the method with the default parameters, we obtain all the features in the output dataframe.

win_f = WindowFeatures()

win_f.fit(X)

win_f.get_feature_names_out()

['ambient_temp',
'module_temp',
'irradiation',
'color',
'ambient_temp_window_3_mean',
'module_temp_window_3_mean',
'irradiation_window_3_mean']

Windows from the target vs windows from predictor variables

Very often, we work with univariate time series, for example, the total sales revenue of a retail company. We want to
forecast future sales values. The sales variable is our target variable, and we can extract features from windows of past
sales values.

We could also work with multivariate time series, where we have sales in different countries, or alternatively, multiple
time series, like pollutant concentration in the air, accompanied by concentrations of other gases, temperature, and
humidity.

322 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

When working with multivariate time series, like sales in multiple countries, we would extract features from windows
of past data for each country separately.

When working with multiple time series, like pollutant concentration, gas concentration, temperature, and humidity,
pollutant concentration is our target variable, and the other time series are accompanying predictive variables. We can
create window features from past pollutant concentrations, that is, from past time steps of our target variable. And, in
addition, we can create features from windows of past data from accompanying time series, like the concentrations of
other gases or the temperature or humidity.

The process of feature extraction from time series data, to create a table of predictors and a target variable to forecast
using supervised learning models like linear regression or random forest, is called “tabularizing” the time series.

See also

Check out the additional transformers to create expanding window features (ExpandingWindowFeatures) or lag
features, by lagging past values of the time series data (LagFeatures).

Other open-source packages for window features

• tsfresh

• featuretools

Tutorials and courses

For tutorials about this and other feature engineering methods for time series forecasting check out our online courses:

Fig. 105: Feature Engineering for Time Series Forecast-
ing

10.2. User Guide 323

https://tsfresh.readthedocs.io/en/latest/text/forecasting.html
https://featuretools.alteryx.com/en/stable/guides/time_series.html
https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Fig. 106: Forecasting with Machine Learning

Our courses are suitable for beginners and more advanced
data scientists looking to forecast time series using tradi-
tional machine learning models, like linear regression or
gradient boosting machines.

By purchasing them you are supporting Sole, the main de-
veloper of Feature-engine.

ExpandingWindowFeatures

Window features are variables created by performing math-
ematical operations over a window of past data in a time
series.

Rolling window features are created by performing aggre-
gations over a sliding partition (or moving window) of past
data points of the time series data. The window size in this
case is constant.

Expanding window features are created by performing ag-
gregations over an expanding partition of past values of the time series. The window size increases as we approach
more recent values.

An example of an expanding window feature is the mean value of all the data points prior to the current row / value.
The maximum value of all the rows prior to the current row is another expanding window feature.

For an expanding window feature to be suitable for forecasting, the window can span from the start of the data up to,
but not including, the first point of forecast.

Expanding window features can be used for forecasting by using traditional machine learning models, like linear re-
gression.

Expanding window features with pandas

In Python, we can create expanding window features by utilizing pandas method expanding. For example, by execut-
ing:

X[["var_1", "var_2"].expanding(min_periods=3).agg(["max", "mean"])

With the previous command, we create 2 window features for each variable, var_1 and var_2, by taking the maximum
and average value of all observations up to (and including) a certain row.

If we want to use those features for forecasting using traditional machine learning algorithms, we would also shift the
window forward with pandas method shift:

X[["var_1", "var_2"].expanding(min_periods=3).agg(["max", "mean"]).shift(period=1)

324 Chapter 10. Table of Contents

https://www.courses.trainindata.com/p/forecasting-with-machine-learning

feature_engine Documentation, Release 1.7.0

Expanding window features with Feature-engine

ExpandingWindowFeatures adds expanding window features to the dataframe.

Window features are the result of applying an aggregation operation (e.g., mean, min, max, etc.) to a variable over a
window of past data.

When forecasting the future values of a variable, the past values of that variable are likely to be predictive. To capitalize
on the past values of a variable, we can simply lag features with LagFeatures. We can also create features that
summarise the past values into a single quantity utilising ExpandingWindowFeatures.

ExpandingWindowFeatures works on top of pandas.expanding, pandas.aggregate and pandas.shift.

ExpandingWindowFeatures uses pandas.aggregate to perform the mathematical operations over the expanding
window. Therefore, you can use any operation supported by pandas. For supported aggregation functions, see Expand-
ing Window Functions.

With pandas.shift, ExpandingWindowFeatures lags the result of the expanding window operation. This is useful
to ensure that only the information known at predict time is used to compute the window feature. So if at predict time
we only know the value of a feature at the previous time period and before that, then we should lag the the window
feature by 1 period. If at predict time we only know the value of a feature from 2 weeks ago and before that, then we
should lag the window feature column by 2 weeks. ExpandingWindowFeatures uses a default lag of one period.

ExpandingWindowFeatures will add the new variables with a representative name to the original dataframe. It
also has the methods fit() and transform() that make it compatible with the Scikit-learn’s Pipeline and cross-
validation functions.

Note that, in the current implementation, ExpandingWindowFeatures only works with dataframes whose index,
containing the time series timestamp, contains unique values and no NaN.

Examples

Let’s create a toy dataset to demonstrate the functionality of ExpandingWindowFeatures. The dataframe contains 3
numerical variables, a categorical variable, and a datetime index.

import pandas as pd

X = {"ambient_temp": [31.31, 31.51, 32.15, 32.39, 32.62, 32.5, 32.52, 32.68],
"module_temp": [49.18, 49.84, 52.35, 50.63, 49.61, 47.01, 46.67, 47.52],
"irradiation": [0.51, 0.79, 0.65, 0.76, 0.42, 0.49, 0.57, 0.56],
"color": ["green"] * 4 + ["blue"] * 4,
}

X = pd.DataFrame(X)
X.index = pd.date_range("2020-05-15 12:00:00", periods=8, freq="15min")

y = pd.Series([1,2,3,4,5,6,7,8])
y.index = X.index

X.head()

Below we see the output of our toy dataframe:

ambient_temp module_temp irradiation color
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green

(continues on next page)

10.2. User Guide 325

https://pandas.pydata.org/docs/reference/window.html

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

Let’s now print out the target:

y

Below we see the target variable:

2020-05-15 12:00:00 1
2020-05-15 12:15:00 2
2020-05-15 12:30:00 3
2020-05-15 12:45:00 4
2020-05-15 13:00:00 5
2020-05-15 13:15:00 6
2020-05-15 13:30:00 7
2020-05-15 13:45:00 8
Freq: 15min, dtype: int64

Now we will create expanding window features from the numerical variables. In functions, we indicate all the
operations that we want to perform over those windows. In our example below, we want to calculate the mean and the
standard deviation of the data within those windows and also find the maximum value within the windows.

from feature_engine.timeseries.forecasting import ExpandingWindowFeatures

win_f = ExpandingWindowFeatures(functions=["mean", "max", "std"])

X_tr = win_f.fit_transform(X)

X_tr.head()

We can find the window features on the right side of the dataframe.

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

ambient_temp_expanding_mean ambient_temp_expanding_max \
2020-05-15 12:00:00 NaN NaN
2020-05-15 12:15:00 31.310000 31.31
2020-05-15 12:30:00 31.410000 31.51
2020-05-15 12:45:00 31.656667 32.15
2020-05-15 13:00:00 31.840000 32.39

ambient_temp_expanding_std module_temp_expanding_mean \
2020-05-15 12:00:00 NaN NaN
2020-05-15 12:15:00 NaN 49.180000
2020-05-15 12:30:00 0.141421 49.510000
2020-05-15 12:45:00 0.438786 50.456667

(continues on next page)

326 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 13:00:00 0.512640 50.500000

module_temp_expanding_max module_temp_expanding_std \
2020-05-15 12:00:00 NaN NaN
2020-05-15 12:15:00 49.18 NaN
2020-05-15 12:30:00 49.84 0.466690
2020-05-15 12:45:00 52.35 1.672553
2020-05-15 13:00:00 52.35 1.368381

irradiation_expanding_mean irradiation_expanding_max \
2020-05-15 12:00:00 NaN NaN
2020-05-15 12:15:00 0.5100 0.51
2020-05-15 12:30:00 0.6500 0.79
2020-05-15 12:45:00 0.6500 0.79
2020-05-15 13:00:00 0.6775 0.79

irradiation_expanding_std
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 NaN
2020-05-15 12:30:00 0.197990
2020-05-15 12:45:00 0.140000
2020-05-15 13:00:00 0.126853

The variables used as input for the window features are stored in the variables_ attribute of the
ExpandingWindowFeatures.

win_f.variables_

['ambient_temp', 'module_temp', 'irradiation']

We can obtain the names of the variables in the returned dataframe using the get_feature_names_out() method:

win_f.get_feature_names_out()

['ambient_temp',
'module_temp',
'irradiation',
'color',
'ambient_temp_expanding_mean',
'ambient_temp_expanding_max',
'ambient_temp_expanding_std',
'module_temp_expanding_mean',
'module_temp_expanding_max',
'module_temp_expanding_std',
'irradiation_expanding_mean',
'irradiation_expanding_max',
'irradiation_expanding_std']

10.2. User Guide 327

feature_engine Documentation, Release 1.7.0

Dropping rows with nan

When we create window features using expanding windows, we may introduce nan values for those data points where
there isn’t enough data in the past to create the windows. We can automatically drop the rows with nan values in the
window features both in the train set and in the target variable as follows:

win_f = ExpandingWindowFeatures(
functions=["mean", "max", "std"],
drop_na=True,

)

win_f.fit(X)

X_tr, y_tr = win_f.transform_x_y(X, y)

X.shape, y.shape, X_tr.shape, y_tr.shape

We see that the resulting dataframe contains less rows than the original dataframe:

(8, 4), (8,), (6, 13), (6,))

Imputing rows with nan

If instead of removing the row with nan in the expanding window features, we want to impute those values, we can do
so with any of Feature-engine’s imputers. Here, we will replace nan with the median value of the resulting window
features, using the MeanMedianImputer within a pipeline:

from feature_engine.imputation import MeanMedianImputer
from feature_engine.pipeline import Pipeline

win_f = ExpandingWindowFeatures(functions=["mean", "std"])

pipe = Pipeline([
("windows", win_f),
("imputer", MeanMedianImputer(imputation_method="median"))

])

X_tr = pipe.fit_transform(X, y)

print(X_tr.head())

We see the resulting dataframe, where the nan values were replaced with the median:

ambient_temp module_temp irradiation color \
2020-05-15 12:00:00 31.31 49.18 0.51 green
2020-05-15 12:15:00 31.51 49.84 0.79 green
2020-05-15 12:30:00 32.15 52.35 0.65 green
2020-05-15 12:45:00 32.39 50.63 0.76 green
2020-05-15 13:00:00 32.62 49.61 0.42 blue

ambient_temp_expanding_mean ambient_temp_expanding_std \
2020-05-15 12:00:00 31.840000 0.518740

(continues on next page)

328 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:15:00 31.310000 0.518740
2020-05-15 12:30:00 31.410000 0.141421
2020-05-15 12:45:00 31.656667 0.438786
2020-05-15 13:00:00 31.840000 0.512640

module_temp_expanding_mean module_temp_expanding_std \
2020-05-15 12:00:00 49.770000 1.520467
2020-05-15 12:15:00 49.180000 1.520467
2020-05-15 12:30:00 49.510000 0.466690
2020-05-15 12:45:00 50.456667 1.672553
2020-05-15 13:00:00 50.500000 1.368381

irradiation_expanding_mean irradiation_expanding_std
2020-05-15 12:00:00 0.6260 0.146424
2020-05-15 12:15:00 0.5100 0.146424
2020-05-15 12:30:00 0.6500 0.197990
2020-05-15 12:45:00 0.6500 0.140000
2020-05-15 13:00:00 0.6775 0.126853

Working with pandas series

If your time series is a pandas Series instead of a pandas Dataframe, you need to transform it into a dataframe before
using ExpandingWindowFeatures.

The following is a pandas Series:

X['ambient_temp']

2020-05-15 12:00:00 31.31
2020-05-15 12:15:00 31.51
2020-05-15 12:30:00 32.15
2020-05-15 12:45:00 32.39
2020-05-15 13:00:00 32.62
2020-05-15 13:15:00 32.50
2020-05-15 13:30:00 32.52
2020-05-15 13:45:00 32.68
Freq: 15T, Name: ambient_temp, dtype: float64

We can use ExpandingWindowFeatures to create, for example, 2 new expanding window features by finding the
mean and maximum value of a pandas Series if we convert it to a pandas Dataframe using the method to_frame():

win_f = ExpandingWindowFeatures(functions=["mean", "max"])

X_tr = win_f.fit_transform(X['ambient_temp'].to_frame())

X_tr.head()

ambient_temp ambient_temp_expanding_mean \
2020-05-15 12:00:00 31.31 NaN
2020-05-15 12:15:00 31.51 31.310000
2020-05-15 12:30:00 32.15 31.410000

(continues on next page)

10.2. User Guide 329

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2020-05-15 12:45:00 32.39 31.656667
2020-05-15 13:00:00 32.62 31.840000

ambient_temp_expanding_max
2020-05-15 12:00:00 NaN
2020-05-15 12:15:00 31.31
2020-05-15 12:30:00 31.51
2020-05-15 12:45:00 32.15
2020-05-15 13:00:00 32.39

And if we do not want the original values of time series in the returned dataframe, we just need to remember to drop
the original series after the transformation:

win_f = ExpandingWindowFeatures(
functions=["mean", "max"],
drop_original=True,

)

X_tr = win_f.fit_transform(X['ambient_temp'].to_frame())

X_tr.head()

ambient_temp_expanding_mean ambient_temp_expanding_max
2020-05-15 12:00:00 NaN NaN
2020-05-15 12:15:00 31.310000 31.31
2020-05-15 12:30:00 31.410000 31.51
2020-05-15 12:45:00 31.656667 32.15
2020-05-15 13:00:00 31.840000 32.39

Getting the name of the new features

We can easily obtain the name of the original and new variables with the method get_feature_names_out.

win_f = ExpandingWindowFeatures()

win_f.fit(X)

win_f.get_feature_names_out()

['ambient_temp',
'module_temp',
'irradiation',
'color',
'ambient_temp_expanding_mean',
'module_temp_expanding_mean',
'irradiation_expanding_mean']

330 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

See also

Check out the additional transformers to create rolling window features (WindowFeatures) or lag features, by lagging
past values of the time series data (LagFeatures).

Tutorials and courses

For tutorials about this and other feature engineering methods for time series forecasting check out our online courses:

Fig. 107: Feature Engineering for Time Series Forecast-
ing

Fig. 108: Forecasting with Machine Learning

Our courses are suitable for beginners and more advanced
data scientists looking to forecast time series using tradi-
tional machine learning models, like linear regression or
gradient boosting machines.

By purchasing them you are supporting Sole, the main de-
veloper of Feature-engine.

10.2. User Guide 331

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://www.courses.trainindata.com/p/forecasting-with-machine-learning

feature_engine Documentation, Release 1.7.0

10.2.5 Other

Preprocessing

Feature-engine’s preprocessing transformers apply general
data pre-processing and transformation procedures.

MatchCategories

MatchCategories() ensures that categorical variables
are encoded as pandas ‘categorical’ dtype instead of generic
python ‘object’ or other dtypes.

Under the hood, ‘categorical’ dtype is a representation that
maps each category to an integer, thus providing a more memory-efficient object structure than, for example, ‘str’, and
allowing faster grouping, mapping, and similar operations on the resulting object.

MatchCategories() remembers the encodings or levels that represent each category, and can thus can be used to
ensure that the correct encoding gets applied when passing categorical data to modeling packages that support this
dtype, or to prevent unseen categories from reaching a further transformer or estimator in a pipeline, for example.

Let’s explore this with an example. First we load the Titanic dataset and split it into a train and a test sets:

from feature_engine.preprocessing import MatchCategories
from feature_engine.datasets import load_titanic

Load dataset
data = load_titanic(

predictors_only=True,
handle_missing=True,
cabin="letter_only",

)

data['pclass'] = data['pclass'].astype('O')

Split test and train
train = data.iloc[0:1000, :]
test = data.iloc[1000:, :]

Now, we set up MatchCategories() and fit it to the train set.

set up the transformer
match_categories = MatchCategories(missing_values="ignore")

learn the mapping of categories to integers in the train set
match_categories.fit(train)

MatchCategories() stores the mappings from the train set in its attribute:

the transformer stores the mappings for categorical variables
match_categories.category_dict_

{'pclass': Int64Index([1, 2, 3], dtype='int64'),
'sex': Index(['female', 'male'], dtype='object'),

(continues on next page)

332 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'cabin': Index(['A', 'B', 'C', 'D', 'E', 'F', 'M', 'T'], dtype='object'),
'embarked': Index(['C', 'Missing', 'Q', 'S'], dtype='object')}

If we transform the test dataframe using the same match_categories object, categorical variables will be converted
to a ‘category’ dtype with the same numeration (mapping from categories to integers) that was applied to the train
dataset:

encoding that would be gotten from the train set
train.embarked.unique()

array(['S', 'C', 'Missing', 'Q'], dtype=object)

encoding that would be gotten from the test set
test.embarked.unique()

array(['Q', 'S', 'C'], dtype=object)

with 'match_categories', the encoding remains the same
match_categories.transform(train).embarked.cat.categories

Index(['C', 'Missing', 'Q', 'S'], dtype='object')

this will have the same encoding as the train set
match_categories.transform(test).embarked.cat.categories

Index(['C', 'Missing', 'Q', 'S'], dtype='object')

If some category was not present in the training data, it will not mapped to any integer and will thus not get encoded.
This behavior can be modified through the parameter errors:

categories present in the train data
train.cabin.unique()

array(['B', 'C', 'E', 'D', 'A', 'M', 'T', 'F'], dtype=object)

categories present in the test data - 'G' is new
test.cabin.unique()

array(['M', 'F', 'E', 'G'], dtype=object)

match_categories.transform(train).cabin.unique()

['B', 'C', 'E', 'D', 'A', 'M', 'T', 'F']
Categories (8, object): ['A', 'B', 'C', 'D', 'E', 'F', 'M', 'T']

unseen category 'G' will not get mapped to any integer
match_categories.transform(test).cabin.unique()

10.2. User Guide 333

feature_engine Documentation, Release 1.7.0

['M', 'F', 'E', NaN]
Categories (8, object): ['A', 'B', 'C', 'D', 'E', 'F', 'M', 'T']

When to use the transformer

This transformer is useful when creating custom transformers for categorical columns, as well as when passing cate-
gorical columns to modeling packages which support them natively but leave the variable casting to the user, such as
lightgbm or glum.

MatchVariables

MatchVariables() ensures that the columns in the test set are identical to those in the train set.

If the test set contains additional columns, they are dropped. Alternatively, if the test set lacks columns that were present
in the train set, they will be added with a value determined by the user, for example np.nan. MatchVariables() will
also return the variables in the order seen in the train set.

Let’s explore this with an example. First we load the Titanic dataset and split it into a train and a test set:

from feature_engine.preprocessing import MatchVariables
from feature_engine.datasets import load_titanic

Load dataset
data = load_titanic(

predictors_only=True,
cabin="letter_only",

)

data['pclass'] = data['pclass'].astype('O')

Split test and train
train = data.iloc[0:1000, :]
test = data.iloc[1000:, :]

Now, we set up MatchVariables() and fit it to the train set.

set up the transformer
match_cols = MatchVariables(missing_values="ignore")

learn the variables in the train set
match_cols.fit(train)

MatchVariables() stores the variables from the train set in its attribute:

the transformer stores the input variables
match_cols.feature_names_in_

['pclass',
'survived',
'sex',
'age',

(continues on next page)

334 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

'sibsp',
'parch',
'fare',
'cabin',
'embarked']

Now, we drop some columns in the test set.

Let's drop some columns in the test set for the demo
test_t = test.drop(["sex", "age"], axis=1)

test_t.head()

pclass survived sibsp parch fare cabin embarked
1000 3 1 0 0 7.7500 n Q
1001 3 1 2 0 23.2500 n Q
1002 3 1 2 0 23.2500 n Q
1003 3 1 2 0 23.2500 n Q
1004 3 1 0 0 7.7875 n Q

If we transform the dataframe with the dropped columns using MatchVariables(), we see that the new dataframe
contains all the variables, and those that were missing are now back in the data, with np.nan values as default.

the transformer adds the columns back
test_tt = match_cols.transform(test_t)

test_tt.head()

The following variables are added to the DataFrame: ['age', 'sex']
pclass survived sex age sibsp parch fare cabin embarked

1000 3 1 NaN NaN 0 0 7.7500 n Q
1001 3 1 NaN NaN 2 0 23.2500 n Q
1002 3 1 NaN NaN 2 0 23.2500 n Q
1003 3 1 NaN NaN 2 0 23.2500 n Q
1004 3 1 NaN NaN 0 0 7.7875 n Q

Note how the missing columns were added back to the transformed test set, with missing values, in the position (i.e.,
order) in which they were in the train set.

Similarly, if the test set contained additional columns, those would be removed. To test that, let’s add some extra
columns to the test set:

let's add some columns for the demo
test_t[['var_a', 'var_b']] = 0

test_t.head()

pclass survived sibsp parch fare cabin embarked var_a var_b
1000 3 1 0 0 7.7500 n Q 0 0
1001 3 1 2 0 23.2500 n Q 0 0
1002 3 1 2 0 23.2500 n Q 0 0
1003 3 1 2 0 23.2500 n Q 0 0
1004 3 1 0 0 7.7875 n Q 0 0

10.2. User Guide 335

feature_engine Documentation, Release 1.7.0

And now, we transform the data with MatchVariables():

test_tt = match_cols.transform(test_t)

test_tt.head()

The following variables are added to the DataFrame: ['age', 'sex']
The following variables are dropped from the DataFrame: ['var_b', 'var_a']

pclass survived sex age sibsp parch fare cabin embarked
1000 3 1 NaN NaN 0 0 7.7500 n Q
1001 3 1 NaN NaN 2 0 23.2500 n Q
1002 3 1 NaN NaN 2 0 23.2500 n Q
1003 3 1 NaN NaN 2 0 23.2500 n Q
1004 3 1 NaN NaN 0 0 7.7875 n Q

Now, the transformer simultaneously added the missing columns with NA as values and removed the additional columns
from the resulting dataset.

However, if we look closely, the dtypes for the sex variable do not match. This could cause issues if other transforma-
tions depend upon having the correct dtypes.

train.sex.dtype

dtype('O')

test_tt.sex.dtype

dtype('float64')

Set the match_dtypes parameter to True in order to align the dtypes as well.

match_cols_and_dtypes = MatchVariables(missing_values="ignore", match_dtypes=True)
match_cols_and_dtypes.fit(train)

test_ttt = match_cols_and_dtypes.transform(test_t)

The following variables are added to the DataFrame: ['sex', 'age']
The following variables are dropped from the DataFrame: ['var_b', 'var_a']
The sex dtype is changing from float64 to object

Now the dtype matches.

test_ttt.sex.dtype

dtype('O')

By default, MatchVariables() will print out messages indicating which variables were added, removed and altered.
We can switch off the messages through the parameter verbose.

336 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

When to use the transformer

These transformer is useful in “predict then optimize type of problems”. In such cases, a machine learning model is
trained on a certain dataset, with certain input features. Then, test sets are “post-processed” according to scenarios that
want to be modelled. For example, “what would have happened if the customer received an email campaign”? where
the variable “receive_campaign” would be turned from 0 -> 1.

While creating these modelling datasets, a lot of meta data e.g., “scenario number”, “time scenario was generated”,
etc, could be added to the data. Then we need to pass these data over to the model to obtain the modelled prediction.

MatchVariables() provides an easy an elegant way to remove the additional metadeta, while returning datasets with
the input features in the correct order, allowing the different scenarios to be modelled directly inside a machine learning
pipeline.

More details

You can also find a similar implementation of the example shown in this page in the following Jupyter notebook:

• Jupyter notebook

All notebooks can be found in a dedicated repository.

Scikit-learn Wrapper

Feature-engine’s Scikit-learn wrappers wrap Scikit-learn transformers allowing their implementation only on a selected
subset of features.

SklearnTransformerWrapper

The SklearnTransformerWrapper() applies Scikit-learn transformers to a selected group of variables. It works
with transformers like the SimpleImputer, OrdinalEncoder, OneHotEncoder, KBinsDiscretizer, all scalers and also
transformers for feature selection. Other transformers have not been tested, but we think it should work with most of
them.

The SklearnTransformerWrapper() offers similar functionality to the ColumnTransformer class available in Scikit-
learn. They differ in the implementation to select the variables and the output.

The SklearnTransformerWrapper() returns a pandas dataframe with the variables in the order of the original data.
The ColumnTransformer returns a Numpy array, and the order of the variables may not coincide with that of the original
dataset.

In the next code snippet we show how to wrap the SimpleImputer from Scikit-learn to impute only the selected variables.

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from feature_engine.wrappers import SklearnTransformerWrapper

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

(continues on next page)

10.2. User Guide 337

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/preprocessing/MatchVariables.ipynb
https://github.com/feature-engine/feature-engine-examples
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html

feature_engine Documentation, Release 1.7.0

(continued from previous page)

data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'], test_size=0.3, random_state=0)

set up the wrapper with the SimpleImputer
imputer = SklearnTransformerWrapper(transformer = SimpleImputer(strategy='mean'),

variables = ['LotFrontage', 'MasVnrArea'])

fit the wrapper + SimpleImputer
imputer.fit(X_train)

transform the data
X_train = imputer.transform(X_train)
X_test = imputer.transform(X_test)

In the next snippet of code we show how to wrap the StandardScaler from Scikit-learn to standardize only the selected
variables.

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from feature_engine.wrappers import SklearnTransformerWrapper

Load dataset
data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'], test_size=0.3, random_state=0)

set up the wrapper with the StandardScaler
scaler = SklearnTransformerWrapper(transformer = StandardScaler(),

variables = ['LotFrontage', 'MasVnrArea'])

fit the wrapper + StandardScaler
scaler.fit(X_train)

transform the data
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

In the next snippet of code we show how to wrap the SelectKBest from Scikit-learn to select only a subset of the
variables.

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import f_regression, SelectKBest
from feature_engine.wrappers import SklearnTransformerWrapper

Load dataset
(continues on next page)

338 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

data = pd.read_csv('houseprice.csv')

Separate into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

data.drop(['Id', 'SalePrice'], axis=1),
data['SalePrice'], test_size=0.3, random_state=0)

cols = [var for var in X_train.columns if X_train[var].dtypes !='O']

let's apply the standard scaler on the above variables

selector = SklearnTransformerWrapper(
transformer = SelectKBest(f_regression, k=5),
variables = cols)

selector.fit(X_train.fillna(0), y_train)

transform the data
X_train_t = selector.transform(X_train.fillna(0))
X_test_t = selector.transform(X_test.fillna(0))

Even though Feature-engine has its own implementation of OneHotEncoder, you may want to use Scikit-Learn’s trans-
former in order to access different options, such as drop first Category. In the following example, we show you how to
apply Scikit-learn’s OneHotEncoder to a subset of categories using the :class:SklearnTransformerWrapper().

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from feature_engine.wrappers import SklearnTransformerWrapper

Load dataset
def load_titanic():

data = pd.read_csv('https://www.openml.org/data/get_csv/16826755/phpMYEkMl')
data = data.replace('?', np.nan)
data['cabin'] = data['cabin'].astype(str).str[0]
data['pclass'] = data['pclass'].astype('O')
data['embarked'].fillna('C', inplace=True)
data.drop(["name", "home.dest", "ticket", "boat", "body"], axis=1, inplace=True)
return data

df = load_titanic()

X_train, X_test, y_train, y_test= train_test_split(
df.drop("survived", axis=1),
df["survived"],
test_size=0.2,
random_state=42,

)

ohe = SklearnTransformerWrapper(
OneHotEncoder(sparse=False, drop='first'),

(continues on next page)

10.2. User Guide 339

feature_engine Documentation, Release 1.7.0

(continued from previous page)

variables = ['pclass','sex'])

ohe.fit(X_train)

X_train_transformed = ohe.transform(X_train)
X_test_transformed = ohe.transform(X_test)

We can examine the result by executing the following:

print(X_train_transformed.head())

The resulting dataframe is:

age sibsp parch fare cabin embarked pclass_2 pclass_3 sex_male
772 17 0 0 7.8958 n S 0.0 1.0 1.0
543 36 0 0 10.5 n S 1.0 0.0 1.0
289 18 0 2 79.65 E S 0.0 0.0 0.0
10 47 1 0 227.525 C C 0.0 0.0 1.0
147 NaN 0 0 42.4 n S 0.0 0.0 1.0

Let’s say you want to use SklearnTransformerWrapper() in a more complex context. As you may note there
are ? signs to denote unknown values. Due to the complexity of the transformations needed we’ll use a Pipeline to
impute missing values, encode categorical features and create interactions for specific variables using Scikit-Learn’s
PolynomialFeatures.

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from feature_engine.datasets import load_titanic
from feature_engine.imputation import CategoricalImputer, MeanMedianImputer
from feature_engine.encoding import OrdinalEncoder
from feature_engine.wrappers import SklearnTransformerWrapper

X, y = load_titanic(
return_X_y_frame=True,
predictors_only=True,
cabin="letter_only",

)

X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=42)

pipeline = Pipeline(steps = [
('ci', CategoricalImputer(imputation_method='frequent')),
('mmi', MeanMedianImputer(imputation_method='mean')),
('od', OrdinalEncoder(encoding_method='arbitrary')),
('pl', SklearnTransformerWrapper(

PolynomialFeatures(interaction_only = True, include_bias=False),
variables=['pclass','sex']))

])

pipeline.fit(X_train)
(continues on next page)

340 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

X_train_transformed = pipeline.transform(X_train)
X_test_transformed = pipeline.transform(X_test)

print(X_train_transformed.head())

age sibsp parch fare cabin embarked pclass sex \
772 17.000000 0 0 7.8958 0 0 3.0 0.0
543 36.000000 0 0 10.5000 0 0 2.0 0.0
289 18.000000 0 2 79.6500 1 0 1.0 1.0
10 47.000000 1 0 227.5250 2 1 1.0 0.0
147 29.532738 0 0 42.4000 0 0 1.0 0.0

pclass sex
772 0.0
543 0.0
289 1.0
10 0.0
147 0.0

More details

In the following Jupyter notebooks you can find more details about how to navigate the parameters of the
SklearnTransformerWrapper() and also access the parameters of the Scikit-learn transformer wrapped, as well
as the output of the transformations.

• Wrap sklearn categorical encoder

• Wrap sklearn KBinsDiscretizer

• Wrap sklearn SimpleImputer

• Wrap sklearn feature selectors

• Wrap sklearn scalers

The notebooks can be found in a dedicated repository.

10.2.6 Pipeline

Pipeline

Feature-engine’s Pipeline is equivalent to Scikit-learn’s pipeline, and in addition, it accepts the method
transform_x_y, to adjust both X and y, in those cases where rows are removed from X.

10.2. User Guide 341

https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/wrappers/Sklearn-wrapper-plus-Categorical-Encoding.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/wrappers/Sklearn-wrapper-plus-KBinsDiscretizer.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/wrappers/Sklearn-wrapper-plus-SimpleImputer.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/wrappers/Sklearn-wrapper-plus-feature-selection.ipynb
https://nbviewer.org/github/feature-engine/feature-engine-examples/blob/main/wrappers/Sklearn-wrapper-plus-scalers.ipynb
https://github.com/feature-engine/feature-engine-examples

feature_engine Documentation, Release 1.7.0

Pipeline

Pipeline facilitates the chaining together of multiple estimators into a unified sequence. This proves beneficial as
data processing frequently involves a predefined series of actions, such as feature selection, normalization, and training
a machine learning model.

Feature-engine’s Pipeline is different from scikit-learn’s Pipeline in that our Pipeline supports transformers that
remove rows from the dataset, like DropMissingData, OutlierTrimmer, LagFeatures and WindowFeatures.

When observations are removed from the training data set, Pipeline invokes the method transform_x_y available
in these transformers, to adjust the target variable to the remaining rows.

The Pipeline serves various functions in this context:

Simplicity and encapsulation:
You need only call the fit and predict functions once on your data to fit an entire sequence of estimators.

Hyperparameter Optimization:
Grid search and random search can be performed over hyperparameters of all estimators in the pipeline simultaneously.

Safety
Using a pipeline prevent the leakage of statistics from test data into the trained model during cross-validation, by
ensuring that the same data is used to fit the transformers and predictors.

Pipeline functions

Calling the fit function on the pipeline, is the same as calling fit on each individual estimator sequentially, trans-
forming the input data and forwarding it to the subsequent step.

The pipeline will have all the methods present in the final estimator within it. For instance, if the last estimator is a
classifier, the Pipeline can function as a classifier. Similarly, if the last estimator is a transformer, the pipeline inherits
this functionality as well.

Setting up a Pipeline

The Pipeline is constructed utilizing a list of (key, value) pairs, wherein the key represents the desired name for the
step, and the value denotes an estimator or a transformer object.

In the following example, we set up a Pipeline that drops missing data, then replaces categories with ordinal numbers,
and finally fits a Lasso regression model.

import numpy as np
import pandas as pd
from feature_engine.imputation import DropMissingData
from feature_engine.encoding import OrdinalEncoder
from feature_engine.pipeline import Pipeline

from sklearn.linear_model import Lasso

X = pd.DataFrame(
dict(

x1=[2, 1, 1, 0, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],

(continues on next page)

342 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

)
)
y = pd.Series([1, 2, 3, 4, 5])

pipe = Pipeline(
[

("drop", DropMissingData()),
("enc", OrdinalEncoder(encoding_method="arbitrary")),
("lasso", Lasso(random_state=10)),

]
)
predict
pipe.fit(X, y)
preds_pipe = pipe.predict(X)
preds_pipe

In the output we see the predictions made by the pipeline:

array([2., 2.])

Accessing Pipeline steps

The Pipeline’s estimators are stored as a list within the steps attribute. We can use slicing notation to obtain a
subset or partial pipeline within the Pipeline. This functionality is useful for executing specific transformations or their
inverses selectively.

For example, this notation extracts the first step of the pipeline:

pipe[:1]

Pipeline(steps=[('drop', DropMissingData())])

This notation extracts the first two steps of the pipeline:

pipe[:2]

Pipeline(steps=[('drop', DropMissingData()),
('enc', OrdinalEncoder(encoding_method='arbitrary'))])

This notation extracts the last step of the pipeline:

pipe[-1:]

Pipeline(steps=[('lasso', Lasso(random_state=10))])

We can also select specific steps of the pipeline to check their attributes. For example, we can check the coefficients of
the Lasso algorithm as follows:

pipe.named_steps["lasso"].coef_

And we see the coefficients:

10.2. User Guide 343

feature_engine Documentation, Release 1.7.0

array([-0., 0.])

There was no relationship between the target and the variables, so it’s fine to obtain these coefficients.

Let’s instead check the ordinal encoder mappings for the categorical variables:

pipe.named_steps["enc"].encoder_dict_

We see the integers used to replace each category:

{'x2': {'a': 0, 'b': 1}}

Finding feature names in a Pipeline

The Pipeline includes a get_feature_names_out() method, similar to other transformers. By employing pipeline
slicing, you can obtain the feature names entering each step.

Let’s set up a Pipeline that adds new features to the dataset to make this more interesting:

import numpy as np
import pandas as pd
from feature_engine.imputation import DropMissingData
from feature_engine.encoding import OneHotEncoder
from feature_engine.pipeline import Pipeline

from sklearn.linear_model import Lasso

X = pd.DataFrame(
dict(

x1=[2, 1, 1, 0, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],

)
)
y = pd.Series([1, 2, 3, 4, 5])

pipe = Pipeline(
[

("drop", DropMissingData()),
("enc", OneHotEncoder()),
("lasso", Lasso(random_state=10)),

]
)
pipe.fit(X, y)

In the first step of the pipeline, no features are added, we just drop rows with nan. So if we execute
get_feature_names_out() we should see just the 2 variables from the input dataframe:

pipe[:1].get_feature_names_out()

['x1', 'x2']

In the second step, we add binary variables for each category of x2, so x2 should disappear, and in its place, we should
see the binary variables:

344 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

pipe[:2].get_feature_names_out()

['x1', 'x2_a', 'x2_b']

The last step is an estimator, that is, a machine learning model. Estimators don’t support the method
get_feature_names_out(). So if we apply this method to the entire pipeline, we’ll get an error.

Accessing nested parameters

We can re-define, or re-set the parameters of the transformers and estimators within the pipeline. This is done under
the hood by the Grid search and random search. But in case you need to change a parameter in a step of the Pipeline,
this is how you do it:

pipe.set_params(lasso__alpha=10)

Here, we changed the alpha of the lasso regression algorithm to 10.

Best use: Dropping rows during data preprocessing

Feature-engine’s Pipeline was designed to support transformers that remove rows from the dataset, like
DropMissingData, OutlierTrimmer, LagFeatures and WindowFeatures.

We saw earlier in this page how to use Pipeline with DropMissingData. Let’s now take a look at how to combine
Pipeline with LagFeatures and WindowFeaures to do multiple step forecasting.

We start by making imports:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from sklearn.linear_model import Lasso
from sklearn.metrics import root_mean_squared_error
from sklearn.multioutput import MultiOutputRegressor

from feature_engine.timeseries.forecasting import (
LagFeatures,
WindowFeatures,

)
from feature_engine.pipeline import Pipeline

We’ll use the Australia electricity demand dataset described here:

Godahewa, Rakshitha, Bergmeir, Christoph, Webb, Geoff, Hyndman, Rob, & Montero-Manso, Pablo. (2021). Aus-
tralian Electricity Demand Dataset (Version 1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4659727

url = "https://raw.githubusercontent.com/tidyverts/tsibbledata/master/data-raw/vic_elec/
→˓VIC2015/demand.csv"
df = pd.read_csv(url)

df.drop(columns=["Industrial"], inplace=True)

(continues on next page)

10.2. User Guide 345

https://doi.org/10.5281/zenodo.4659727

feature_engine Documentation, Release 1.7.0

(continued from previous page)

Convert the integer Date to an actual date with datetime type
df["date"] = df["Date"].apply(

lambda x: pd.Timestamp("1899-12-30") + pd.Timedelta(x, unit="days")
)

Create a timestamp from the integer Period representing 30 minute intervals
df["date_time"] = df["date"] + \

pd.to_timedelta((df["Period"] - 1) * 30, unit="m")

df.dropna(inplace=True)

Rename columns
df = df[["date_time", "OperationalLessIndustrial"]]

df.columns = ["date_time", "demand"]

Resample to hourly
df = (

df.set_index("date_time")
.resample("h")
.agg({"demand": "sum"})

)

print(df.head())

Here, we see the first rows of data:

demand
date_time
2002-01-01 00:00:00 6919.366092
2002-01-01 01:00:00 7165.974188
2002-01-01 02:00:00 6406.542994
2002-01-01 03:00:00 5815.537828
2002-01-01 04:00:00 5497.732922

We’ll predict the next 6 hours of energy demand. We’ll use direct forecasting. Hence, we need to create 6 target
variables, one for each step in the horizon:

horizon = 6
y = pd.DataFrame(index=df.index)
for h in range(horizon):

y[f"h_{h}"] = df.shift(periods=-h, freq="h")
y.dropna(inplace=True)
df = df.loc[y.index]
print(y.head())

This is our target variable:

h_0 h_1 h_2 h_3 \
date_time
2002-01-01 00:00:00 6919.366092 7165.974188 6406.542994 5815.537828
2002-01-01 01:00:00 7165.974188 6406.542994 5815.537828 5497.732922
2002-01-01 02:00:00 6406.542994 5815.537828 5497.732922 5385.851060

(continues on next page)

346 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2002-01-01 03:00:00 5815.537828 5497.732922 5385.851060 5574.731890
2002-01-01 04:00:00 5497.732922 5385.851060 5574.731890 5457.770634

h_4 h_5
date_time
2002-01-01 00:00:00 5497.732922 5385.851060
2002-01-01 01:00:00 5385.851060 5574.731890
2002-01-01 02:00:00 5574.731890 5457.770634
2002-01-01 03:00:00 5457.770634 5698.152000
2002-01-01 04:00:00 5698.152000 5938.337614

Next, we split the data into a training set and a test set:

end_train = '2014-12-31 23:59:59'
X_train = df.loc[:end_train]
y_train = y.loc[:end_train]

begin_test = '2014-12-31 17:59:59'
X_test = df.loc[begin_test:]
y_test = y.loc[begin_test:]

Next, we set up LagFeatures and WindowFeatures to create features from lags and windows:

lagf = LagFeatures(
variables=["demand"],
periods=[1, 2, 3, 4, 5, 6],
missing_values="ignore",
drop_na=True,

)

winf = WindowFeatures(
variables=["demand"],
window=["3h"],
freq="1h",
functions=["mean"],
missing_values="ignore",
drop_original=True,
drop_na=True,

)

We wrap the lasso regression within the multioutput regressor to predict multiple targets:

lasso = MultiOutputRegressor(Lasso(random_state=0, max_iter=10))

Now, we assemble the steps in the Pipeline and fit it to the training data:

pipe = Pipeline(
[

("lagf", lagf),
("winf", winf),
("lasso", lasso),

]
(continues on next page)

10.2. User Guide 347

feature_engine Documentation, Release 1.7.0

(continued from previous page)

).set_output(transform="pandas")

pipe.fit(X_train, y_train)

We can obtain the datasets with the predictors and the targets like this:

Xt, yt = pipe[:-1].transform_x_y(X_test, y_test)

X_test.shape, y_test.shape, Xt.shape, yt.shape

We see that the Pipeline has dropped some rows during the transformation and re-adjusted the target. The rows that
were dropped were those necessary to create the first lags.

((1417, 1), (1417, 6), (1410, 7), (1410, 6))

We can examine the predictors training set, to make sure we are passing the right variables to the regression model:

print(Xt.head())

We see the input features:

demand_lag_1 demand_lag_2 demand_lag_3 demand_lag_4 \
date_time
2015-01-01 01:00:00 7804.086240 8352.992140 7571.301440 7516.472988
2015-01-01 02:00:00 7174.339984 7804.086240 8352.992140 7571.301440
2015-01-01 03:00:00 6654.283364 7174.339984 7804.086240 8352.992140
2015-01-01 04:00:00 6429.598010 6654.283364 7174.339984 7804.086240
2015-01-01 05:00:00 6412.785284 6429.598010 6654.283364 7174.339984

demand_lag_5 demand_lag_6 demand_window_3h_mean
date_time
2015-01-01 01:00:00 7801.201802 7818.461408 7804.086240
2015-01-01 02:00:00 7516.472988 7801.201802 7489.213112
2015-01-01 03:00:00 7571.301440 7516.472988 7210.903196
2015-01-01 04:00:00 8352.992140 7571.301440 6752.740453
2015-01-01 05:00:00 7804.086240 8352.992140 6498.888886

Now, we can make forecasts for the test set:

forecast = pipe.predict(X_test)

forecasts = pd.DataFrame(
pipe.predict(X_test),
index=Xt.loc[end_train:].index,
columns=[f"step_{i+1}" for i in range(6)]

)

print(forecasts.head())

We see the 6 hr ahead energy demand prediction for each hour:

348 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

step_1 step_2 step_3 step_4 \
date_time
2015-01-01 01:00:00 7810.769000 7890.897914 8123.247406 8374.365708
2015-01-01 02:00:00 7049.673468 7234.890108 7586.593627 7889.608312
2015-01-01 03:00:00 6723.246357 7046.660134 7429.115933 7740.984091
2015-01-01 04:00:00 6639.543752 6962.661308 7343.941881 7616.240318
2015-01-01 05:00:00 6634.279747 6949.262247 7287.866893 7633.157948

step_5 step_6
date_time
2015-01-01 01:00:00 8569.220349 8738.027713
2015-01-01 02:00:00 8116.631154 8270.579148
2015-01-01 03:00:00 7937.918837 8170.531420
2015-01-01 04:00:00 7884.815566 8197.598425
2015-01-01 05:00:00 7979.920512 8321.363714

To learn more about direct forecasting and how to create features, check out our courses:

Fig. 109: Feature Engineering for Time Series Forecast-
ing

10.2. User Guide 349

https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Fig. 110: Forecasting with Machine Learning

Hyperparameter optimization

We can optimize the hyperparameters of the transformers
and the estimators from a pipeline simultaneously.

We’ll start by loading the titanic dataset:

from feature_
→˓engine.datasets import load_titanic
from feature_
→˓engine.encoding import OneHotEncoder
from feature_
→˓engine.outliers import OutlierTrimmer
from feature_engine.pipeline import Pipeline

from sklearn.
→˓linear_model import LogisticRegression
from sklearn.model_selection␣
→˓import train_test_split, GridSearchCV
from sklearn.
→˓preprocessing import StandardScaler

X, y = load_titanic(
return_X_y_frame=True,
predictors_only=True,
handle_missing=True,

)

X_train, X_
→˓test, y_train, y_test = train_test_split(

X, y, test_size=0.3, random_state=0,
)

print(X_train.head())

We see the first 5 rows from the training set below:

pclass sex age␣
→˓ sibsp parch fare cabin embarked
501 2 female 13.000000␣
→˓ 0 1 19.5000 Missing S
588 2 female 4.000000␣
→˓ 1 1 23.0000 Missing S
402 2 female 30.000000␣
→˓ 1 0 13.8583 Missing C
1193 3 male 29.881135␣
→˓ 0 0 7.7250 Missing Q
686 3 female 22.000000␣
→˓ 0 0 7.7250 Missing Q

Now, we set up a Pipeline:

350 Chapter 10. Table of Contents

https://www.courses.trainindata.com/p/forecasting-with-machine-learning

feature_engine Documentation, Release 1.7.0

pipe = Pipeline(
[
␣

→˓ ("outliers", OutlierTrimmer(variables=[
→˓"age", "fare"])),

("enc", OneHotEncoder()),
("scaler", StandardScaler()),
("logit

→˓", LogisticRegression(random_state=10)),
]

)

We establish the hyperparameter space to search:

param_grid={
'logit__C': [0.1, 10.],
'enc__top_categories': [None, 5],
␣

→˓'outliers__capping_method': ["mad", 'iqr']
}

We do the grid search:

grid = GridSearchCV(
pipe,
param_grid=param_grid,
cv=2,
refit=False,

)

grid.fit(X_train, y_train)

And we can see the best hyperparameters for each step:

grid.best_params_

{'enc__top_categories': None,
'logit__C': 0.1,
'outliers__capping_method': 'iqr'}

And the best accuracy obtained with these hyperparame-
ters:

grid.best_score_

0.7843822843822843

10.2. User Guide 351

feature_engine Documentation, Release 1.7.0

Additional resources

To learn more about feature engineering and data prepro-
cessing, including missing data imputation, outlier removal
or capping, variable transformation and encoding, check
out our online course and book:

Fig. 111: Feature Engineering for Machine Learning

Or read our book:

Both our book and course are suitable for beginners and
more advanced data scientists alike. By purchasing them you are supporting Sole, the main developer of Feature-
engine.

352 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 112: Python Feature Engineering
Cookbook

make_pipeline

make_pipeline is a shorthand for Pipeline. While to set up Pipeline
we create tuples with step names and transformers or estimators, with
make_pipeline we just add a sequence of transformers and estimators, and
the names will be added automatically.

Setting up a Pipeline with make_pipeline

In the following example, we set up a Pipeline that drops missing data, then
replaces categories with ordinal numbers, and finally fits a Lasso regression
model.

import numpy as np
import pandas as pd
from feature_engine.imputation import DropMissingData
from feature_engine.encoding import OrdinalEncoder
from feature_engine.pipeline import make_pipeline

from sklearn.linear_model import Lasso

X = pd.DataFrame(
dict(

x1=[2, 1, 1, 0, np.nan],
x2=["a", np.nan, "b", np.nan, "a"],

)
)
y = pd.Series([1, 2, 3, 4, 5])

pipe = make_pipeline(
DropMissingData(),
OrdinalEncoder(encoding_method="arbitrary"),
Lasso(random_state=10),

)
predict
pipe.fit(X, y)
preds_pipe = pipe.predict(X)
preds_pipe

In the output we see the predictions made by the pipeline:

array([2., 2.])

The names of the pipeline were assigned automatically:

print(pipe)

Pipeline(steps=[('dropmissingdata', DropMissingData()),
('ordinalencoder

→˓', OrdinalEncoder(encoding_method='arbitrary')),
('lasso', Lasso(random_state=10))])

10.2. User Guide 353

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

The pipeline returned by make_pipeline has exactly the same characteristics
than Pipeline. Hence, for additional guidelines, check out the Pipeline
documentation.

Forecasting

Let’s set up another pipeline to do direct forecasting:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from sklearn.linear_model import Lasso
from sklearn.metrics import root_mean_squared_error
from sklearn.multioutput import MultiOutputRegressor

from feature_engine.timeseries.forecasting import (
LagFeatures,
WindowFeatures,

)
from feature_engine.pipeline import make_pipeline

We’ll use the Australia electricity demand dataset described here:

Godahewa, Rakshitha, Bergmeir, Christoph, Webb, Geoff, Hyndman, Rob, &
Montero-Manso, Pablo. (2021). Australian Electricity Demand Dataset (Ver-
sion 1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4659727

url = "https://raw.githubusercontent.com/tidyverts/
→˓tsibbledata/master/data-raw/vic_elec/VIC2015/demand.csv"
df = pd.read_csv(url)

df.drop(columns=["Industrial"], inplace=True)

Convert␣
→˓the integer Date to an actual date with datetime type
df["date"] = df["Date"].apply(

lambda x: pd.
→˓Timestamp("1899-12-30") + pd.Timedelta(x, unit="days")
)

Create a timestamp␣
→˓from the integer Period representing 30 minute intervals
df["date_time"] = df["date"] + \

pd.to_timedelta((df["Period"] - 1) * 30, unit="m")

df.dropna(inplace=True)

Rename columns
df = df[["date_time", "OperationalLessIndustrial"]]

df.columns = ["date_time", "demand"]

(continues on next page)

354 Chapter 10. Table of Contents

https://doi.org/10.5281/zenodo.4659727

feature_engine Documentation, Release 1.7.0

(continued from previous page)

Resample to hourly
df = (

df.set_index("date_time")
.resample("h")
.agg({"demand": "sum"})

)

print(df.head())

Here, we see the first rows of data:

demand
date_time
2002-01-01 00:00:00 6919.366092
2002-01-01 01:00:00 7165.974188
2002-01-01 02:00:00 6406.542994
2002-01-01 03:00:00 5815.537828
2002-01-01 04:00:00 5497.732922

We’ll predict the next 3 hours of energy demand. We’ll use direct forecasting.
Let’s create the target variable:

horizon = 3
y = pd.DataFrame(index=df.index)
for h in range(horizon):

y[f"h_{h}"] = df.shift(periods=-h, freq="h")
y.dropna(inplace=True)
df = df.loc[y.index]
print(y.head())

This is our target variable:

h_0 h_1 h_2
date_time
2002-01-01 00:00:00 6919.366092 7165.974188 6406.542994
2002-01-01 01:00:00 7165.974188 6406.542994 5815.537828
2002-01-01 02:00:00 6406.542994 5815.537828 5497.732922
2002-01-01 03:00:00 5815.537828 5497.732922 5385.851060
2002-01-01 04:00:00 5497.732922 5385.851060 5574.731890

Next, we split the data into a training set and a test set:

end_train = '2014-12-31 23:59:59'
X_train = df.loc[:end_train]
y_train = y.loc[:end_train]

begin_test = '2014-12-31 17:59:59'
X_test = df.loc[begin_test:]
y_test = y.loc[begin_test:]

Next, we set up LagFeatures and WindowFeatures to create features from
lags and windows:

10.2. User Guide 355

feature_engine Documentation, Release 1.7.0

lagf = LagFeatures(
variables=["demand"],
periods=[1, 3, 6],
missing_values="ignore",
drop_na=True,

)

winf = WindowFeatures(
variables=["demand"],
window=["3h"],
freq="1h",
functions=["mean"],
missing_values="ignore",
drop_original=True,
drop_na=True,

)

We wrap the lasso regression within the multioutput regressor to predict mul-
tiple targets:

lasso =␣
→˓MultiOutputRegressor(Lasso(random_state=0, max_iter=10))

Now, we assemble Pipeline:

pipe = make_pipeline(lagf, winf, lasso)

print(pipe)

The steps’ names were assigned automatically:

Pipeline(steps=[('lagfeatures',
␣

→˓ LagFeatures(drop_na=True, missing_values='ignore',
␣

→˓ periods=[1, 3, 6], variables=['demand'])),
('windowfeatures',
WindowFeatures(drop_

→˓na=True, drop_original=True, freq='1h',
␣

→˓ functions=['mean'], missing_values='ignore',
␣

→˓ variables=['demand'], window=['3h'])),
('multioutputregressor',

␣
→˓ MultiOutputRegressor(estimator=Lasso(max_iter=10,

␣
→˓ random_state=0)))])

Let’s fit the Pipeline:

pipe.fit(X_train, y_train)

356 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Now, we can make forecasts for the test set:

forecast = pipe.predict(X_test)

forecasts = pd.DataFrame(
pipe.predict(X_test),
columns=[f"step_{i+1}" for i in range(3)]

)

print(forecasts.head())

We see the 3 hr ahead energy demand prediction for each hour:

step_1 step_2 step_3
0 8031.043352 8262.804811 8484.551733
1 7017.158081 7160.568853 7496.282999
2 6587.938171 6806.903940 7212.741943
3 6503.807479 6789.946587 7195.796841
4 6646.981390 6970.501840 7308.359237

To learn more about direct forecasting and how to create features, check out
our courses:

Fig. 113: Feature Engineering for Time Series Forecast-
ing

Fig. 114: Forecasting with Machine Learning

10.2. User Guide 357

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://www.courses.trainindata.com/p/forecasting-with-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 115: Feature Engineering for Machine Learning

Fig. 116: Python Feature Engineering
Cookbook

Both our book and course are suitable for beginners and more advanced data
scientists alike. By purchasing them you are supporting Sole, the main devel-
oper of Feature-engine.

358 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

10.2.7 Tools

Variable handling functions

This set of functions find variables of a specific type in a dataframe, or check
that a list of variables is of a specified data type.

The find functions take a dataframe as an argument and returns a list with the
names of the variables of the desired type.

The check functions check that the list of variables are all of the desired data
type.

The retain functions select the variables in a list if they fulfill a condition.

You can use these functions to identify different sets of variables based on their
data type to streamline your feature engineering pipelines or create your own
Feature-engine or Scikit-learn compatible transformers.

find_all_variables

With find_all_variables() you can automatically capture in a list the
names of all the variables in the dataset.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
from sklearn.datasets import make_classification

X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,

)

transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)

X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000

X["date1"] = pd.date_range("2020-02-24", periods=1000,␣
→˓freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000,␣
→˓freq="H")
X["date3"] = ["2020-02-24"] * 1000

print(X.head())

We see the resulting dataframe below:

10.2. User Guide 359

feature_engine Documentation, Release 1.7.0

num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye
2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye

date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24

We can now use find_all_variables() to capture all the variable names in a list. So let’s do that and then display
the items in the list:

from feature_engine.variable_handling import find_all_variables

vars_all = find_all_variables(X)

vars_all

We see the variable names in the list below:

['num_var_1',
'num_var_2',
'num_var_3',
'num_var_4',
'cat_var1',
'cat_var2',
'date1',
'date2',
'date3']

We have the option to return the name of the variables of type categorical, object and numerical only, or in other words,
to exclude datetime variables. We can do so as follows:

vars_all = find_all_variables(X, exclude_datetime=True)

vars_all

In the list below, we can see that variables of type datetime were ignored:

['num_var_1',
'num_var_2',
'num_var_3',
'num_var_4',
'cat_var1',
'cat_var2',
'date3']

360 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

find_categorical_variables

With find_categorical_variables() you can capture in a list the names of all the variables of type object or
categorical in the dataset.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
from sklearn.datasets import make_classification

X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,

)

transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)

X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000

X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000

print(X.head())

We see the resulting dataframe below:

num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye
2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye

date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24

We can use find_categorical_variables() to capture the names of all variables of type object or categorical in
a list.

So let’s do that and then display the list:

10.2. User Guide 361

feature_engine Documentation, Release 1.7.0

from feature_engine.variable_handling import find_categorical_variables

var_cat = find_categorical_variables(X)

var_cat

We see the variable names in the list below:

['cat_var1', 'cat_var2']

Note that find_categorical_variables()will not return variables cast as object or categorical that could be parsed
as datetime. That’s why, the variable date3 was excluded from the returned list.

If there are no categorical variables in the dataset, this function will raise an error.

find_datetime_variables

With find_datetime_variables() you can automatically capture in a list the names of all datetime variables in a
dataset, whether they are parsed as datetime or object.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
from sklearn.datasets import make_classification

X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,

)

transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)

X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000

X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000

print(X.head())

We see the resulting dataframe below:

num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye

(continues on next page)

362 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye

date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24

The dataframe has 3 datetime variables, two of them are of type datetime and one of type object.

We can now use find_datetime_variables() to capture all datetime variables regardless of their data type. So
let’s do that and then display the list:

from feature_engine.variable_handling import find_datetime_variables

var_date = find_datetime_variables(X)

var_date

Below we see the variable names in the list:

['date1', 'date2', 'date3']

Note that find_datetime_variables() captures all 3 datetime variables. The first 2 are of type datetime, whereas
the third variable is of type object. But as it can be parsed as datetime, it will be captured in the list as well.

find_numerical_variables

find_numerical_variables() returns a list with the names of the numerical variables in the dataset.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
df = pd.DataFrame({

"Name": ["tom", "nick", "krish", "jack"],
"City": ["London", "Manchester", "Liverpool", "Bristol"],
"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],
"dob": pd.date_range("2020-02-24", periods=4, freq="T"),

})

print(df.head())

We see the resulting dataframe below:

Name City Age Marks dob
0 tom London 20 0.9 2020-02-24 00:00:00
1 nick Manchester 21 0.8 2020-02-24 00:01:00
2 krish Liverpool 19 0.7 2020-02-24 00:02:00
3 jack Bristol 18 0.6 2020-02-24 00:03:00

10.2. User Guide 363

feature_engine Documentation, Release 1.7.0

With find_numerical_variables() we capture the names of all numerical variables in a list. So let’s do that and
then display the list:

from feature_engine.variable_handling import find_numerical_variables

var_num = find_numerical_variables(df)

var_num

We see the names of the numerical variables in the list below:

['Age', 'Marks']

If there are no numerical variables in the dataset, find_numerical_variables() will raise an error.

find_categorical_and_numerical_variables

With find_categorical_and_numerical_variables() you can automatically capture in 2 separate lists the
names of all the categorical and numerical variables in the dataset, respectively.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
from sklearn.datasets import make_classification

X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,

)

transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)

X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000

X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000

print(X.head())

Below we see the resulting dataframe:

num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye

(continues on next page)

364 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye

date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24

We can now use find_categorical_and_numerical_variables() to capture categorical and numerical variables
in separate lists. So let’s do that and then display the lists:

from feature_engine.variable_handling import find_categorical_and_numerical_variables

var_cat, var_num = find_categorical_and_numerical_variables(X)

var_cat, var_num

Below we see the names of the categorical variables, followed by the names of the numerical variables:

(['cat_var1', 'cat_var2'],
['num_var_1', 'num_var_2', 'num_var_3', 'num_var_4'])

We can also use find_categorical_and_numerical_variables()with a list of variables, to indentify their types:

var_cat, var_num = find_categorical_and_numerical_variables(X, ["num_var_1", "cat_var1"])

var_cat, var_num

We see the resulting lists below:

(['cat_var1'], ['num_var_1'])

If we pass a variable that is not of type numerical or categorical, find_categorical_and_numerical_variables()
will return an error:

find_categorical_and_numerical_variables(X, ["num_var_1", "cat_var1", "date1"])

Below the error message:

TypeError: Some of the variables are neither numerical nor categorical.

10.2. User Guide 365

feature_engine Documentation, Release 1.7.0

check_all_variables

With check_all_variables() we can check that the variables in a list are present in the dataframe.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
from sklearn.datasets import make_classification

X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,

)

transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)

X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000

X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000

print(X.head())

We see the resulting dataframe below:

num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye
2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye

date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24

We can use check_all_variables() with a list of variable names to verify that the variables in the list are in the
dataframe.

from feature_engine.variable_handling import check_all_variables

checked_vars = check_all_variables(X, ["num_var_1", "cat_var1", "date1"])
(continues on next page)

366 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

checked_vars

The output is the list of variable names passed to the function:

['num_var_1', 'cat_var1', 'date1']

If we pass the name of a variable that is not in the dataframe, check_all_variables() will return an error:

check_all_variables(X, ["hola", "cat_var1", "date1"])

Below we see the error message:

KeyError: 'Some of the variables are not in the dataframe.'

check_categorical_variables

check_categorical_variables() checks that the variables in the list are of type object or categorical.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
from sklearn.datasets import make_classification

X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,

)

transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)

X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000

X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000

print(X.head())

We see the resulting dataframe below:

num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye

(continues on next page)

10.2. User Guide 367

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye

date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24

Let’s now check that 3 of the variables are of type numerical:

from feature_engine.variable_handling import check_categorical_variables

var_cat = check_categorical_variables(X, ["cat_var1", "date3"])

var_cat

Both variables are of type object and hence, will be in the resulting list:

['cat_var1', 'date3']

If we pass a variable that is not of type object or categorical, check_categorical_variables()will return an error:

check_categorical_variables(X, ["cat_var1", "num_var_1"])

Below we see the error message:

TypeError: Some of the variables are not categorical. Please cast them as object
or categorical before using this transformer.

check_datetime_variables

check_datetime_variables() checks that the variables in the list are, or can be parsed as datetime.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
from sklearn.datasets import make_classification

X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,

)

transform arrays into pandas df and series
(continues on next page)

368 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)

X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000

X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000

print(X.head())

We see the resulting dataframe below:

num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye
2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye

date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24

The dataframe has 3 datetime variables, two of them are of type datetime and one of type object.

Let’s check that a list of variables can be parsed as datetime:

from feature_engine.variable_handling import check_datetime_variables

var_date = check_datetime_variables(X, ["date2", "date3"])

var_date

In this case, both variables, if they can be parsed as datetime, will be in the resulting list:

['date2', 'date3']

If we pass a variable that can’t be parsed as datetime, check_datetime_variables() will return an error:

check_datetime_variables(X, ["date2", "cat_var1"])

Below the error message:

TypeError: Some of the variables are not or cannot be parsed as datetime.

10.2. User Guide 369

feature_engine Documentation, Release 1.7.0

check_numerical_variables

check_numerical_variables() checks that the variables in the list are of type numerical.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
df = pd.DataFrame({

"Name": ["tom", "nick", "krish", "jack"],
"City": ["London", "Manchester", "Liverpool", "Bristol"],
"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],
"dob": pd.date_range("2020-02-24", periods=4, freq="T"),

})

print(df.head())

We see the resulting dataframe below:

Name City Age Marks dob
0 tom London 20 0.9 2020-02-24 00:00:00
1 nick Manchester 21 0.8 2020-02-24 00:01:00
2 krish Liverpool 19 0.7 2020-02-24 00:02:00
3 jack Bristol 18 0.6 2020-02-24 00:03:00

Let’s now check that 2 of the variables are of type numerical:

from feature_engine.variable_handling import check_numerical_variables

var_num = check_numerical_variables(df, ['Age', 'Marks'])

var_num

If the variables are numerical, the function returns their names in a list:

['Age', 'Marks']

If we pass a variable that is not of type numerical, check_numerical_variables() will return an error:

check_numerical_variables(df, ['Age', 'Name'])

Below we see the error message:

TypeError: Some of the variables are not numerical. Please cast them as numerical
before using this transformer.

370 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

retain_variables_if_in_df

retain_variables_if_in_df() returns the subset of variables in a list that is present in the dataset.

Let’s create a toy dataset with numerical, categorical and datetime variables:

import pandas as pd
df = pd.DataFrame({

"Name": ["tom", "nick", "krish", "jack"],
"City": ["London", "Manchester", "Liverpool", "Bristol"],
"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],
"dob": pd.date_range("2020-02-24", periods=4, freq="T"),

})

print(df.head())

We see the resulting dataframe below:

Name City Age Marks dob
0 tom London 20 0.9 2020-02-24 00:00:00
1 nick Manchester 21 0.8 2020-02-24 00:01:00
2 krish Liverpool 19 0.7 2020-02-24 00:02:00
3 jack Bristol 18 0.6 2020-02-24 00:03:00

With retain_variables_if_in_df() we capture in a list, the names of the variables that are present in the dataset.
So let’s do that and then display the resulting list:

from feature_engine.variable_handling import retain_variables_if_in_df

vars_in_df = retain_variables_if_in_df(df, variables = ["Name", "City", "Dogs"])

var_in_df

We see the names of the subset of variables that are in the dataframe below:

['Name', 'City']

If none of variables in the list are in the dataset, retain_variables_if_in_df() will raise an error.

Uses

This function was originally developed for internal use.

When we run various feature selection transformers one after the other, for example, DropConstantFeatures, then
DropDuplicateFeatures, and finally RecursiveFeatureElimination, we can’t anticipate which variables will
be dropped by each transformer. Hence, these transformers use retain_variables_if_in_df() under the hood, to
select those variables that were entered by the user and that still remain in the dataset, before applying the selection
algorithm.

We’ve now decided to expose this function as part of the variable_handlingmodule. It might be useful, for example,
if you are creating Feature-engine compatible selection transformers.

10.2. User Guide 371

feature_engine Documentation, Release 1.7.0

10.3 API

Full API documentation for Feature-engine transformers.

10.3.1 Transformation

Missing Data Imputation

Missing data refers to the absence of observed values in a dataset and is a common occurrence in any real-world data
science project. In data science, missing data can lead to biased analysis, inaccurate predictions, and reduced reliability
of models. Therefore, handling missing data has become one of the most important steps in a data preprocessing
pipeline.

Feature-engine supports several imputation techniques to handle missing data. Here, we provide an overview of each
of the supported methods.

MeanMedianImputer

class feature_engine.imputation.MeanMedianImputer(imputation_method='median', variables=None)
The MeanMedianImputer() replaces missing data by the mean or median value of the variable. It works only
with numerical variables.

You can pass a list of variables to impute. Alternatively, the MeanMedianImputer() will automatically select all
variables of type numeric in the training set.

More details in the User Guide.

Parameters
imputation_method: str, default=’median’

Desired method of imputation. Can take ‘mean’ or ‘median’.

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will automatically find
and select all numerical variables.

Attributes
imputer_dict_:

Dictionary with the values to replace missing data in each variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

372 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_engine.imputation import MeanMedianImputer
>>> X = pd.DataFrame(dict(
>>> x1 = [np.nan,1,1,0,np.nan],
>>> x2 = ["a", np.nan, "b", np.nan, "a"],
>>>))
>>> mmi = MeanMedianImputer(imputation_method='median')
>>> mmi.fit(X)
>>> mmi.transform(X)

x1 x2
0 1.0 a
1 1.0 NaN
2 1.0 b
3 0.0 NaN
4 1.0 a

Methods

fit: Learn the mean or median values.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Impute missing data.

fit(X, y=None)
Learn the mean or median values.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The training dataset.

y: pandas series or None, default=None
y is not needed in this imputation. You can pass None or y.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
X

[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values
(None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

10.3. API 373

feature_engine Documentation, Release 1.7.0

Returns
X_new

[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)
Get output feature names for transformation. In other words, returns the variable names of transformed
dataframe.

Parameters
input_features

[array or list, default=None] This parameter exits only for compatibility with the Scikit-
learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns
feature_names_out: list

Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing

[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params

[dict] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params

[dict] Estimator parameters.

374 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns
self

[estimator instance] Estimator instance.

transform(X)
Replace missing data with the learned parameters.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The data to be transformed.

Returns
X_new: pandas dataframe of shape = [n_samples, n_features]

The dataframe without missing values in the selected variables.

rtype
DataFrame ..

ArbitraryNumberImputer

class feature_engine.imputation.ArbitraryNumberImputer(arbitrary_number=999, variables=None,
imputer_dict=None)

The ArbitraryNumberImputer() replaces missing data by an arbitrary value determined by the user. It works only
with numerical variables.

You can impute all variables with the same number by defining the variables to impute in variables and the
imputation number in arbitrary_number. Alternatively, you can pass a dictionary with the variable names
and the numbers to use for their imputation in the imputer_dict parameter.

More details in the User Guide.

Parameters
arbitrary_number: int or float, default=999

The number to replace the missing data. This parameter is used only if imputer_dict is
None.

variables: list, default=None
The list of variables to impute. If None, the imputer will select all numerical variables. This
parameter is used only if imputer_dict is None.

imputer_dict: dict, default=None
The dictionary of variables and the arbitrary numbers for their imputation. If specified, it
overrides the above parameters.

Attributes
imputer_dict_:

Dictionary with the values to replace missing data in each variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

10.3. API 375

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

See also:

feature_engine.imputation.EndTailImputer

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_engine.imputation import ArbitraryNumberImputer
>>> X = pd.DataFrame(dict(
>>> x1 = [np.nan,1,1,0,np.nan],
>>> x2 = ["a", np.nan, "b", np.nan, "a"],
>>>))
>>> ani = ArbitraryNumberImputer(arbitrary_number=-999)
>>> ani.fit(X)
>>> ani.transform(X)

x1 x2
0 -999.0 a
1 1.0 NaN
2 1.0 b
3 0.0 NaN
4 -999.0 a

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Impute missing data.

fit(X, y=None)
This method does not learn any parameter.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The training dataset.

y: None
y is not needed in this imputation. You can pass None or y.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
X

[array-like of shape (n_samples, n_features)] Input samples.

376 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values
(None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns
X_new

[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)
Get output feature names for transformation. In other words, returns the variable names of transformed
dataframe.

Parameters
input_features

[array or list, default=None] This parameter exits only for compatibility with the Scikit-
learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns
feature_names_out: list

Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing

[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params

[dict] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

10.3. API 377

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params

[dict] Estimator parameters.

Returns
self

[estimator instance] Estimator instance.

transform(X)
Replace missing data with the learned parameters.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The data to be transformed.

Returns
X_new: pandas dataframe of shape = [n_samples, n_features]

The dataframe without missing values in the selected variables.

rtype
DataFrame ..

EndTailImputer

class feature_engine.imputation.EndTailImputer(imputation_method='gaussian', tail='right', fold=3,
variables=None)

The EndTailImputer() replaces missing data by a value at either tail of the distribution. It works only with
numerical variables.

You can indicate the variables to impute in a list. Alternatively, the EndTailImputer() will automatically select
all numerical variables.

The imputer first calculates the values at the end of the distribution for each variable (fit). The values at the end
of the distribution are determined using the Gaussian limits, the the IQR proximity rule limits, or a factor of the
maximum value:

Gaussian limits:
• right tail: mean + 3*std

• left tail: mean - 3*std

IQR limits:
• right tail: 75th quantile + 3*IQR

• left tail: 25th quantile - 3*IQR

where IQR is the inter-quartile range = 75th quantile - 25th quantile

Maximum value:
• right tail: max * 3

• left tail: not applicable

378 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

You can change the factor that multiplies the std, IQR or the maximum value using the parameter fold (we used
fold=3 in the examples above).

The imputer then replaces the missing data with the estimated values (transform).

More details in the User Guide.

Parameters
imputation_method: str, default=’gaussian’

Method to be used to find the replacement values. Can take ‘gaussian’, ‘iqr’ or ‘max’.

‘gaussian’: the imputer will use the Gaussian limits to find the values to replace missing
data.

‘iqr’: the imputer will use the IQR limits to find the values to replace missing data.

‘max’: the imputer will use the maximum values to replace missing data. Note that if ‘max’
is passed, the parameter ‘tail’ is ignored.

tail: str, default=’right’
Indicates if the values to replace missing data should be selected from the right or left tail of
the variable distribution. Can take values ‘left’ or ‘right’.

fold: int, default=3
Factor to multiply the std, the IQR or the Max values. Recommended values are 2 or 3 for
Gaussian, or 1.5 or 3 for IQR.

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will automatically find
and select all numerical variables.

Attributes
imputer_dict_:

Dictionary with the values to replace missing data in each variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_engine.imputation import EndTailImputer
>>> X = pd.DataFrame(dict(x1 = [np.nan,0.5, 0.5, 0,np.nan]))
>>> eti = EndTailImputer(imputation_method='gaussian', tail='right', fold=3)
>>> eti.fit(X)
>>> eti.transform(X)

x1
0 1.199359
1 0.500000
2 0.500000

(continues on next page)

10.3. API 379

feature_engine Documentation, Release 1.7.0

(continued from previous page)

3 0.000000
4 1.199359

Methods

fit: Learn values to replace missing data.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Impute missing data.

fit(X, y=None)
Learn the values at the end of the variable distribution.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The training dataset.

y: pandas Series, default=None
y is not needed in this imputation. You can pass None or y.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
X

[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values
(None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns
X_new

[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)
Get output feature names for transformation. In other words, returns the variable names of transformed
dataframe.

Parameters
input_features

[array or list, default=None] This parameter exits only for compatibility with the Scikit-
learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

380 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Returns
feature_names_out: list

Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing

[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params

[dict] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params

[dict] Estimator parameters.

Returns
self

[estimator instance] Estimator instance.

transform(X)
Replace missing data with the learned parameters.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The data to be transformed.

Returns
X_new: pandas dataframe of shape = [n_samples, n_features]

The dataframe without missing values in the selected variables.

10.3. API 381

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

rtype
DataFrame ..

CategoricalImputer

class feature_engine.imputation.CategoricalImputer(imputation_method='missing',
fill_value='Missing', variables=None,
return_object=False, ignore_format=False)

The CategoricalImputer() replaces missing data in categorical variables by an arbitrary value or by the most
frequent category.

The CategoricalImputer() imputes by default only categorical variables (type ‘object’ or ‘categorical’). You can
pass a list of variables to impute, or alternatively, the encoder will find and impute all categorical variables.

If you want to impute numerical variables with this transformer, there are 2 ways of doing it:

Option 1: Cast your numerical variables as object in the input dataframe before passing it to the transformer.

Option 2: Set ignore_format=True. Note that if you do this and do not pass the list of variables to impute,
the imputer will automatically select and impute all variables in the dataframe.

More details in the User Guide.

Parameters
imputation_method: str, default=’missing’

Desired method of imputation. Can be ‘frequent’ for frequent category imputation or ‘miss-
ing’ to impute with an arbitrary value.

fill_value: str, int, float, default=’Missing’
User-defined value to replace missing data. Only used when
imputation_method='missing'.

variables: list, default=None
The list of categorical variables that will be imputed. If None, the imputer will find and trans-
form all variables of type object or categorical by default. You can also make the transformer
accept numerical variables, see the parameter ignore_format below.

return_object: bool, default=False
If working with numerical variables cast as object, decide whether to return the variables
as numeric or re-cast them as object. Note that pandas will re-cast them automatically as
numeric after the transformation with the mode or with an arbitrary number.

ignore_format: bool, default=False
Whether the format in which the categorical variables are cast should be ignored. If false,
the imputer will automatically select variables of type object or categorical, or check that the
variables entered by the user are of type object or categorical. If True, the imputer will select
all variables or accept all variables entered by the user, including those cast as numeric.

Attributes
imputer_dict_:

Dictionary with the values to replace missing data in each variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

382 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_engine.imputation import CategoricalImputer
>>> X = pd.DataFrame(dict(
>>> x1 = [np.nan,1,1,0,np.nan],
>>> x2 = ["a", np.nan, "b", np.nan, "a"],
>>>))
>>> ci = CategoricalImputer(imputation_method='frequent')
>>> ci.fit(X)
>>> ci.transform(X)

x1 x2
0 NaN a
1 1.0 a
2 1.0 b
3 0.0 a
4 NaN a

Methods

fit: Learn the most frequent category or assign arbitrary value to variable.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Impute missing data.

fit(X, y=None)
Learn the most frequent category if the imputation method is set to frequent.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The training dataset.

y: pandas Series, default=None
y is not needed in this imputation. You can pass None or y.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
X

[array-like of shape (n_samples, n_features)] Input samples.

10.3. API 383

feature_engine Documentation, Release 1.7.0

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values
(None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns
X_new

[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)
Get output feature names for transformation. In other words, returns the variable names of transformed
dataframe.

Parameters
input_features

[array or list, default=None] This parameter exits only for compatibility with the Scikit-
learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns
feature_names_out: list

Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing

[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params

[dict] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

384 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params

[dict] Estimator parameters.

Returns
self

[estimator instance] Estimator instance.

transform(X)
Replace missing data with the learned parameters.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The data to be transformed.

Returns
X_new: pandas dataframe of shape = [n_samples, n_features]

The dataframe without missing values in the selected variables.

rtype
DataFrame ..

RandomSampleImputer

class feature_engine.imputation.RandomSampleImputer(variables=None, random_state=None,
seed='general', seeding_method='add')

The RandomSampleImputer() replaces missing data with a random sample extracted from the variables in the
training set.

The RandomSampleImputer() works with both numerical and categorical variables.

Note
The Random samples used to replace missing values may vary from execution to execution. This may affect the
results of your work. Thus, it is advisable to set a seed.

More details in the User Guide.

Parameters
variables: list, default=None

The list of variables to be imputed. If None, the imputer will select all variables in the train
set.

random_state: int, str or list, default=None
The random_state can take an integer to set the seed when extracting the random samples.
Alternatively, it can take a variable name or a list of variables, which values will be used to
determine the seed, observation per observation.

seed: str, default=’general’
Indicates whether the seed should be set for each observation with missing values, or if one
seed should be used to impute all observations in one go.

10.3. API 385

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

‘general’: one seed will be used to impute the entire dataframe. This is equivalent to setting
the seed in pandas.sample(random_state).

‘observation’: the seed will be set for each observation using the values of the variables
indicated in the random_state for that particular observation.

seeding_method: str, default=’add’
If more than one variable are indicated to seed the random sampling per observation, you
can choose to combine those values as an addition or a multiplication. Can take the values
‘add’ or ‘multiply’.

Attributes
X_:

Copy of the training dataframe from which to extract the random samples.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_engine.imputation import RandomSampleImputer
>>> X = pd.DataFrame(dict(
>>> x1 = [np.nan,1,1,0,np.nan],
>>> x2 = ["a", np.nan, "b", np.nan, "a"],
>>>))
>>> rsi = RandomSampleImputer()
>>> rsi.fit(X)
>>> rsi.transform(X)

x1 x2
0 1.0 a
1 1.0 b
2 1.0 b
3 0.0 a
4 1.0 a

Methods

fit: Make a copy of the train set
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Impute missing data.

386 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

fit(X, y=None)
Makes a copy of the train set. Only stores a copy of the variables to impute. This copy is then used to
randomly extract the values to fill the missing data during transform.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The training dataset.

y: None
y is not needed in this imputation. You can pass None or y.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
X

[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values
(None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns
X_new

[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)
Get output feature names for transformation. In other words, returns the variable names of transformed
dataframe.

Parameters
input_features

[array or list, default=None] This parameter exits only for compatibility with the Scikit-
learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns
feature_names_out: list

Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

10.3. API 387

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params

[dict] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params

[dict] Estimator parameters.

Returns
self

[estimator instance] Estimator instance.

transform(X)
Replace missing data with random values taken from the train set.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The dataframe to be transformed.

Returns
X_new: pandas dataframe of shape = [n_samples, n_features]

The dataframe without missing values in the transformed variables.

rtype
DataFrame ..

AddMissingIndicator

class feature_engine.imputation.AddMissingIndicator(missing_only=True, variables=None)
The AddMissingIndicator() adds binary variables that indicate if data is missing (one indicator per variable).
The added variables (missing indicators) are named with the original variable name plus ‘_na’.

The AddMissingIndicator() works for both numerical and categorical variables. You can pass a list with the
variables for which the missing indicators should be added. Alternatively, the imputer will select and add missing
indicators to all variables in the training set.

388 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

Note If missing_only=True, the imputer will add missing indicators only to those variables that show missing
data during fit(). These may be a subset of the variables you indicated in variables.

More details in the User Guide.

Parameters
missing_only: bool, default=True

If missing indicators should be added to variables with missing data or to all variables.

True: indicators will be created only for those variables that showed missing data during
fit().

False: indicators will be created for all variables

variables: list, default=None
The list of variables to impute. If None, the imputer will find and select all variables.

Attributes
variables_:

List of variables for which the missing indicators will be created.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_engine.imputation import AddMissingIndicator
>>> X = pd.DataFrame(dict(
>>> x1 = [np.nan,1,1,0,np.nan],
>>> x2 = ["a", np.nan, "b", np.nan, "a"],
>>>))
>>> ami = AddMissingIndicator()
>>> ami.fit(X)
>>> ami.transform(X)

x1 x2 x1_na x2_na
0 NaN a 1 0
1 1.0 NaN 0 1
2 1.0 b 0 0
3 0.0 NaN 0 1
4 NaN a 1 0

10.3. API 389

feature_engine Documentation, Release 1.7.0

Methods

fit: Find the variables for which the missing indicators will be created
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Add the missing indicators.

fit(X, y=None)
Learn the variables for which the missing indicators will be created.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The training dataset.

y: pandas Series, default=None
y is not needed in this imputation. You can pass None or y.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
X

[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values
(None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns
X_new

[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)
Get output feature names for transformation. In other words, returns the variable names of transformed
dataframe.

Parameters
input_features

[array or list, default=None] This parameter exits only for compatibility with the Scikit-
learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns
feature_names_out: list

Transformed feature names.

390 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing

[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params

[dict] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params

[dict] Estimator parameters.

Returns
self

[estimator instance] Estimator instance.

transform(X)
Add the binary missing indicators.

Parameters
X

[pandas dataframe of shape = [n_samples, n_features]] The dataframe to be transformed.

Returns
X_new

[pandas dataframe of shape = [n_samples, n_features]] The dataframe containing the ad-
ditional binary variables..

rtype
DataFrame ..

10.3. API 391

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

DropMissingData

class feature_engine.imputation.DropMissingData(missing_only=True, threshold=None,
variables=None)

DropMissingData() deletes rows containing missing values. It provides similar functionality to pandas.
drop_na(), but within the fit and transform framework.

It works for numerical and categorical variables. You can enter the list of variables for which missing values
should be removed. Alternatively, the imputer will find and remove missing data in all dataframe variables.

More details in the User Guide.

Parameters
variables: list, default=None

The list of variables to consider for the imputation. If None, the imputer will check missing
data in all variables in the dataframe. Alternatively, the imputer will evaluate missing data
only in the variables in the list.

Note that if missing_only=True, missing data will be removed from variables that had
missing data in the train set. These might be a subset of the variables indicated in the list.

missing_only: bool, default=True
If True, rows will be dropped when they show missing data in variables that had missing
data during fit(). If False, rows will be dropped if there is missing data in any of the
variables. This parameter only works when threshold=None, otherwise it is ignored.

threshold: int or float, default=None
Require that percentage of non-NA values in a row to keep it. If threshold=1, all variables
need to have data to keep the row. If threshold=0.5, 50% of the variables need to have
data to keep the row. If threshold=0.01, 10% of the variables need to have data to keep
the row. If thresh=None, rows with NA in any of the variables will be dropped.

Attributes
variables_:

The variables for which missing data will be examined to decide if a row is dropped.
The attribute variables_ is different from the parameter variables when the latter
is None, or when only a subset of the indicated variables show NA in the train set if
missing_only=True.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_engine.imputation import DropMissingData
>>> X = pd.DataFrame(dict(
>>> x1 = [np.nan,1,1,0,np.nan],
>>> x2 = ["a", np.nan, "b", np.nan, "a"],
>>>))
>>> dmd = DropMissingData()

(continues on next page)

392 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

>>> dmd.fit(X)
>>> dmd.transform(X)

x1 x2
2 1.0 b

Methods

fit: Find the variables for which missing data should be evaluated.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
return_na_data: Returns a dataframe with the rows that contain missing data.
transform: Remove rows with missing data.
transform_x_y: Remove rows with missing data from X and y.

fit(X, y=None)
Find the variables for which missing data should be evaluated to decide if a row should be dropped.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The training data set.

y: pandas Series or dataframe, default=None
y is not needed in this imputation. You can pass None or y.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
X

[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values
(None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns
X_new

[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)
Get output feature names for transformation. In other words, returns the variable names of transformed
dataframe.

Parameters

10.3. API 393

feature_engine Documentation, Release 1.7.0

input_features
[array or list, default=None] This parameter exits only for compatibility with the Scikit-
learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns
feature_names_out: list

Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routing

[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params

[dict] Parameter names mapped to their values.

return_na_data(X)
Returns the subset of the dataframe with the rows with missing values. That is, the subset of the dataframe
that would be removed with the transform() method. This method may be useful in production, for
example if we want to store or log the removed observations, that is, rows that will not be fed into the
model.

Parameters
X_na: pandas dataframe of shape = [n_samples_with_na, features]

The subset of the dataframe with the rows with missing data.

:rtype: :py:class:`~pandas.core.frame.DataFrame`
set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters

394 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

**params
[dict] Estimator parameters.

Returns
self

[estimator instance] Estimator instance.

transform(X)
Remove rows with missing data.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The dataframe to be transformed.

Returns
X_new: pandas dataframe

The complete case dataframe for the selected variables, of shape [n_samples -
n_samples_with_na, n_features]

rtype
DataFrame ..

transform_x_y(X, y)
Transform, align and adjust both X and y based on the transformations applied to X, ensuring that they
correspond to the same set of rows if any were removed from X.

Parameters
X: pandas dataframe of shape = [n_samples, n_features]

The dataframe to transform.

y: pandas Series or Dataframe of length = n_samples
The target variable to transform. Can be multi-output.

Returns
X_new: pandas dataframe

The transformed dataframe of shape [n_samples - n_rows, n_features]. It may contain less
rows than the original dataset.

y_new: pandas Series or DataFrame
The transformed target variable of length [n_samples - n_rows]. It contains as many rows
as those left in X_new.

Missing data mechanisms

Data can go missing for several reasons, including:

• In surveys, respondents may choose not to answer specific questions due to privacy concerns or simply overlook-
ing them.

• In healthcare data, not every patient might undergo a study on the efficacy of new medications due to logistical
or financial constraints.

• Errors in data collection and storage can also lead to missing values.

The mechanisms that introduce missing data are known as completely at random (MCAR), missing at random (MAR)
or missing not at random (NMAR).

10.3. API 395

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

Consequences of missing data

Missing data can significantly impact machine learning models and statistical analysis for several reasons:

• It introduces bias into machine learning model predictions or statistical tests.

• Certain machine learning models, such as those found in Scikit-learn, cannot handle datasets with missing values.

Popular machine learning algorithms like linear regression, logistic regression, support vector machine (SVM), or
k-nearest neighbors (kNN) are not equipped to manage datasets containing NaN (Not a Number) or null values. Con-
sequently, attempting to fit these models with such incomplete data will result in errors.

These factors underscore the importance of addressing missing data prior to model training, highlighting the necessity
of employing data imputation techniques.

Missing Data Imputation

Missing data imputation refers to the process of estimating and replacing missing values within a dataset. It involves
filling in the missing values with estimated values based on the known information in the dataset.

There are two types of missing data imputation: univariate and multivariate imputation.

Univariate data imputation

Univariate imputation addresses missing data within a variable solely based on information within that variable, without
considering other variables in the dataset.

For instance, consider a dataframe with exam results of 50 college students, and 5 data points are missing. Univariate
imputation fills these 5 missing values based on operations such as mean, median, or mode of the 45 observed values.
Alternatively, the missing data can be filled with arbitrary predefined values, such as -1, 0, 999, -999, or ‘Missing’,
among others.

Multivariate data imputation

In multivariate data imputation, we utilize observations from other variables in the dataset to estimate the values of
missing observations. This method essentially imputes missing values by treating the imputation as a regression, using
algorithms such as k-nearest neighbors or linear regression to estimate the missing values.

For example, let’s say we have a dataset containing information on students’ grades, ages, and IQ scores, all of which
have missing values. In this scenario, we can predict the missing grade values by employing a regression model trained
on existing grade data, using age and IQ as predictors. Subsequently, we can apply the same regression imputation
approach to the other variables (age and IQ) in subsequent iterations.

Feature-engine currenty supports univariate imputation strategies. For multivariate imputation, check out Scikit-learn’s
iterative imputer.

396 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html

feature_engine Documentation, Release 1.7.0

Feature-engine’s imputation methods

Feature-engine supports the following data imputation methods

• Mean-median imputation

• Arbitrary number imputation

• End tail imputation

• Random sample imputation

• Frequent category imputation

• Categorical imputation

• Complete case analysis

• Adding missing indicators

Feature-engine’s imputers main characteristics

Transformer Numerical
variables

Categorical
variables

Description

MeanMedianImputer() × Replaces missing values by the mean or median
ArbitraryNumberImputer() x Replaces missing values by an arbitrary value
EndTailImputer() × Replaces missing values by a value at the end of the

distribution
CategoricalImputer() Replaces missing values by the most frequent cate-

gory or by an arbitrary value
RandomSampleImputer() Replaces missing values by random value extractions

from the variable
AddMissingIndicator() Adds a binary variable to flag missing observations
DropMissingData() Removes observations with missing data from the

dataset

Mean-Median Imputation

Mean-median imputation replaces missing values in a numerical variable with the median or mean value of that vari-
able.

If a variable follows a normal distribution, both the mean and the median are suitable options since they are equivalent.
However, if a variable is skewed, median imputation is preferable as mean imputation can introduce bias toward the
tail of the distribution.

This imputation method is suited if the data is missing completely at random (MCAR). If data is MCAR, then it is fair
to assume that the missing values are close in value to the majority, that is, to the mean or median of the distribution.

Advantages:
• Fast and easy method to obtain complete data.

Limitations:

10.3. API 397

feature_engine Documentation, Release 1.7.0

• Distorts the variance within a variable, as well as the covariance and correlation with other variables in the
dataset.

Data imputed with the mean or median is commonly used to train linear regression and logistic regression models.

The MeanMedianImputer() implements mean-median imputation.

Arbitrary Number Imputation

Arbitrary number imputation replaces missing values in a numerical variable with an arbitrary number. Common
values used for replacements are 0, 999, -999 (or other 9 combinations), or -1 (if the distribution is positive).

This imputation method is perfectly suited if the data is missing not at random (MNAR). This is because the method
will flag the missing values with a predefined arbitrary value instead of replacing them with statistical estimates that
make nan values look like the majority of the observations.

Advantages:
• Fast and easy way to obtain complete data.

• Flags missing values.

Limitations:
• Distorts in the variance within a variable, as well as the covariance and correlation with other variables in the

dataset.

• It might hide or create outliers.

• Need to be careful not to choose an arbitrary value that is too similar to the mean or median.

Some models can be effectively trained with data that has undergone arbitrary number imputation, such as tree-based
models, kNN, SVM, and ensemble models.

The ArbitraryNumberImputer() implements arbitrary number imputation.

End Tail Imputation

End tail imputation replaces missing values in a numerical variable with an arbitrary number located at the tail of the
variable’s distribution.

We can select the imputation value in one of 2 ways depending on the variable’s distribution:

• If it’s a normal distribution, the value can be set at the mean plus or minus 3 times the standard deviation.

• If it’s a skewed distribution, the value can be set using the IQR.

This method is suitable for MNAR data. This is because this method will flag the missing value instead of replacing it
with a value that is similar to the majority of observations.

Advantages:
• Fast and easy way to obtain complete datasets.

• Automates arbitrary value imputation.

• Flags missing values.

Limitations:
• Distortion of the original variance within a variable, as well as the covariance and correlation with other variables

in the dataset.

398 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

• It might hide outliers.

Models like tree-based models, tree based models can be effectively trained on data imputed with end tail imputation.

The EndTailImputer() implements end tail imputation.

Random Sample Imputation

Random sample imputation replaces missing values in both numerical and categorical variables with a random value
drawn from a distribution of that variable.

Since the replacement is drawn from the distribution of the original variable, the variance of the imputed data will be
preserved. However, due to its randomness, we could obtain different imputation values on different code executions,
which would lead to different machine learning model predictions. Therefore, make sure to set a proper seed during
the imputation.

Random sample imputation is useful when we don’t want to distort the distribution of the variable.

Advantages:
• Preserves the variance of a variable.

Limitations:
• Randomness.

• Distorts the relation with other variables.

• This imputation model is computationally more expensive than other methods.

The RandomSampleImputer() implements random sample imputation.

Frequent Category imputation

Frequent category imputation replaces missing values in categorical variables with the most frequent category in that
variable.

Although CategoricalImputer() can impute both numerical and categorical variables, in practice frequent category
imputation is more commonly used for categorical variable imputation.

This method is suited if the data is MCAR, as this imputation method replaces missing values with the most common
observation in our variable.

Advantages:
• Fast and easy method to obtain complete data.

Limitations:
• Imputed values can distort the correlation with other variables.

• It can lead to an over-representation of the most frequent category.

Therefore, it’s best to use this method if the missing values constitute a small percentage of the observations.

Tree-based models, kNN, SVM, and ensemble models can be effectively trained on data imputed with frequent category
imputation.

The CategoricalImputer() implements frequent category imputation.

10.3. API 399

feature_engine Documentation, Release 1.7.0

Categorical imputation

During categorical imputation, we replace missing values in a categorical variable with a specific new label, such as
‘Missing’ or ‘NaN’ for example. In essence, it consists of treating the missing observations as a category in itself.

This method is suited for MNAR data because it marks the missing values with a new label, instead of replacing them
with statistical estimates that may introduce bias in our data.

Advantages:
• Fast and easy way to obtain complete data.

• Flags missing values.

• No assumption made on the data.

Limitations:
• If the proportion of missing values is little, creating an additional category might introduce noise.

The CategoricalImputer() implements categorical imputation.

Adding Missing Indicators

Adding missing indicators consists in adding binary variables to highlight if the values are missing. The missing
indicator takes the value 0 if there is an observed value and 1 if the value was missing.

Adding missing indicators does not replace the missing data in itself. They just add the information to the data that some
values were missing. Therefore, this method is never used alone. Normally, it’s accompanied with other imputation
methods, such as mean-median for numerical data or frequent category imputation for categorical data.

Advantages:
• Captures the importance of missing values.

Limitations:
• Expands the dimensionality of the data.

The AddMissingIndicator() adds missing indicators to the dataset.

Complete case analysis

Dropping missing data is the simplest method to deal with missing data. This procedure is known as complete case
analysis or listwise deletion, meaning that the entire row will be excluded from analysis if any single value is missing.

This method is best suited for MCAR data and if the proportion of missing values is relatively small.

Advantages:
• Fast and easy way to obtain complete data.

Limitations:
• Reducing the sample size of available data.

• Potentially creating bias in our data, hence affecting data analysis.

The DropMissingData() implements complete case analysis.

400 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Wrapping up

All Feature-engine supported data imputation methods are single imputation methods, or better said, univariate impu-
tation methods.

There are alternative data imputation techniques that data scientists could also use, like:

Multiple Imputation: Multiple imputation generates several imputed datasets by randomly imputing missing values
in each of the dataset. Suitable if the data is MAR.

Cold Deck Imputation: Cold deck imputation replaces missing values with values borrowed from a historical dataset.

Hot Deck Imputation: Hot deck imputation selects imputed values from a similar subset of observed data within the
same dataset.

Multiple imputation of chained equations (MICE): MICE is a way of estimating the missing data as a regression
based on the other variables in the dataset. It uses multiple rounds of imputation to improve the estimates at each
iteration.

Additional resources

For tutorials about missing data imputation methods check out these resources:

Fig. 117: Feature Engineering for Machine Learning

Fig. 118: Feature Engineering for Time Series Forecast-
ing

Our book:

10.3. API 401

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-engineering-for-forecasting

feature_engine Documentation, Release 1.7.0

Both our book and courses are suitable for beginners and
more advanced data scientists alike. By purchasing them
you are supporting Sole, the main developer of Feature-engine.

Fig. 119: Python Feature Engineering
Cookbook

Categorical Encoding

Feature-engine’s categorical encoders replace the categories of the variable
with estimated or arbitrary numbers.

Summary of Feature-engine’s encoders characteristics

Transformer Regres-
sion

Classifica-
tion

Multi-
class

Description

OneHotEncoder() Adds dummy variables to represent each cate-
gory

OrdinalEncoder() Replaces categories with an integer
CountFreuencyEncoder() Replaces categories with their count or fre-

quency
MeanEncoder() x Replaces categories with the targe mean value
WoEEncoder() x x Replaces categories with the weight of the evi-

dence
DecisionTreeEncoder() Replaces categories with the predictions of a

decision tree
RareLabelEncoder() Groups infrequent categories into a single one

Feature-engine’s categorical encoders encode only variables of type categor-
ical or object by default. From version 1.1.0, you have the option to set the
parameter ignore_format to True to make the transformers also accept nu-
merical variables as input.

402 Chapter 10. Table of Contents

https://packt.link/0ewSo

feature_engine Documentation, Release 1.7.0

OneHotEncoder

class feature_engine.encoding.OneHotEncoder(top_categories=None, drop_last=False,
drop_last_binary=False, variables=None,
ignore_format=False)

The OneHotEncoder() replaces categorical variables by a set of binary vari-
ables representing each one of the unique categories in the variable.

The encoder has the option to create k or k-1 binary variables, where k is the
number of unique categories.

The encoder has the additional option to generate binary variables only for the
most popular categories, that is, the categories that are shared by the majority
of the observations in the dataset. This behaviour can be specified with the
parameter top_categories.

The encoder will encode only categorical variables by default (type ‘object’
or ‘categorical’). You can pass a list of variables to encode. Alternatively, the
encoder will find and encode all categorical variables (type ‘object’ or ‘cate-
gorical’).

With ignore_format=True you have the option to encode numerical vari-
ables as well. The procedure is identical, you can either enter the list of vari-
ables to encode, or the transformer will automatically select all variables.

The encoder first finds the categories to be encoded for each variable (fit).
The encoder then creates one dummy variable per category for each variable
(transform).

Note
New categories in the data to transform, that is, those that did not appear in
the training set, will be ignored (no binary variable will be created for them).
This means that observations with categories not present in the train set, will
be encoded as 0 in all the binary variables.

Also Note
The original categorical variables are removed from the returned dataset when
we apply the transform() method. In their place, the binary variables are re-
turned.

More details in the User Guide.

Parameters

top_categories: int, default=None
If None, dummy variables will be created for each unique category of the
variable. Alternatively, we can indicate in the number of most frequent
categories to encode. In this case, dummy variables will be created only for
those popular categories and the rest will be ignored, i.e., they will show the
value 0 in all the binary variables. Note that if top_categories is not None,
the parameter drop_last is ignored.

drop_last: boolean, default=False
Only used if top_categories = None. It indicates whether to create
dummy variables for all the categories (k dummies), or if set to True, it will
ignore the last binary variable and return k-1 dummies.

10.3. API 403

feature_engine Documentation, Release 1.7.0

drop_last_binary: boolean, default=False
Whether to return 1 or 2 dummy variables for binary categorical variables.
When a categorical variable has only 2 categories, then the second dummy
variable created by one hot encoding can be completely redundant. Setting
this parameter to True, will ensure that for every binary variable in the
dataset, only 1 dummy is created.

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You
can also make the transformer accept numerical variables, see the parameter
ignore_format.

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are
of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

Attributes

encoder_dict_:
Dictionary with the categories for which dummy variables will be created.

variables_:
The group of variables that will be transformed.

variables_binary_:
List with binary variables identified in the data. That is, variables with only
2 categories.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Notes

If the variables are intended for linear models, it is recommended to encode
into k-1 or top categories. If the variables are intended for tree based algo-
rithms, it is recommended to encode into k or top n categories. If feature se-
lection will be performed, then also encode into k or top n categories. Linear
models evaluate all features during fit, while tree based models and many fea-
ture selection algorithms evaluate variables or groups of variables separately.
Thus, if encoding into k-1, the last variable / category will not be examined.

404 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

References

One hot encoding of top categories was described in the following article:

[1]

Examples

>>> import pandas as pd
>>> from feature_engine.encoding import OneHotEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3,4], x2 = ["a", "a", "b", "c"]))
>>> ohe = OneHotEncoder()
>>> ohe.fit(X)
>>> ohe.transform(X)

x1 x2_a x2_b x2_c
0 1 1 0 0
1 2 1 0 0
2 3 0 1 0
3 4 0 0 1

Methods

fit: Learn the unique categories per variable
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Replace the categorical variables by the binary variables.

fit(X, y=None)

Learns the unique categories per variable. If top_categories is indicated,
it will learn the most popular categories. Alternatively, it learns all unique
categories per variable.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just seleted
variables.

y: pandas series, default=None
Target. It is not needed in this encoded. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

10.3. API 405

feature_engine Documentation, Release 1.7.0

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

406 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

inverse_transform is not implemented for this transformer.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Replaces the categorical variables by the binary variables.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: pandas dataframe.
The transformed dataframe. The shape of the dataframe will be different from
the original as it includes the dummy variables in place of the of the original
categorical ones.

rtype
DataFrame ..

10.3. API 407

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

CountFrequencyEncoder

class feature_engine.encoding.CountFrequencyEncoder(encoding_method='count', variables=None,
missing_values='raise', ignore_format=False,
unseen='ignore')

The CountFrequencyEncoder() replaces categories by either the count or the
percentage of observations per category.

For example in the variable colour, if 10 observations are blue, blue will be
replaced by 10. Alternatively, if 10% of the observations are blue, blue will be
replaced by 0.1.

The CountFrequencyEncoder() will encode only categorical variables by de-
fault (type ‘object’ or ‘categorical’). You can pass a list of variables to encode.
Alternatively, the encoder will find and encode all categorical variables (type
‘object’ or ‘categorical’).

With ignore_format=True you have the option to encode numerical vari-
ables as well. The procedure is identical, you can either enter the list of vari-
ables to encode, or the transformer will automatically select all variables.

The encoder first maps the categories to the counts or frequencies for each
variable (fit). The encoder then replaces the categories with those numbers
(transform).

More details in the User Guide.

Parameters

encoding_method: str, default=’count’
Desired method of encoding.

‘count’: number of observations per category

‘frequency’: percentage of observations per category

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You
can also make the transformer accept numerical variables, see the parameter
ignore_format.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are
of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

408 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

unseen: string, default=’ignore’
Indicates what to do when categories not present in the train set are encoun-
tered during transform. If 'raise', then unseen categories will raise an error.
If 'ignore', then unseen categories will be encoded as NaN and a warning
will be raised instead. If 'encode', unseen categories will be encoded as 0
(zero).

Attributes

encoder_dict_:
Dictionary with the count or frequency per category, per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

feature_engine.encoding.RareLabelEncoder
category_encoders.count.CountEncoder

Notes

NAN will be introduced when encoding categories that were not present in
the training set. If this happens, try grouping infrequent categories using the
RareLabelEncoder(), or set unseen='encode'.

There is a similar implementation in the open-source package Category en-
coders

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.encoding import CountFrequencyEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3,4], x2 = ["c", "a", "b", "c"]))
>>> cf = CountFrequencyEncoder(encoding_method='count')
>>> cf.fit(X)
>>> cf.transform(X)

x1 x2
0 1 2
1 2 1
2 3 1
3 4 2

>>>
→˓ cf = CountFrequencyEncoder(encoding_method='frequency')

(continues on next page)

10.3. API 409

https://contrib.scikit-learn.org/category_encoders/
https://contrib.scikit-learn.org/category_encoders/

feature_engine Documentation, Release 1.7.0

(continued from previous page)

>>> cf.fit(X)
>>> cf.transform(X)

x1 x2
0 1 0.50
1 2 0.25
2 3 0.25
3 4 0.50

Methods

fit: Learn the count or frequency per category, per variable.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Encode the categories to numbers.

fit(X, y=None)

Learn the counts or frequencies which will be used to replace the categories.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset. Can be the entire dataframe, not just the variables to be
transformed.

y: pandas Series, default = None
y is not needed in this encoder. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

410 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the encoded variable back to the original values.

10.3. API 411

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The transformed dataframe.

Returns

X_tr: pandas dataframe of shape = [n_samples, n_features].
The un-transformed dataframe, with the categorical variables containing the
original values.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Replace categories with the learned parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The dataset to transform.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features].
The dataframe containing the categories replaced by numbers.

rtype
DataFrame ..

412 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

OrdinalEncoder

class feature_engine.encoding.OrdinalEncoder(encoding_method='ordered', variables=None,
missing_values='raise', ignore_format=False,
unseen='ignore')

The OrdinalEncoder() replaces categories by ordinal numbers (0, 1, 2, 3, etc).
The numbers can be ordered based on the mean of the target per category, or
assigned arbitrarily.

The encoder will encode only categorical variables by default (type ‘object’
or ‘categorical’). You can pass a list of variables to encode. Alternatively, the
encoder will find and encode all categorical variables (type ‘object’ or ‘cate-
gorical’).

With ignore_format=True you have the option to encode numerical vari-
ables as well. The procedure is identical, you can either enter the list of vari-
ables to encode, or the transformer will automatically select all variables.

The encoder first maps the categories to the numbers for each variable (fit). The
encoder then transforms the categories to the mapped numbers (transform).

More details in the User Guide.

Parameters

encoding_method: str, default=’ordered’
Desired method of encoding.

‘ordered’: the categories are numbered in ascending order according to the
target mean value per category.

‘arbitrary’: categories are numbered arbitrarily.

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You
can also make the transformer accept numerical variables, see the parameter
ignore_format.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are
of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

unseen: string, default=’ignore’
Indicates what to do when categories not present in the train set are encoun-

10.3. API 413

feature_engine Documentation, Release 1.7.0

tered during transform. If 'raise', then unseen categories will raise an error.
If 'ignore', then unseen categories will be encoded as NaN and a warning
will be raised instead. If 'encode', unseen categories will be encoded as -1.

Attributes

encoder_dict_:
Dictionary with the ordinal number per category, per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

feature_engine.encoding.RareLabelEncoder
category_encoders.ordinal.OrdinalEncoder

Notes

NAN are introduced when encoding categories that were not present in the
training dataset. If this happens, try grouping infrequent categories using the
RareLabelEncoder().

There is a similar implementation in the the open-source package Category
encoders

References

Encoding into integers ordered following target mean was discussed in the fol-
lowing talk at PyData London 2017:

[1]

Examples

>>> import pandas as pd
>>> from feature_engine.encoding import OrdinalEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3,4], x2 = ["c", "a", "b", "c"]))
>>> y = pd.Series([0,1,1,0])
>>> od = OrdinalEncoder(encoding_method='arbitrary')
>>> od.fit(X)
>>> od.transform(X)

x1 x2
0 1 0
1 2 1
2 3 2
3 4 0

414 Chapter 10. Table of Contents

https://contrib.scikit-learn.org/category_encoders/
https://contrib.scikit-learn.org/category_encoders/

feature_engine Documentation, Release 1.7.0

You can also consider the order of the target variable:

>>> y = pd.Series([1,0,1,1])
>>> od = OrdinalEncoder(encoding_method='ordered')
>>> od.fit(X, y)
>>> od.transform(X)

x1 x2
0 1 2
1 2 0
2 3 1
3 4 2

Methods

fit: Find the integer to replace each category in each variable.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Encode the categories to numbers.

fit(X, y=None)

Learn the numbers to be used to replace the categories in each variable.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to be encoded.

y: pandas series, default=None
The Target. Can be None if encoding_method='arbitrary'. Otherwise,
y needs to be passed when fitting the transformer.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

10.3. API 415

feature_engine Documentation, Release 1.7.0

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

416 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

inverse_transform(X)

Convert the encoded variable back to the original values.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The transformed dataframe.

Returns

X_tr: pandas dataframe of shape = [n_samples, n_features].
The un-transformed dataframe, with the categorical variables containing the
original values.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Replace categories with the learned parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The dataset to transform.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features].
The dataframe containing the categories replaced by numbers.

rtype
DataFrame ..

10.3. API 417

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

MeanEncoder

class feature_engine.encoding.MeanEncoder(variables=None, missing_values='raise',
ignore_format=False, unseen='ignore', smoothing=0.0)

The MeanEncoder() replaces categories by the mean value of the target for
each category.

For example in the variable colour, if the mean of the target for blue, red and
grey is 0.5, 0.8 and 0.1 respectively, blue is replaced by 0.5, red by 0.8 and
grey by 0.1.

For rare categories, i.e., those with few observations, the mean target value
might be less reliable. To mitigate poor estimates returned for rare categories,
the mean target value can be determined as a mixture of the target mean value
for the entire data set (also called the prior) and the mean target value for the
category (the posterior), weighted by the number of observations:

𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = (𝑤𝑖)𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 + (1− 𝑤𝑖)𝑝𝑟𝑖𝑜𝑟

where the weight is calculated as:

𝑤𝑖 = 𝑛𝑖𝑡/(𝑠+ 𝑛𝑖𝑡)

In the previous equation, t is the target variance in the entire dataset, s is the
target variance within the category and n is the number of observations for the
category.

The encoder will encode only categorical variables by default (type ‘object’
or ‘categorical’). You can pass a list of variables to encode. Alternatively, the
encoder will find and encode all categorical variables (type ‘object’ or ‘cate-
gorical’).

With ignore_format=True you have the option to encode numerical vari-
ables as well. The procedure is identical, you can either enter the list of vari-
ables to encode, or the transformer will automatically select all variables.

The encoder first maps the categories to the numbers for each variable (fit).
The encoder then replaces the categories with those numbers (transform).

More details in the User Guide.

Parameters

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You
can also make the transformer accept numerical variables, see the parameter
ignore_format.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

418 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are
of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

unseen: string, default=’ignore’
Indicates what to do when categories not present in the train set are encoun-
tered during transform. If 'raise', then unseen categories will raise an error.
If 'ignore', then unseen categories will be encoded as NaN and a warning
will be raised instead. If 'encode', unseen categories will be encoded with
the prior.

smoothing: int, float, str, default=0.0
Smoothing factor. Should be >= 0. If 0 then no smoothing is applied, and
the mean target value per category is returned without modification. If ‘auto’
then wi is calculated as described above and the category is encoded as the
blended values of the prior and the posterior. If int or float, then the wi is
calculated as ni / (ni+smoothing). Higher values lead to stronger smoothing
(higher weight of prior).

Attributes

encoder_dict_:
Dictionary with the target mean value per category per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

feature_engine.encoding.RareLabelEncoder
category_encoders.target_encoder.TargetEncoder
category_encoders.m_estimate.MEstimateEncoder

Notes

NAN are introduced when encoding categories that were not present in the
training dataset. If this happens, try grouping infrequent categories using the
RareLabelEncoder().

Check also the related transformers in the the open-source package Category
encoders

10.3. API 419

https://contrib.scikit-learn.org/category_encoders/
https://contrib.scikit-learn.org/category_encoders/

feature_engine Documentation, Release 1.7.0

References

[1]

Examples

>>> import pandas as pd
>>> from feature_engine.encoding import MeanEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3,4,5], x2 = ["c", "c", "c", "b", "a"]))
>>> y = pd.Series([0,1,1,1,0])
>>> me = MeanEncoder()
>>> me.fit(X,y)
>>> me.transform(X)

x1 x2
0 1 0.666667
1 2 0.666667
2 3 0.666667
3 4 1.000000
4 5 0.000000

Methods

fit: Learn the target mean value per category, per variable.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Encode the categories to numbers.

fit(X, y)

Learn the mean value of the target for each category of the variable.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to be encoded.

y: pandas series
The target.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

420 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

10.3. API 421

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the encoded variable back to the original values.

Note that if unseen was set to ‘encode’, then this method is not implemented.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The transformed dataframe.

Returns

X_tr: pandas dataframe of shape = [n_samples, n_features].
The un-transformed dataframe, with the categorical variables containing the
original values.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Replace categories with the learned parameters.

Parameters

422 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

X: pandas dataframe of shape = [n_samples, n_features].
The dataset to transform.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features].
The dataframe containing the categories replaced by numbers.

rtype
DataFrame ..

WoEEncoder

class feature_engine.encoding.WoEEncoder(variables=None, ignore_format=False, unseen='ignore',
fill_value=None)

The WoEEncoder() replaces categories by the weight of evidence (WoE). The
WoE was used primarily in the financial sector to create credit risk scorecards.

The encoder will encode only categorical variables by default (type ‘object’
or ‘categorical’). You can pass a list of variables to encode. Alternatively, the
encoder will find and encode all categorical variables (type ‘object’ or ‘cate-
gorical’).

With ignore_format=True you have the option to encode numerical vari-
ables as well. The procedure is identical, you can either enter the list of vari-
ables to encode, or the transformer will automatically select all variables.

The encoder first maps the categories to the weight of evidence for each vari-
able (fit). The encoder then transforms the categories into the mapped numbers
(transform).

This categorical encoding is exclusive for binary classification.

Note
The log(0) is not defined and the division by 0 is not defined. Thus, if any of the
terms in the WoE equation are 0 for a given category, the encoder will return
an error. If this happens, try grouping less frequent categories. Alternatively,
you can now add a fill_value (see parameter below).

More details in the User Guide.

Parameters

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You
can also make the transformer accept numerical variables, see the parameter
ignore_format.

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are

10.3. API 423

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

unseen: string, default=’ignore’
Indicates what to do when categories not present in the train set are encoun-
tered during transform. If 'raise', then unseen categories will raise an
error. If 'ignore', then unseen categories will be encoded as NaN and a
warning will be raised instead.

fill_value: int, float, default=None
When the numerator or denominator of the WoE calculation are zero, the
WoE calculation is not possible. If fill_value is None (recommended),
an error will be raised in those cases. Alternatively, fill_value will be used in
place of denominators or numerators that equal zero.

Attributes

encoder_dict_:
Dictionary with the WoE per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

feature_engine.encoding.RareLabelEncoder
feature_engine.discretisation
category_encoders.woe.WOEEncoder

Notes

For details on the calculation of the weight of evidence visit: https://www.
listendata.com/2015/03/weight-of-evidence-woe-and-information.html

NAN are introduced when encoding categories that were not present in the
training dataset. If this happens, try grouping infrequent categories using the
RareLabelEncoder().

There is a similar implementation in the the open-source package Category
encoders

424 Chapter 10. Table of Contents

https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html
https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html
https://contrib.scikit-learn.org/category_encoders/
https://contrib.scikit-learn.org/category_encoders/

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> from feature_engine.encoding import WoEEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3,4,5], x2 = ["b", "b", "b", "a", "a"]))
>>> y = pd.Series([0,1,1,1,0])
>>> woe = WoEEncoder()
>>> woe.fit(X, y)
>>> woe.transform(X)

x1 x2
0 1 0.287682
1 2 0.287682
2 3 0.287682
3 4 -0.405465
4 5 -0.405465

Methods

fit: Learn the WoE per category, per variable.
transform: Encode the categories to numbers.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.

fit(X, y)

Learn the WoE.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the categor-
ical variables.

y: pandas series.
Target, must be binary.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

10.3. API 425

feature_engine Documentation, Release 1.7.0

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

426 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the encoded variable back to the original values.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The transformed dataframe.

Returns

X_tr: pandas dataframe of shape = [n_samples, n_features].
The un-transformed dataframe, with the categorical variables containing the
original values.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Replace categories with the learned parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The dataset to transform.

Returns

10.3. API 427

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

X_new: pandas dataframe of shape = [n_samples, n_features].
The dataframe containing the categories replaced by numbers.

rtype
DataFrame ..

DecisionTreeEncoder

class feature_engine.encoding.DecisionTreeEncoder(encoding_method='arbitrary', cv=3,
scoring='neg_mean_squared_error',
param_grid=None, regression=True,
random_state=None, variables=None,
ignore_format=False)

The DecisionTreeEncoder() encodes categorical variables with predictions of
a decision tree.

The encoder first fits a decision tree using a single feature and the target (fit),
and then replaces the values of the original feature by the predictions of the
tree (transform). The transformer will train a decision tree per every feature to
encode.

The DecisionTreeEncoder() will encode only categorical variables by default
(type ‘object’ or ‘categorical’). You can pass a list of variables to encode or
the encoder will find and encode all categorical variables.

With ignore_format=True you have the option to encode numerical vari-
ables as well. In this case, you can either enter the list of variables to encode,
or the transformer will automatically select all variables.

More details in the User Guide.

Parameters

encoding_method: str, default=’arbitrary’
The method used to encode the categories to numerical values before fitting
the decision tree.

‘ordered’: the categories are numbered in ascending order according to the
target mean value per category.

‘arbitrary’ : categories are numbered arbitrarily.

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter

– (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same

428 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/glossary.html#term-CV-splitter

feature_engine Documentation, Release 1.7.0

across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

scoring: str, default=’neg_mean_squared_error’
Desired metric to optimise the performance for the decision tree.
Comes from sklearn.metrics. See the DecisionTreeRegressor or Deci-
sionTreeClassifier model evaluation documentation for more options:
https://scikit-learn.org/stable/modules/model_evaluation.html

param_grid: dictionary, default=None
The hyperparameters for the decision tree to test with a grid search. The
param_grid can contain any of the permitted hyperparameters for Scikit-
learn’s DecisionTreeRegressor() or DecisionTreeClassifier(). If None, then
param_grid will optimise the ‘max_depth’ over [1, 2, 3, 4].

regression: boolean, default=True
Indicates whether the encoder should train a regression or a classification
decision tree.

random_state: int, default=None
The random_state to initialise the training of the decision tree. It is one of
the parameters of the Scikit-learn’s DecisionTreeRegressor() or Decision-
TreeClassifier(). For reproducibility it is recommended to set the random_state
to an integer.

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You
can also make the transformer accept numerical variables, see the parameter
ignore_format.

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are
of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

Attributes

encoder_:
sklearn Pipeline containing the ordinal encoder and the decision tree.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

10.3. API 429

https://scikit-learn.org/stable/modules/model_evaluation.html

feature_engine Documentation, Release 1.7.0

sklearn.ensemble.DecisionTreeRegressor
sklearn.ensemble.DecisionTreeClassifier
feature_engine.discretisation.DecisionTreeDiscretiser
feature_engine.encoding.RareLabelEncoder
feature_engine.encoding.OrdinalEncoder

Notes

The authors designed this method originally to work with numerical variables.
We can replace numerical variables by the predictions of a decision tree util-
ising the DecisionTreeDiscretiser(). Here we extend this functionality to work
also with categorical variables.

NAN are introduced when encoding categories that were not present in the
training dataset. If this happens, try grouping infrequent categories using the
RareLabelEncoder().

References

[1]

Examples

>>> import pandas as pd
>>>
→˓ from feature_engine.encoding import DecisionTreeEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3,4,5], x2 = ["b", "b", "b", "a", "a"]))
>>> y = pd.Series([2.2,4, 1.5, 3.2, 1.1])
>>> dte = DecisionTreeEncoder(cv=2)
>>> dte.fit(X, y)
>>> dte.transform(X)

x1 x2
0 1 2.566667
1 2 2.566667
2 3 2.566667
3 4 2.150000
4 5 2.150000

You can also use it for classification by using regression=False.

>>> y = pd.Series([0,1,1,1,0])
>>> dte = DecisionTreeEncoder(regression=False, cv=2)
>>> dte.fit(X, y)
>>> dte.transform(X)

x1 x2
0 1 0.666667
1 2 0.666667
2 3 0.666667
3 4 0.500000
4 5 0.500000

430 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Methods

fit: Fit a decision tree per variable.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Replace categorical variable by the predictions of the decision tree.

fit(X, y)

Fit a decision tree per variable.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The training input
samples. Can be the entire dataframe, not just the categorical variables.

y
[pandas series.] The target variable. Required to train the decision tree and
for ordered ordinal encoding.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

10.3. API 431

feature_engine Documentation, Release 1.7.0

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

inverse_transform is not implemented for this transformer.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

432 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Replace categorical variables by the predictions of the decision tree.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The input samples.

Returns

X_new
[pandas dataframe of shape = [n_samples, n_features].] Dataframe with vari-
ables encoded with decision tree predictions.

rtype
DataFrame ..

RareLabelEncoder

class feature_engine.encoding.RareLabelEncoder(tol=0.05, n_categories=10, max_n_categories=None,
replace_with='Rare', variables=None,
missing_values='raise', ignore_format=False)

The RareLabelEncoder() groups rare or infrequent categories in a new cate-
gory called “Rare”, or any other name entered by the user.

For example in the variable colour, if the percentage of observations for the
categories magenta, cyan and burgundy are < 5 %, all those categories will be
replaced by the new label “Rare”.

Note
Infrequent labels can also be grouped under a user defined name, for example
‘Other’. The name to replace infrequent categories is defined with the param-
eter replace_with.

The encoder will encode only categorical variables by default (type ‘object’
or ‘categorical’). You can pass a list of variables to encode.Alternatively, the
encoder will find and encode all categorical variables (type ‘object’ or ‘cate-
gorical’).

With ignore_format=True you have the option to encode numerical vari-
ables as well. The procedure is identical, you can either enter the list of vari-
ables to encode, or the transformer will automatically select all variables.

The encoder first finds the frequent labels for each variable (fit). The encoder
then groups the infrequent labels under the new label ‘Rare’ or by another user
defined string (transform).

10.3. API 433

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

More details in the User Guide.

Parameters

tol: float, default=0.05
The minimum frequency a label should have to be considered frequent. Cat-
egories with frequencies lower than tol will be grouped.

n_categories: int, default=10
The minimum number of categories a variable should have for the encoder to
find frequent labels. If the variable contains less categories, all of them will
be considered frequent.

max_n_categories: int, default=None
The maximum number of categories that should be considered frequent. If
None, all categories with frequency above the tolerance (tol) will be con-
sidered frequent. If you enter 5, only the 5 most frequent categories will be
retained and the rest grouped.

replace_with: string, intege or float, default=’Rare’
The value that will be used to replace infrequent categories.

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You
can also make the transformer accept numerical variables, see the parameter
ignore_format.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are
of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

Attributes

encoder_dict_:
Dictionary with the frequent categories, i.e., those that will be kept, per vari-
able.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

434 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> from feature_engine.encoding import RareLabelEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3,4,5,6], x2 = ["b", "b", "b", "b", "b", "a"]))
>>> rle = RareLabelEncoder(n_categories = 1, tol=0.2)
>>> rle.fit(X)
>>> rle.transform(X)

x1 x2
0 1 b
1 2 b
2 3 b
3 4 b
4 5 b
5 6 Rare

Methods

fit: Find frequent categories.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Group rare categories

fit(X, y=None)

Learn the frequent categories for each variable.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just selected
variables

y: None
y is not required. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

10.3. API 435

feature_engine Documentation, Release 1.7.0

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

436 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

inverse_transform is not implemented for this transformer.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Group infrequent categories. Replace infrequent categories by the string
‘Rare’ or any other name provided by the user.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input samples.

Returns

X: pandas dataframe of shape = [n_samples, n_features]
The dataframe where rare categories have been grouped.

rtype
DataFrame ..

10.3. API 437

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

StringSimilarityEncoder

class feature_engine.encoding.StringSimilarityEncoder(top_categories=None, keywords=None,
missing_values='impute', variables=None,
ignore_format=False)

The StringSimilarityEncoder() replaces categorical variables with a set of
float variables that capture the similarity between the category names. The
new variables have values between 0 and 1, where 0 indicates no similarity
and 1 is an exact match between the names of the categories.

The similarity measure is a float in the range [0, 1]. It is defined as 2 * M / T,
where T is the total number of elements in both categories being compared, and
M is the number of matches. Note that this is 1 if the sequences are identical,
and 0 if they have nothing in common.

For example, the similarity between the categories “dog” and “dig” is 0.66.
T is the total number of elements in both categories, that is 6. There are 2
matches between the words, the letters d and g, so: 2 * M / T = 2 * 2 / 6 = 0.66.

This encoding is similar to one-hot encoding, in the sense that each category is
encoded as a new variable. But the values, instead of 1 or 0, are the similarity
between the observation’s category and the dummy variable.

For example, if a variable has 3 categories, dog, dig and cat, StringSimilari-
tyEncoder() will create 3 new variables, var_dog, var_dig and var_cat and the
values would be for the observation dog: 1, 0.66 , 0. For the observation dig
they would be 0.66, 1, 0. And for cat, they would be 0, 0, 1.

The encoder has the option to generate similarity variables only for the most
popular categories, that is, the categories present in most observations. This
behaviour can be specified with the parameter top_categories.

Missing values
StringSimilarityEncoder() will rreplace missing data with an empty string and
then return the similarity to the remaining variables by default. Alternatively,
it can be set to return an error if the variable has missing values, or to ignore
them.

Unseen categories
StringSimilarityEncoder() handles unseen categories out-of-the-box by as-
signing a similarity measure to the other categories that were seen during
fit().

Categorical variables
The encoder will encode only categorical variables by default (type ‘object’
or ‘categorical’). You can pass a list of variables to encode. Alternatively, the
encoder will find and encode all categorical variables.

Numerical variables
With ignore_format=True you have the option to encode numerical vari-
ables as well. Encoding numerical variables with similarity measures make
sense for example for variables like barcodes. In this case, you can either enter
the list of variables to encode (recommended), or the transformer will auto-
matically select all variables.

More details in the User Guide.

438 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Parameters

top_categories: int, default=None
If None, dummy variables will be created for each unique category of the
variable. Alternatively, we can indicate in the number of most frequent
categories to encode. In this case, similarity variables will be created only for
those popular categories.

missing_values: str, default=’impute’
Indicates if missing values should be ignored, raised or imputed. If ‘raise’ the
transformer will return an error if the datasets to fit or transform contain
missing values. If ‘ignore’, missing data will be ignored when learning
parameters or performing the transformation. If ‘impute’, the transformer will
replace missing values with an empty string, ‘’, and then return the similarity
measures.

keywords: dict, default=None
Dictionary with a set of keywords to be used to create the similarity variables.
The format should be: dict(feature: [keyword1, keyword2, . . .]). The encoder
will use these keywords to create the similarity variables. The dictionary can
be defined for all the features to encode, or only for a subset of them. In this
case, for the features not specified in the dictionary, the encoder will identify
the categories from the data.

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You
can also make the transformer accept numerical variables, see the parameter
ignore_format.

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are
of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

Attributes

encoder_dict_:
Dictionary with the categories for which dummy variables will be created.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

10.3. API 439

feature_engine Documentation, Release 1.7.0

feature_engine.encoding.OneHotEncoder
dirty_cat.SimilarityEncoder

Notes

This encoder will encode unseen categories by measuring string similarity be-
tween seen and unseen categories.

No text preprocessing is applied before calculating the similarity.

The original categorical variables are removed from the returned dataset after
the transformation. In their place, the binary variables are returned.

References

[1], [2]

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.encoding import StringSimilarityEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3,4], x2 = ["dog", "dig", "dagger", "hi"]))
>>> sse = StringSimilarityEncoder()
>>> sse.fit(X)
>>> sse.transform(X)

x1 x2_dog x2_dig x2_dagger x2_hi
0 1 1.000000 0.666667 0.444444 0.0
1 2 0.666667 1.000000 0.444444 0.4
2 3 0.444444 0.444444 1.000000 0.0
3 4 0.000000 0.400000 0.000000 1.0

Methods

fit: Learn the unique categories per variable.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Replace the categorical variables by the distance variables.

fit(X, y=None)

Learns the unique categories per variable. If top_categories is indicated,
it will learn the most popular categories. Alternatively, it learns all unique
categories per variable.

Parameters

440 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to encode.

y: pandas series, default=None
Target. It is not needed in this encoded. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

10.3. API 441

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

inverse_transform is not implemented for this transformer.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Replaces the categorical variables with the similarity variables.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

442 Chapter 10. Table of Contents

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

X_new: pandas dataframe.
The transformed dataframe. The shape of the dataframe will be different
from the original as it includes the similarity variables in place of the original
categorical ones.

rtype
DataFrame ..

Other categorical encoding libraries

For additional categorical encoding transformations, visit the open-source
package Category encoders.

Discretisation

Feature-engine’s discretisation transformers transform continuous variables
into discrete features. This is accomplished, in general, by sorting the vari-
able values into continuous intervals.

Summary

Transformer Functionality
EqualFrequencyDiscretiser() Sorts values into intervals with similar number of observations.
EqualWidthDiscretiser() Sorts values into intervals of equal size.
ArbitraryDiscretiser() Sorts values into intervals predefined by the user.
DecisionTreeDiscretiser() Replaces values by predictions of a decision tree, which are discrete.
GeometricWidthDiscretiser() Sorts variable into geometrical intervals.

EqualFrequencyDiscretiser

class feature_engine.discretisation.EqualFrequencyDiscretiser(variables=None, q=10,
return_object=False,
return_boundaries=False,
precision=3)

The EqualFrequencyDiscretiser() divides continuous numerical variables
into contiguous equal frequency intervals, that is, intervals that contain
approximately the same proportion of observations.

The EqualFrequencyDiscretiser() works only with numerical variables. A list
of variables can be passed as argument. Alternatively, the discretiser will au-
tomatically select and transform all numerical variables.

The EqualFrequencyDiscretiser() first finds the boundaries for the intervals or
quantiles for each variable. Then it transforms the variables, that is, it sorts the
values into the intervals.

More details in the User Guide.

Parameters

10.3. API 443

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://contrib.scikit-learn.org/category_encoders/

feature_engine Documentation, Release 1.7.0

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

q: int, default=10
Desired number of equal frequency intervals / bins.

return_object: bool, default=False
Whether the the discrete variable should be returned as type numeric or type
object. If you would like to encode the discrete variables with Feature-engine’s
categorical encoders, use True. Alternatively, keep the default to False.

return_boundaries: bool, default=False
Whether the output should be the interval boundaries. If True, it returns the
interval boundaries. If False, it returns integers.

precision: int, default=3
The precision at which to store and display the bins labels.

Attributes

binner_dict_:
Dictionary with the interval limits per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

pandas.qcut
sklearn.preprocessing.KBinsDiscretizer

References

[1], [2]

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_
→˓engine.discretisation import EqualFrequencyDiscretiser
>>> np.random.seed(42)
>>> X␣
→˓= pd.DataFrame(dict(x = np.random.randint(1,100, 100)))
>>> efd = EqualFrequencyDiscretiser()
>>> efd.fit(X)
>>> efd.transform(X)["x"].value_counts()
8 12

(continues on next page)

444 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.qcut.html#pandas.qcut
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer

feature_engine Documentation, Release 1.7.0

(continued from previous page)

6 11
3 11
1 10
5 10
2 10
0 10
4 9
7 9
9 8
Name: x, dtype: int64

Methods

fit: Find the interval limits.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Sort continuous variable values into the intervals.

fit(X, y=None)

Learn the limits of the equal frequency intervals.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset. Can be the entire dataframe, not just the variables to be
transformed.

y: None
y is not needed in this encoder. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

10.3. API 445

feature_engine Documentation, Release 1.7.0

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

446 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Sort the variable values into the intervals.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features]
The transformed data with the discrete variables.

rtype
DataFrame ..

EqualWidthDiscretiser

class feature_engine.discretisation.EqualWidthDiscretiser(variables=None, bins=10,
return_object=False,
return_boundaries=False, precision=3)

The EqualWidthDiscretiser() divides continuous numerical variables into
intervals of the same width, that is, equidistant intervals. Note that the
proportion of observations per interval may vary.

The size of the interval is calculated as:

(𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋))/𝑏𝑖𝑛𝑠

where bins, which is the number of intervals, is determined by the user.

The EqualWidthDiscretiser() works only with numerical variables. A list of
variables can be passed as argument. Alternatively, the discretiser will auto-
matically select all numerical variables.

10.3. API 447

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

The EqualWidthDiscretiser() first finds the boundaries for the intervals for each
variable. Then, it transforms the variables, that is, sorts the values into the
intervals.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

bins: int, default=10
Desired number of equal width intervals / bins.

return_object: bool, default=False
Whether the the discrete variable should be returned as type numeric or type
object. If you would like to encode the discrete variables with Feature-engine’s
categorical encoders, use True. Alternatively, keep the default to False.

return_boundaries: bool, default=False
Whether the output should be the interval boundaries. If True, it returns the
interval boundaries. If False, it returns integers.

precision: int, default=3
The precision at which to store and display the bins labels.

Attributes

binner_dict_:
Dictionary with the interval limits per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

pandas.cut
sklearn.preprocessing.KBinsDiscretizer

References

[1], [2]

448 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.cut.html#pandas.cut
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_
→˓engine.discretisation import EqualWidthDiscretiser
>>> np.random.seed(42)
>>> X␣
→˓= pd.DataFrame(dict(x = np.random.randint(1,100, 100)))
>>> ewd = EqualWidthDiscretiser()
>>> ewd.fit(X)
>>> ewd.transform(X)["x"].value_counts()
9 15
6 15
0 13
5 11
8 9
7 8
2 8
1 7
3 7
4 7
Name: x, dtype: int64

Methods

fit: Find the interval limits.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Sort continuous variable values into the intervals.

fit(X, y=None)

Learn the boundaries of the equal width intervals / bins for each variable.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset. Can be the entire dataframe, not just the variables to be
transformed.

y: None
y is not needed in this encoder. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

10.3. API 449

feature_engine Documentation, Release 1.7.0

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

450 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Sort the variable values into the intervals.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features]
The transformed data with the discrete variables.

rtype
DataFrame ..

10.3. API 451

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

ArbitraryDiscretiser

class feature_engine.discretisation.ArbitraryDiscretiser(binning_dict, return_object=False,
return_boundaries=False, precision=3,
errors='ignore')

The ArbitraryDiscretiser() divides numerical variables into intervals which
limits are determined by the user. Thus, it works only with numerical
variables.

You need to enter a dictionary with variable names as keys, and a list with the
limits of the intervals as values. For example the key could be the variable
name ‘var1’ and the value the following list: [0, 10, 100, 1000]. The Arbi-
traryDiscretiser() will then sort var1 values into the intervals 0-10, 10-100,
100-1000, and var2 into 5-10, 10-15 and 15-20. Similar to pandas.cut.

More details in the User Guide.

Parameters

binning_dict: dict
The dictionary with the variable to interval limits pairs.

return_object: bool, default=False
Whether the the discrete variable should be returned as type numeric or type
object. If you would like to encode the discrete variables with Feature-engine’s
categorical encoders, use True. Alternatively, keep the default to False.

return_boundaries: bool, default=False
Whether the output should be the interval boundaries. If True, it returns the
interval boundaries. If False, it returns integers.

precision: int, default=3
The precision at which to store and display the bins labels.

errors: string, default=’ignore’
Indicates what to do when a value is outside the limits indicated in the ‘bin-
ning_dict’. If ‘raise’, the transformation will raise an error. If ‘ignore’, values
outside the limits are returned as NaN and a warning will be raised instead.

Attributes

binner_dict_:
Dictionary with the interval limits per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

pandas.cut

452 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.cut.html#pandas.cut

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_
→˓engine.discretisation import ArbitraryDiscretiser
>>> np.random.seed(42)
>>> X␣
→˓= pd.DataFrame(dict(x = np.random.randint(1,100, 100)))
>>> bins = dict(x = [0, 25, 50, 75, 100])
>>> ad = ArbitraryDiscretiser(binning_dict = bins)
>>> ad.fit(X)
>>> ad.transform(X)["x"].value_counts()
2 31
0 27
3 25
1 17
Name: x, dtype: int64

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Sort continuous variable values into the intervals.

fit(X, y=None)

This transformer does not learn any parameter.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset. Can be the entire dataframe, not just the variables to be
transformed.

y: None
y is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

10.3. API 453

feature_engine Documentation, Release 1.7.0

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

454 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Sort the variable values into the intervals.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features]
The transformed data with the discrete variables.

rtype
DataFrame ..

DecisionTreeDiscretiser

class feature_engine.discretisation.DecisionTreeDiscretiser(variables=None, cv=3,
scoring='neg_mean_squared_error',
param_grid=None, regression=True,
random_state=None)

The DecisionTreeDiscretiser() replaces numerical variables by discrete, i.e.,
finite variables, which values are the predictions of a decision tree.

The method is inspired by the following article from the winners of
the KDD 2009 competition: http://www.mtome.com/Publications/CiML/
CiML-v3-book.pdf

10.3. API 455

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
http://www.mtome.com/Publications/CiML/CiML-v3-book.pdf
http://www.mtome.com/Publications/CiML/CiML-v3-book.pdf

feature_engine Documentation, Release 1.7.0

The DecisionTreeDiscretiser() trains a decision tree per variable. Then, it
transforms the variables, with predictions of the decision tree.

The DecisionTreeDiscretiser() works only with numerical variables. A list of
variables to transform can be indicated. Alternatively, the discretiser will au-
tomatically select all numerical variables.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter

– (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same
across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

scoring: str, default=’neg_mean_squared_error’
Desired metric to optimise the performance of the tree. Comes
from sklearn.metrics. See the DecisionTreeRegressor or Decision-
TreeClassifier model evaluation documentation for more options:
https://scikit-learn.org/stable/modules/model_evaluation.html

param_grid: dictionary, default=None
The hyperparameters for the decision tree to test with a grid search. The
param_grid can contain any of the permitted hyperparameters for Scikit-
learn’s DecisionTreeRegressor() or DecisionTreeClassifier(). If None, then
param_grid will optimise the ‘max_depth’ over [1, 2, 3, 4].

regression: boolean, default=True
Indicates whether the discretiser should train a regression or a classification
decision tree.

random_state
[int, default=None] The random_state to initialise the training of the decision
tree. It is one of the parameters of the Scikit-learn’s DecisionTreeRegressor()
or DecisionTreeClassifier(). For reproducibility it is recommended to set the
random_state to an integer.

Attributes

456 Chapter 10. Table of Contents

https://scikit-learn.org/stable/glossary.html#term-CV-splitter
https://scikit-learn.org/stable/modules/model_evaluation.html

feature_engine Documentation, Release 1.7.0

binner_dict_:
Dictionary containing the fitted tree per variable.

scores_dict_:
Dictionary with the score of the best decision tree per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

sklearn.tree.DecisionTreeClassifier
sklearn.tree.DecisionTreeRegressor

References

[1]

Examples

>>> import pandas as pd
>>> import numpy as np
>>> from feature_
→˓engine.discretisation import DecisionTreeDiscretiser
>>> np.random.seed(42)
>>>␣
→˓X = pd.DataFrame(dict(x= np.random.randint(1,100, 100)))
>>> y_reg = pd.Series(np.random.randn(100))
>>> dtd = DecisionTreeDiscretiser(random_state=42)
>>> dtd.fit(X, y_reg)
>>> dtd.transform(X)["x"].value_counts()
-0.090091 90
0.479454 10
Name: x, dtype: int64

You can also apply this for classification problems adjusting the scoring metric.

>>> y_clf = pd.Series(np.random.randint(0,2,100))
>>> dtd = DecisionTreeDiscretiser(regression=False,
→˓ scoring="f1", random_state=42)
>>> dtd.fit(X, y_clf)
>>> dtd.transform(X)["x"].value_counts()
0.480769 52
0.687500 48
Name: x, dtype: int64

10.3. API 457

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor

feature_engine Documentation, Release 1.7.0

Methods

fit: Fit a decision tree per variable.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Replace continuous variable values by the predictions of the decision tree.

fit(X, y)

Fit one decision tree per variable to discretize with cross-validation and grid-
search for hyperparameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset. Can be the entire dataframe, not just the variables to be
transformed.

y: pandas series.
Target variable. Required to train the decision tree.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

458 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

10.3. API 459

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

self
[estimator instance] Estimator instance.

transform(X)

Replaces original variable values with the predictions of the tree. The decision
tree predictions are finite, aka, discrete.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input samples.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features]
The dataframe with transformed variables.

rtype
DataFrame ..

GeometricWidthDiscretiser

class feature_engine.discretisation.GeometricWidthDiscretiser(variables=None, bins=10,
return_object=False,
return_boundaries=False,
precision=7)

The GeometricWidthDiscretiser() divides continuous numerical vari-
ables into intervals of increasing width. The width of each succeeding interval
is larger than the previous interval by a constant amount (cw).

The constant amount is calculated as:

𝑐𝑤 = (𝑀𝑎𝑥−𝑀𝑖𝑛)1/𝑛

were Max and Min are the variable’s maximum and minimum value, and n is
the number of intervals.

The sizes of the intervals themselves are calculated with a geometric progres-
sion:

𝑎𝑖+1 = 𝑎𝑖𝑐𝑤

Thus, the first interval’s width equals cw, the second interval’s width equals 2
* cw, and so on.

Note that the proportion of observations per interval may vary.

460 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

This discretisation technique is great when the distribution of the variable is
right skewed.

Note: The width of some bins might be very small. Thus, to allow this trans-
former to work properly, it might help to increase the precision value, that is,
the number of decimal values allowed to define each bin. If the variable has a
narrow range or you are sorting into several bins, allow greater precision (i.e.,
if precision = 3, then 0.001; if precision = 7, then 0.0001).

The GeometricWidthDiscretiser() works only with numerical variables.
A list of variables to discretise can be indicated, or the discretiser will auto-
matically select all numerical variables in the train set.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

bins: int, default=10
Desired number of intervals / bins.

return_object: bool, default=False
Whether the the discrete variable should be returned as type numeric or type
object. If you would like to encode the discrete variables with Feature-engine’s
categorical encoders, use True. Alternatively, keep the default to False.

return_boundaries: bool, default=False
Whether the output should be the interval boundaries. If True, it returns the
interval boundaries. If False, it returns integers.

precision: int, default=3
The precision at which to store and display the bins labels.

Attributes

binner_dict_:
Dictionary with the interval limits per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

10.3. API 461

feature_engine Documentation, Release 1.7.0

References

[1], [2], [3]

Methods

fit: Find the interval limits.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Sort continuous variable values into the intervals.

fit(X, y=None)

Learn the boundaries of the geometric width intervals / bins for each variable.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset. Can be the entire dataframe, not just the variables to be
transformed.

y: None
y is not needed in this encoder. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

462 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

10.3. API 463

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Sort the variable values into the intervals.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features]
The transformed data with the discrete variables.

rtype
DataFrame ..

Additional transformers for discretisation

For discretisation using K-means, check Scikit-learn’s KBinsDiscretizer.

Outlier Handling

Feature-engine’s outlier transformers cap maximum or minimum values of a
variable at an arbitrary or derived value. The OutlierTrimmer removes outliers
from the dataset.

Transformer Description
Winsorizer() Caps variables at automatically determined extreme values
ArbitraryOutlierCapper() Caps variables at values determined by the user
OutlierTrimmer() Removes outliers from the dataframe

Winsorizer

class feature_engine.outliers.Winsorizer(capping_method='gaussian', tail='right', fold=3,
add_indicators=False, variables=None,
missing_values='raise')

The Winsorizer() caps maximum and/or minimum values of a variable at
automatically determined values, and optionally adds indicators.

The extreme values beyond which an observation is considered an outlier are
determined using:

464 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html

feature_engine Documentation, Release 1.7.0

• a Gaussian approximation

• the inter-quantile range proximity rule (IQR)

• MAD-median rule (MAD)

• percentiles

Gaussian limits:
• right tail: mean + 3* std

• left tail: mean - 3* std

IQR limits:
• right tail: 75th quantile + 3* IQR

• left tail: 25th quantile - 3* IQR

where IQR is the inter-quartile range: 75th quantile - 25th quantile.

MAD limits:
• right tail: median + 3* MAD

• left tail: median - 3* MAD

where MAD is the median absoulte deviation from the median.

percentiles:
• right tail: 95th percentile

• left tail: 5th percentile

You can select how far out to cap the maximum or minimum values with the
parameter 'fold'.

If capping_method='gaussian' fold gives the value to multiply the std.

If capping_method='iqr' fold is the value to multiply the IQR.

If capping_method='mad' fold is the value to multiply the MAD.

If capping_method='quantiles', fold is the percentile on each tail that
should be censored. For example, if fold=0.05, the limits will be the 5th and
95th percentiles. If fold=0.1, the limits will be the 10th and 90th percentiles.

The Winsorizer() works only with numerical variables. A list of variables can
be indicated. Alternatively, the Winsorizer() will select and cap all numerical
variables in the train set.

The transformer first finds the values at one or both tails of the distributions
(fit). The transformer then caps the variables (transform).

More details in the User Guide.

Parameters

capping_method: str, default=’gaussian’
Desired outlier detection method. Can be ‘gaussian’, ‘iqr’, ‘mad’, ‘quantiles’.

The transformer will find the maximum and / or minimum values beyond which
a data point will be considered an outlier using: ‘gaussian’: the Gaussian
approximation. ‘iqr’: the IQR proximity rule. ‘quantiles’: the percentiles.
‘mad’: the Gaussian approximation but using robust statistics.

10.3. API 465

feature_engine Documentation, Release 1.7.0

tail: str, default=’right’
Whether to look for outliers on the right, left or both tails of the distribution.
Can take ‘left’, ‘right’ or ‘both’.

fold: int or float, default=0.05 if `quantile`, or 3 otherwise.
The factor used to multiply the std, MAD or IQR to calculate the maximum
or minimum allowed values. Recommended values are 2 or 3 for the gaussian
approximation, 1.5 or 3 for the IQR proximity rule and 3 or 3.5 for MAD rule.

If capping_method='quantile', then 'fold' indicates the percentile. So
if fold=0.05, the limits will be the 95th and 5th percentiles.

Note: Outliers will be removed up to a maximum of the 20th percentiles on
both sides. Thus, when capping_method='quantile', then 'fold' takes
values between 0 and 0.20.

add_indicators: bool, default=False
Whether to add indicator variables to flag the capped outliers. If ‘True’, bi-
nary variables will be added to flag outliers on the left and right tails of the
distribution. One binary variable per tail, per variable.

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

Attributes

right_tail_caps_:
Dictionary with the maximum values beyond which a value will be considered
an outlier.

left_tail_caps_:
Dictionary with the minimum values beyond which a value will be considered
an outlier.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

466 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Examples

>>> import numpy as np
>>> import pandas as pd
>>> from feature_engine.outliers import Winsorizer
>>> np.random.seed(42)
>>>
→˓ X = pd.DataFrame(dict(x = np.random.normal(size = 10)))
>>> wz␣
→˓= Winsorizer(capping_method='mad', tail='both', fold=3)
>>> wz.fit(X)
>>> wz.transform(X)

x
0 0.496714
1 -0.138264
2 0.647689
3 1.523030
4 -0.234153
5 -0.234137
6 1.579213
7 0.767435
8 -0.469474
9 0.542560

>>> import numpy as np
>>> import pandas as pd
>>> from feature_engine.outliers import Winsorizer
>>> np.random.seed(42)
>>>
→˓ X = pd.DataFrame(dict(x = np.random.normal(size = 10)))
>>> wz␣
→˓= Winsorizer(capping_method='mad', tail='both', fold=3)
>>> wz.fit(X)
>>> wz.transform(X)

x
0 0.496714
1 -0.138264
2 0.647689
3 1.523030
4 -0.234153
5 -0.234137
6 1.579213
7 0.767435
8 -0.469474
9 0.542560

10.3. API 467

feature_engine Documentation, Release 1.7.0

Methods

fit: Learn the values that will replace the outliers.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Cap the variables.

fit(X, y=None)

Learn the values that should be used to replace outliers.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The training input
samples.

y
[pandas Series, default=None] y is not needed in this transformer. You can
pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

468 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

10.3. API 469

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

self
[estimator instance] Estimator instance.

transform(X)

Cap the variable values. Optionally, add outlier indicators.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features + n_ind]
The dataframe with the capped variables and indicators. The number of output
variables depends on the values for ‘tail’ and ‘add_indicators’: if passing
‘add_indicators=False’, will be equal to ‘n_features’, otherwise, will have an
additional indicator column per processed feature for each tail.

rtype
DataFrame ..

ArbitraryOutlierCapper

class feature_engine.outliers.ArbitraryOutlierCapper(max_capping_dict=None,
min_capping_dict=None,
missing_values='raise')

The ArbitraryOutlierCapper() caps the maximum or minimum values of a
variable at an arbitrary value indicated by the user.

You must provide the maximum or minimum values that will be used to cap
each variable in a dictionary containing the features as keys and the capping
values as values.

More details in the User Guide.

Parameters

max_capping_dict: dictionary, default=None
Dictionary containing the user specified capping values for the right tail of
the distribution of each variable to cap (maximum values).

min_capping_dict: dictionary, default=None
Dictionary containing user specified capping values for the eft tail of the
distribution of each variable to cap (minimum values).

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

470 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

Attributes

right_tail_caps_:
Dictionary with the maximum values beyond which a value will be considered
an outlier.

left_tail_caps_:
Dictionary with the minimum values beyond which a value will be considered
an outlier.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.outliers import ArbitraryOutlierCapper
>>> X = pd.DataFrame(dict(x1 = [1,2,3,4,5,6,7,8,9,10]))
>>> aoc␣
→˓= ArbitraryOutlierCapper(max_capping_dict=dict(x1 = 8),
>>> ␣
→˓ min_capping_dict=dict(x1 = 2))
>>> aoc.fit(X)
>>> aoc.transform(X)

x1
0 2
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 8
9 8

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Cap the variables.

10.3. API 471

feature_engine Documentation, Release 1.7.0

fit(X, y=None)

This transformer does not learn any parameter.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples.

y: pandas Series, default=None
y is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

472 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Cap the variable values.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to be transformed.

10.3. API 473

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

X_new: pandas dataframe of shape = [n_samples, n_features]
The dataframe with the capped variables.

rtype
DataFrame ..

OutlierTrimmer

class feature_engine.outliers.OutlierTrimmer(capping_method='gaussian', tail='right', fold=3,
variables=None, missing_values='raise')

The OutlierTrimmer() removes observations with outliers from the dataset.

The OutlierTrimmer() first calculates the maximum and /or minimum values
beyond which a value will be considered an outlier, and thus removed.

The extreme values beyond which an observation is considered an outlier are
determined using:

• a Gaussian approximation

• the inter-quantile range proximity rule (IQR)

• MAD-median rule (MAD)

• percentiles

Gaussian limits:
• right tail: mean + 3* std

• left tail: mean - 3* std

IQR limits:
• right tail: 75th quantile + 3* IQR

• left tail: 25th quantile - 3* IQR

where IQR is the inter-quartile range: 75th quantile - 25th quantile.

MAD limits:
• right tail: median + 3* MAD

• left tail: median - 3* MAD

where MAD is the median absoulte deviation from the median.

percentiles:
• right tail: 95th percentile

• left tail: 5th percentile

You can select how far out to cap the maximum or minimum values with the
parameter 'fold'.

If capping_method='gaussian' fold gives the value to multiply the std.

If capping_method='iqr' fold is the value to multiply the IQR.

If capping_method='mad' fold is the value to multiply the MAD.

474 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

If capping_method='quantiles', fold is the percentile on each tail that
should be censored. For example, if fold=0.05, the limits will be the 5th and
95th percentiles. If fold=0.1, the limits will be the 10th and 90th percentiles.

The OutlierTrimmer() works only with numerical variables. A list of variables
can be indicated. Alternatively, it will select all numerical variables.

The transformer first finds the values at one or both tails of the distribu-
tions (fit). The transformer then removes observations with outliers from the
dataframe (transform).

More details in the User Guide.

Parameters

capping_method: str, default=’gaussian’
Desired outlier detection method. Can be ‘gaussian’, ‘iqr’, ‘mad’, ‘quantiles’.

The transformer will find the maximum and / or minimum values beyond which
a data point will be considered an outlier using: ‘gaussian’: the Gaussian
approximation. ‘iqr’: the IQR proximity rule. ‘quantiles’: the percentiles.
‘mad’: the Gaussian approximation but using robust statistics.

tail: str, default=’right’
Whether to look for outliers on the right, left or both tails of the distribution.
Can take ‘left’, ‘right’ or ‘both’.

fold: int or float, default=0.05 if `quantile`, or 3 otherwise.
The factor used to multiply the std, MAD or IQR to calculate the maximum
or minimum allowed values. Recommended values are 2 or 3 for the gaussian
approximation, 1.5 or 3 for the IQR proximity rule and 3 or 3.5 for MAD rule.

If capping_method='quantile', then 'fold' indicates the percentile. So
if fold=0.05, the limits will be the 95th and 5th percentiles.

Note: Outliers will be removed up to a maximum of the 20th percentiles on
both sides. Thus, when capping_method='quantile', then 'fold' takes
values between 0 and 0.20.

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

Attributes

right_tail_caps_:
Dictionary with the maximum values beyond which a value will be considered
an outlier.

left_tail_caps_:
Dictionary with the minimum values beyond which a value will be considered
an outlier.

10.3. API 475

feature_engine Documentation, Release 1.7.0

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> from feature_engine.outliers import OutlierTrimmer
>>> X = pd.DataFrame(dict(x = [0.49671,
>>> -0.1382,
>>> 0.64768,
>>> 1.52302,
>>> -0.2341,
>>> -17.2341,
>>> 1.57921,
>>> 0.76743,
>>> -0.4694,
>>> 0.54256]))
>>> ot = OutlierTrimmer(capping_
→˓method='gaussian', tail='left', fold=3)
>>> ot.fit(X)
>>> ot.transform(X)

x
0 0.49671
1 -0.13820
2 0.64768
3 1.52302
4 -0.23410
5 -17.23410
6 1.57921
7 0.76743
8 -0.46940
9 0.54256

>>> import pandas as pd
>>> from feature_engine.outliers import OutlierTrimmer
>>> X = pd.DataFrame(dict(x = [0.49671,
>>> -0.1382,
>>> 0.64768,
>>> 1.52302,
>>> -0.2341,
>>> -17.2341,
>>> 1.57921,
>>> 0.76743,
>>> -0.4694,
>>> 0.54256]))
>>> ot = OutlierTrimmer(capping_
→˓method='mad', tail='left', fold=3)

(continues on next page)

476 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

>>> ot.fit(X)
>>> ot.transform(X)

x
0 0.49671
1 -0.13820
2 0.64768
3 1.52302
4 -0.23410
6 1.57921
7 0.76743
8 -0.46940
9 0.54256

Methods

fit: Find maximum and minimum values.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Remove outliers.
transform_x_y: Remove rows with outliers from X set and y.

fit(X, y=None)

Learn the values that should be used to replace outliers.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The training input
samples.

y
[pandas Series, default=None] y is not needed in this transformer. You can
pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

10.3. API 477

feature_engine Documentation, Release 1.7.0

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

478 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Remove observations with outliers from the dataframe.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The data to be trans-
formed.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features]
The dataframe without outlier observations.

rtype
DataFrame ..

transform_x_y(X, y)

Transform, align and adjust both X and y based on the transformations applied
to X, ensuring that they correspond to the same set of rows if any were
removed from X.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The dataframe to transform.

y: pandas Series or Dataframe of length = n_samples
The target variable to transform. Can be multi-output.

Returns

10.3. API 479

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

X_new: pandas dataframe
The transformed dataframe of shape [n_samples - n_rows, n_features]. It may
contain less rows than the original dataset.

y_new: pandas Series or DataFrame
The transformed target variable of length [n_samples - n_rows]. It contains
as many rows as those left in X_new.

Variance Stabilizing Transformations

Feature-engine’s variable transformers transform numerical variables with var-
ious mathematical transformations.

LogTransformer

class feature_engine.transformation.LogTransformer(variables=None, base='e')

The LogTransformer() applies the natural logarithm or the base 10 logarithm
to numerical variables. The natural logarithm is the logarithm in base e.

The LogTransformer() only works with positive values. If the variable contains
a zero or a negative value the transformer will return an error.

A list of variables can be passed as an argument. Alternatively, the transformer
will automatically select and transform all variables of type numeric.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

base: string, default=’e’
Indicates if the natural or base 10 logarithm should be applied. Can take
values ‘e’ or ‘10’.

Attributes

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

480 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Examples

>>> import numpy as np
>>> import pandas as pd
>>>␣
→˓from feature_engine.transformation import LogTransformer
>>> np.random.seed(42)
>>> X =␣
→˓pd.DataFrame(dict(x = np.random.lognormal(size = 100)))
>>> lt = LogTransformer()
>>> lt.fit(X)
>>> X = lt.transform(X)
>>> X.head()

x
0 0.496714
1 -0.138264
2 0.647689
3 1.523030
4 -0.234153

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Transform the variables using the logarithm.

fit(X, y=None)

This transformer does not learn parameters.

Selects the numerical variables and determines whether the logarithm can be
applied on the selected variables, i.e., it checks that the variables are positive.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features].
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

10.3. API 481

feature_engine Documentation, Release 1.7.0

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

482 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the data back to the original representation.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_tr: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Transform the variables with the logarithm.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

10.3. API 483

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

X_new: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

LogCpTransformer

class feature_engine.transformation.LogCpTransformer(variables=None, base='e', C='auto')

The LogCpTransformer() applies the transformation log(x + C), where C is a
positive constant, to the input variable. It applies the natural logarithm or the
base 10 logarithm, where the natural logarithm is logarithm in base e.

The logarithm can only be applied to numerical non-negative values. If the
variable contains a zero or a negative value after adding a constant C, the trans-
former will return an error.

A list of variables can be passed as an argument. Alternatively, the transformer
will automatically select and transform all variables of type numeric.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will find
and select all numerical variables. If C is a dictionary, then this parameter is
ignored and the variables to transform are selected from the dictionary keys.

base: string, default=’e’
Indicates if the natural or base 10 logarithm should be applied. Can take
values ‘e’ or ‘10’.

C: “auto”, int or dict, default=”auto”
The constant C to add to the variable before the logarithm, i.e., log(x + C).

• If int, then log(x + C)

• If “auto”, then C = abs(min(x)) + 1

• If dict, dictionary mapping the constant C to apply to each variable.

Note, when C is a dictionary, the parameter variables is ignored.

Attributes

variables_:
The group of variables that will be transformed.

C_:
The constant C to add to each variable. If C = “auto” a dictionary with C =
abs(min(variable)) + 1.

feature_names_in_:
List with the names of features seen during fit.

484 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import numpy as np
>>> import pandas as pd
>>> from␣
→˓feature_engine.transformation import LogCpTransformer
>>> np.random.seed(42)
>>> X =␣
→˓pd.DataFrame(dict(x = np.random.lognormal(size = 100)))
>>> lct = LogCpTransformer()
>>> lct.fit(X)
>>> X = lct.transform(X)
>>> X.head()

x
0 0.944097
1 0.586701
2 1.043204
3 1.707159
4 0.541405

Methods

fit: Learn the constant C.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Transform the variables with the logarithm of x plus C.

fit(X, y=None)

Learn the constant C to add to the variable before the logarithm transformation
if C=”auto”.

Select the numerical variables or check that the variables entered by the user
are numerical. Then check that the selected variables are positive after addition
of C.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features].
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

10.3. API 485

feature_engine Documentation, Release 1.7.0

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

486 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the data back to the original representation.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_tr: Pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Transform the variables with the logarithm of x plus a constant C.

10.3. API 487

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_new: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

ReciprocalTransformer

class feature_engine.transformation.ReciprocalTransformer(variables=None)

The ReciprocalTransformer() applies the reciprocal transformation 1 / x to
numerical variables.

The ReciprocalTransformer() only works with numerical variables with non-
zero values. If a variable contains the value 0, the transformer will raise an
error.

A list of variables can be passed as an argument. Alternatively, the transformer
will automatically select and transform all numerical variables.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

Attributes

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

488 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

Examples

>>> import numpy as np
>>> import pandas as pd
>>> from feature_
→˓engine.transformation import ReciprocalTransformer
>>> np.random.seed(42)
>>> X = pd.DataFrame(dict(x␣
→˓= 10 - np.random.exponential(size = 100)))
>>> rt = ReciprocalTransformer()
>>> rt.fit(X)
>>> X = rt.transform(X)
>>> X.head()

x
0 0.104924
1 0.143064
2 0.115164
3 0.110047
4 0.101726

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Apply the reciprocal 1 / x transformation.

fit(X, y=None)

This transformer does not learn parameters.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features].
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

10.3. API 489

feature_engine Documentation, Release 1.7.0

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

490 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the data back to the original representation.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_tr: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Apply the reciprocal 1 / x transformation.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

10.3. API 491

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

X_new: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

ArcsinTransformer

class feature_engine.transformation.ArcsinTransformer(variables=None)

The ArcsinTransformer() applies the arcsin transformation to numerical vari-
ables.

The arcsin transformation, also called arcsin square root transformation, or an-
gular transformation, takes the form of arcsin(sqrt(x)) where x is a real number
between 0 and 1.

The arcsin square root transformation helps in dealing with probabilities, per-
cents, and proportions. It aims to stabilize the variance of the variable and
return more evenly distributed (Gaussian looking) values.

The ArcsinTransformer() only works with numerical variables which values
are between 0 and 1. If a variable contains values outside of this range, the
transformer will raise an error.

A list of variables can be passed as an argument. Alternatively, the transformer
will automatically select and transform all numerical variables.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

Attributes

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

492 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

Examples

>>> import numpy as np
>>> import pandas as pd
>>> from␣
→˓feature_engine.transformation import ArcsinTransformer
>>> np.random.seed(42)
>>> X =␣
→˓pd.DataFrame(dict(x = np.random.beta(1, 1, size = 100)))
>>> ast = ArcsinTransformer()
>>> ast.fit(X)
>>> X = ast.transform(X)
>>> X.head()

x
0 0.785437
1 0.253389
2 0.144664
3 0.783236
4 0.650777

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Apply the arcsin transformation.

fit(X, y=None)

This transformer does not learn parameters.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features].
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

10.3. API 493

feature_engine Documentation, Release 1.7.0

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

494 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the data back to the original representation.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_tr: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Apply the arcsin transformation.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

10.3. API 495

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

X_new: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

PowerTransformer

class feature_engine.transformation.PowerTransformer(variables=None, exp=0.5)

The PowerTransformer() applies power or exponential transformations to
numerical variables.

The PowerTransformer() works only with numerical variables.

A list of variables can be passed as an argument. Alternatively, the transformer
will automatically select and transform all numerical variables.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

exp: float or int, default=0.5
The power (or exponent).

Attributes

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import numpy as np
>>> import pandas as pd
>>> from␣
→˓feature_engine.transformation import PowerTransformer
>>> np.random.seed(42)
>>> X =␣
→˓pd.DataFrame(dict(x = np.random.lognormal(size = 100)))
>>> pt = PowerTransformer()
>>> pt.fit(X)

(continues on next page)

496 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

(continued from previous page)

>>> X = pt.transform(X)
>>> X.head()

x
0 1.281918
1 0.933203
2 1.382432
3 2.141518
4 0.889517

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Apply the power transformation to the variables.

fit(X, y=None)

This transformer does not learn parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

10.3. API 497

feature_engine Documentation, Release 1.7.0

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the data back to the original representation.

498 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_tr: pandas Dataframe
The dataframe with the power transformed variables.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Apply the power transformation to the variables.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_new: pandas Dataframe
The dataframe with the power transformed variables.

rtype
DataFrame ..

10.3. API 499

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

BoxCoxTransformer

class feature_engine.transformation.BoxCoxTransformer(variables=None)

The BoxCoxTransformer() applies the BoxCox transformation to numerical
variables.

The Box-Cox transformation is defined as:

• T(Y)=(Y exp()1)/ if !=0

• log(Y) otherwise

where Y is the response variable and is the transformation parameter. varies,
typically from -5 to 5. In the transformation, all values of are considered and
the optimal value for a given variable is selected.

The BoxCox transformation implemented by this transformer is that of
SciPy.stats: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
boxcox.html

The BoxCoxTransformer() works only with numerical positive variables
(>=0).

A list of variables can be passed as an argument. Alternatively, the transformer
will automatically select and transform all numerical variables.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

Attributes

lambda_dict_:
Dictionary with the best BoxCox exponent per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

500 Chapter 10. Table of Contents

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html

feature_engine Documentation, Release 1.7.0

References

[1]

Examples

>>> import numpy as np
>>> import pandas as pd
>>> from␣
→˓feature_engine.transformation import BoxCoxTransformer
>>> np.random.seed(42)
>>> X =␣
→˓pd.DataFrame(dict(x = np.random.lognormal(size = 100)))
>>> bct = BoxCoxTransformer()
>>> bct.fit(X)
>>> X = bct.transform(X)
>>> X.head()

x
0 0.505485
1 -0.137595
2 0.662654
3 1.607518
4 -0.232237

Methods

fit: Learn the optimal lambda for the BoxCox transformation.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Apply the BoxCox transformation.

fit(X, y=None)

Learn the optimal lambda for the BoxCox transformation.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

10.3. API 501

feature_engine Documentation, Release 1.7.0

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

502 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the data back to the original representation.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be inverse transformed.

Returns

X_new: pandas dataframe
The dataframe with the original variables.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Apply the BoxCox transformation.

Parameters

10.3. API 503

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_new: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

YeoJohnsonTransformer

class feature_engine.transformation.YeoJohnsonTransformer(variables=None)

The YeoJohnsonTransformer() applies the Yeo-Johnson transformation to the
numerical variables.

The Yeo-Johnson transformation implemented by this transformer is that of
SciPy.stats: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
yeojohnson.html

The YeoJohnsonTransformer() works only with numerical variables.

A list of variables can be passed as an argument. Alternatively, the transformer
will automatically select and transform all numerical variables.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

Attributes

lambda_dict_
Dictionary containing the best lambda for the Yeo-Johnson per variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

504 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html

feature_engine Documentation, Release 1.7.0

References

[1], [2]

Examples

>>> import numpy as np
>>> import pandas as pd
>>> from feature_
→˓engine.transformation import YeoJohnsonTransformer
>>> np.random.seed(42)
>>> X = pd.DataFrame(dict(x␣
→˓= np.random.lognormal(size = 100) - 10))
>>> yjt = YeoJohnsonTransformer()
>>> yjt.fit(X)
>>> X = yjt.transform(X)
>>> X.head()

x
0 -267042.906453
1 -444357.138990
2 -221626.115742
3 -23647.632651
4 -467264.993249

Methods

fit: Learn the optimal lambda for the Yeo-Johnson transformation.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Apply the Yeo-Johnson transformation.

fit(X, y=None)

Learn the optimal lambda for the Yeo-Johnson transformation.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

10.3. API 505

feature_engine Documentation, Release 1.7.0

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

506 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the data back to the original representation.

Parameters

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X_tr: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Apply the Yeo-Johnson transformation.

Parameters

10.3. API 507

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

X: Pandas DataFrame of shape = [n_samples, n_features]
The data to be transformed.

Returns

X: pandas dataframe
The dataframe with the transformed variables.

rtype
DataFrame ..

Transformers in other Libraries

These and additional transformations can be obtained with the following
Scikit-learn classes:

• FunctionTransformer

• PowerTransformer

Note that Scikit-klearn classes return Numpy arrays and are applied to the en-
tire dataset.

10.3.2 Creation

Feature Creation

Feature-engine’s creation transformers create and add new features to the
dataframe by either combining or transforming existing features.

MathFeatures

class feature_engine.creation.MathFeatures(variables, func, new_variables_names=None,
missing_values='raise', drop_original=False)

MathFeatures(() applies functions across multiple features returning one or
more additional features as a result. It uses pandas.agg() to create the
features, setting axis=1.

For supported aggregation functions, see pandas documentation.

Note that if some of the variables have missing data and
missing_values='ignore', the value will be ignored in the compu-
tation. To be clear, if variables A, B and C, have values 10, 20 and NA, and
we perform the sum, the result will be A + B = 30.

More details in the User Guide.

Parameters

variables: list
The list of input variables. Variables must be numerical and there must be at
least 2 different variables in the list.

508 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.agg.html

feature_engine Documentation, Release 1.7.0

func: function, string, list
Functions to use for aggregating the data. Same functionality as parameter
func in pandas.agg(). If a function, it must either work when passed a
DataFrame or when passed to DataFrame.apply. Accepted combinations are:

• function

• string function name

• list of functions and/or function names, e.g. [np.sum, ‘mean’]

Each function will result in a new variable that will be added to the transformed
dataset.

new_variables_names: list, default=None
Names of the new variables. If passing a list with names (recommended),
enter one name per function. If None, the transformer will assign arbitrary
names, starting with the function and followed by the variables separated by
_.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

drop_original: bool, default=False
If True, the original variables to transform will be dropped from the dataframe.

Attributes

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Notes

Although the transformer allows us to combine any features with any functions,
we recommend using it to create features based on domain knowledge. Typical
examples in finance are:

• Sum debt across financial products, i.e., credit cards, to obtain the total debt.

• Take the average payments to various financial products.

• Find the minimum payment done at any one month.

In insurance, we can sum the damage to various parts of a car to obtain the
total damage.

10.3. API 509

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> from feature_engine.creation import MathFeatures
>>> X = pd.DataFrame(dict(x1 = [1,2,3], x2 = [4,5,6]))
>>>␣
→˓mf = MathFeatures(variables = ["x1","x2"], func = "sum")
>>> mf.fit(X)
>>> mf.transform(X)

x1 x2 sum_x1_x2
0 1 4 5
1 2 5 7
2 3 6 9

>>> mf␣
→˓= MathFeatures(variables = ["x1","x2"], func = "prod")
>>> mf.fit(X)
>>> mf.transform(X)

x1 x2 prod_x1_x2
0 1 4 4
1 2 5 10
2 3 6 18

>>> mf␣
→˓= MathFeatures(variables = ["x1","x2"], func = "mean")
>>> mf.fit(X)
>>> mf.transform(X))

x1 x2 mean_x1_x2
0 1 4 2.5
1 2 5 3.5
2 3 6 4.5

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Create new features.

fit(X, y=None)

This transformer does not learn parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples.

510 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

y: pandas Series, or np.array. Defaults to None.
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

10.3. API 511

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Create and add new variables.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: Pandas dataframe, shape = [n_samples, n_features + n_operations]
The input dataframe plus the new variables.

rtype
DataFrame ..

512 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

RelativeFeatures

class feature_engine.creation.RelativeFeatures(variables, reference, func, fill_value=None,
missing_values='ignore', drop_original=False)

RelativeFeatures() applies basic mathematical operations between a group of
variables and one or more reference features. It adds the resulting features to
the dataframe.

In other words, RelativeFeatures() adds, subtracts, multiplies, performs the
division, true division, floor division, module or exponentiation of a group of
features to / by a group of reference variables. The features resulting from
these functions are added to the dataframe.

This transformer works only with numerical variables. It uses the pandas
methods pd.DataFrme.add, pd.DataFrme.sub, pd.DataFrme.mul, pd.
DataFrme.div, pd.DataFrme.truediv, pd.DataFrme.floordiv, pd.
DataFrme.mod and pd.DataFrme.pow. Find out more in pandas documen-
tation.

More details in the User Guide.

Parameters

variables: list
The list of numerical variables to combine with the reference variables.

reference: list
The list of reference variables that will be added, subtracted, multiplied, used
as denominator for division and module, or exponent for the exponentiation.

func: list
The list of functions to be used in the transformation. The list can contain one
or more of the following strings: ‘add’, ‘mul’,’sub’, ‘div’, truediv, ‘floordiv’,
‘mod’, ‘pow’.

fill_value: int, float, default=None
When dividing by zero, this value is used in place of infinity. If None, then an
error will be raised when dividing by zero.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

drop_original: bool, default=False
If True, the original variables to transform will be dropped from the dataframe.

Attributes

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

10.3. API 513

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.add.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.add.html

feature_engine Documentation, Release 1.7.0

Notes

Although the transformer allows us to combine any feature with any function,
we recommend its use to create domain knowledge variables. Typical exam-
ples within the financial sector are:

• Ratio between income and debt to create the debt_to_income_ratio.

• Subtraction of rent from income to obtain the disposable_income.

Examples

>>> import pandas as pd
>>> from feature_engine.creation import RelativeFeatures
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,3], x2 = [4,5,6], x3 = [3,4,5]))
>>> rf = RelativeFeatures(variables = ["x1","x2"],
>>> reference = ["x3"],
>>> func = ["div"])
>>> rf.fit(X)
>>> rf.transform(X)

x1 x2 x3 x1_div_x3 x2_div_x3
0 1 4 3 0.333333 1.333333
1 2 5 4 0.500000 1.250000
2 3 6 5 0.600000 1.200000

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Create new features.

fit(X, y=None)

This transformer does not learn parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples.

y: pandas Series, or np.array. Defaults to None.
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

514 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

10.3. API 515

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Add new features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: Pandas dataframe
The input dataframe plus the new variables.

rtype
DataFrame ..

516 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

CyclicalFeatures

class feature_engine.creation.CyclicalFeatures(variables=None, max_values=None,
drop_original=False)

CyclicalFeatures() applies cyclical transformations to numerical variables,
returning 2 new features per variable, according to:

• var_sin = sin(variable * (2. * pi / max_value))

• var_cos = cos(variable * (2. * pi / max_value))

where max_value is the maximum value in the variable, and pi is 3.14. . .

CyclicalFeatures() works only with numerical variables. A list of variables to
transform can be passed as an argument. Alternatively, the transformer will
automatically select and transform all numerical variables.

Missing data should be imputed before using this transformer.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

max_values: dict, default=None
A dictionary with the maximum value of each variable to transform. Use-
ful when the maximum value is not present in the dataset. If None, the
transformer will automatically find the maximum value of each variable.

drop_original: bool, default=False
If True, the original variables to transform will be dropped from the dataframe.

Attributes

max_values_:
The feature’s maximum values.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

10.3. API 517

feature_engine Documentation, Release 1.7.0

References

Debaditya Chakraborty & Hazem Elzarka (2019), Advanced machine learn-
ing techniques for building performance simulation: a comparative analysis,
Journal of Building Performance Simulation, 12:2, 193-207

Examples

>>> import pandas as pd
>>> from feature_engine.creation import CyclicalFeatures
>>> X = pd.DataFrame(dict(x= [1,4,3,3,4,2,1,2]))
>>> cf = CyclicalFeatures()
>>> cf.fit(X)
>>> cf.transform(X)

x x_sin x_cos
0 1 1.000000e+00 6.123234e-17
1 4 -2.449294e-16 1.000000e+00
2 3 -1.000000e+00 -1.836970e-16
3 3 -1.000000e+00 -1.836970e-16
4 4 -2.449294e-16 1.000000e+00
5 2 1.224647e-16 -1.000000e+00
6 1 1.000000e+00 6.123234e-17
7 2 1.224647e-16 -1.000000e+00

Methods

fit: Learns the variable’s maximum values.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Create new features.

fit(X, y=None)

Learns the maximum value of each variable.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

518 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

10.3. API 519

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Creates new features using the cyclical transformations.

Parameters

X: Pandas DataFrame of shame = [n_samples, n_features]
The data to be transformed.

Returns

X_new: Pandas dataframe.
The original dataframe plus the additional features.

Transformers in other Libraries

Check also the following transformer from Scikit-learn:

• PolynomialFeatures

• SplineTransformer

520 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.SplineTransformer.html

feature_engine Documentation, Release 1.7.0

Datetime Features

Feature-engine’s datetime transformers are able to extract a wide variety of
datetime features from existing datetime or object-like data.

DatetimeFeatures

class feature_engine.datetime.DatetimeFeatures(variables=None, features_to_extract=None,
drop_original=True, missing_values='raise',
dayfirst=False, yearfirst=False, utc=None,
format=None)

DatetimeFeatures extracts date and time features from datetime variables,
adding new columns to the dataset. DatetimeFeatures can extract datetime
information from existing datetime or object-like variables or from the
dataframe index.

DatetimeFeatures uses pandas.to_datetime to convert object variables to
datetime and pandas.dt to extract the features from datetime.

The transformer supports the extraction of the following features:

• “month”

• “quarter”

• “semester”

• “year”

• “week”

• “day_of_week”

• “day_of_month”

• “day_of_year”

• “weekend”

• “month_start”

• “month_end”

• “quarter_start”

• “quarter_end”

• “year_start”

• “year_end”

• “leap_year”

• “days_in_month”

• “hour”

• “minute”

• “second”

More details in the User Guide.

10.3. API 521

feature_engine Documentation, Release 1.7.0

Parameters

variables: str, list, default=None
List with the variables from which date and time information will be extracted.
If None, the transformer will find and select all datetime variables, including
variables of type object that can be converted to datetime. If “index”, the
transformer will extract datetime features from the index of the dataframe.

features_to_extract: list, default=None
The list of date features to extract. If None, the following features will be
extracted: “month”, “year”, “day_of_week”, “day_of_month”, “hour”,
“minute” and “second”. If “all”, all supported features will be extracted.
Alternatively, you can pass a list with the names of the features you want to
extract.

drop_original: bool, default=”True”
If True, the original datetime variables will be dropped from the dataframe.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If ‘raise’ the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If ‘ignore’, missing data will be ignored when performing
the feature extraction. Missing data is only evaluated in the variables that will
be used to derive the date and time features. If features are derived from the
dataframe index, missing data will be checked in the index.

dayfirst: bool, default=”False”
Specify a date parse order if arg is str or is list-like. If True, parses dates
with the day first, e.g. 10/11/12 is parsed as 2012-11-10. Same as in
pandas.to_datetime.

yearfirst: bool, default=”False”
Specify a date parse order if arg is str or is list-like. Same as in pandas.
to_datetime.

• If True parses dates with the year first, e.g. 10/11/12 is parsed as 2010-11-12.

• If both dayfirst and yearfirst are True, yearfirst is preceded.

utc: bool, default=None
Return UTC DatetimeIndex if True (converting any tz-aware date-
time.datetime objects as well). Same as in pandas.to_datetime.

format: str, default None
The strftime to parse time, e.g. “%d/%m/%Y”. Check pandas
to_datetime() for more information on choices. If you have vari-
ables with different formats pass “mixed”, to infer the format for each element
individually. This is risky, and you should probably use it along with dayfirst,
according to pandas’ documentation.

Attributes

variables_:
List of variables from which date and time features will be extracted. If None,
features will be extracted from the dataframe index.

features_to_extract_:
The date and time features that will be extracted from each variable or the

522 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

index.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

pandas.to_datetime
pandas.dt

Examples

>>> import pandas as pd
>>> from feature_engine.datetime import DatetimeFeatures
>>> X = pd.DataFrame(dict(date␣
→˓= ["2022-09-18", "2022-10-27", "2022-12-24"]))
>>> dtf = DatetimeFeatures(features_
→˓to_extract = ["year", "month", "day_of_month"])
>>> dtf.fit(X)
>>> dtf.transform(X)

date_year date_month date_day_of_month
0 2022 9 18
1 2022 10 27
2 2022 12 24

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Add the date and time features.

fit(X, y=None)

This transformer does not learn any parameter.

Finds datetime variables or checks that the variables selected by the user can
be converted to datetime.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, default=None
It is not needed in this transformer. You can pass y or None.

10.3. API 523

https://pandas.pydata.org/docs/reference/api/pandas.to_datetime.html#pandas.to_datetime

feature_engine Documentation, Release 1.7.0

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

524 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Extract the date and time features and add them to the dataframe.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: Pandas dataframe, shape = [n_samples, n_features x n_df_features]
The dataframe with the original variables plus the new variables.

rtype
DataFrame ..

10.3. API 525

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

DatetimeSubtraction

class feature_engine.datetime.DatetimeSubtraction(variables=None, reference=None,
new_variables_names=None, output_unit='D',
missing_values='ignore', drop_original=False,
dayfirst=False, yearfirst=False, utc=None,
format=None)

DatetimeSubtraction() applies datetime subtraction between a group of date-
time variables and one or more datetime features, adding the resulting
variables to the dataframe.

DatetimeSubtraction() works with variables cast as datetime or object. It sub-
tracts the variables listed in the parameter reference from those listed in the
parameter variables.

More details in the User Guide.

Parameters

variables: list
The list of datetime variables that the reference variables will be subtracted
from (left side of the subtraction operation).

reference: list
The list of datetime reference variables that will be subtracted from
variables (right side of the subtraction operation).

new_variables_names: list, default=None
Names of the new variables. You have the option to pass a list with the names
you’d like to assing to the new variables. If None, the transformer will assign
arbitrary names.

output_unit: string, default=’D’
The string representation of the output unit of the datetime differences. The
default is D for day. This parameter is passed to numpy.timedelta64. Other
possible values are Y for year, M for month, W for week, h for hour, m for
minute, s for second, ms for millisecond, us or s for microsecond, ns for
nanosecond, ps for picosecond, fs for femtosecond and as for attosecond.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

drop_original: bool, default=”False”
If True, the variables listed in variables and reference will be dropped
from the dataframe after the computation of the new features.

dayfirst: bool, default=”False”
Specify a date parse order if arg is str or is list-like. If True, parses dates
with the day first, e.g. 10/11/12 is parsed as 2012-11-10. Same as in
pandas.to_datetime.

yearfirst: bool, default=”False”
Specify a date parse order if arg is str or is list-like. Same as in pandas.
to_datetime.

526 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

• If True parses dates with the year first, e.g. 10/11/12 is parsed as 2010-11-12.

• If both dayfirst and yearfirst are True, yearfirst is preceded.

utc: bool, default=None
Return UTC DatetimeIndex if True (converting any tz-aware date-
time.datetime objects as well). Same as in pandas.to_datetime.

format: str, default None
The strftime to parse time, e.g. “%d/%m/%Y”. Check pandas
to_datetime() for more information on choices. If you have vari-
ables with different formats pass “mixed”, to infer the format for each element
individually. This is risky, and you should probably use it along with dayfirst,
according to pandas’ documentation.

Attributes

variables_:
The list with datetime variables from which the variables in reference
will be substracted. It is created after the transformer corroborates that the
variables in variables are, or can be parsed to datetime.

reference_:
The list with the datetime variables that will be subtracted from variables_.
It is created after the transformer corroborates that the variables in reference
are, or can be parsed to datetime.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>>
→˓ from feature_engine.datetime import DatetimeSubtraction
>>> X = pd.DataFrame({
>>>␣
→˓ "date1": ["2022-09-18", "2022-10-27", "2022-12-24"],
>>> ␣
→˓ "date2": ["2022-08-18", "2022-08-27", "2022-06-24"]})
>>> dtf = DatetimeSubtraction(variables=[
→˓"date1"], reference=["date2"])
>>> dtf.fit(X)
>>> dtf.transform(X)

date1 date2 date1_sub_date2
0 2022-09-18 2022-08-18 31.0
1 2022-10-27 2022-08-27 61.0
2 2022-12-24 2022-06-24 183.0

10.3. API 527

feature_engine Documentation, Release 1.7.0

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Create new features.

fit(X, y=None)

This transformer does not learn any parameter.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples. Can be the entire dataframe, not just the variables
to transform.

y: pandas Series, or np.array. Default=None.
It is not needed in this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

528 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

10.3. API 529

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

self
[estimator instance] Estimator instance.

transform(X)

Add new features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: Pandas dataframe
The input dataframe plus the new variables.

rtype
DataFrame ..

10.3.3 Selection

Feature Selection

Feature-engine’s feature selection transformers are used to drop subsets of vari-
ables with low predictive value. Feature-engine hosts selection algorithms that
are, in general, not available in other libraries. These algorithms have been
gathered from data science competitions or used in the industry.

Feature-engine’s transformers select features based on different strategies.
Some algorithms remove constant or quasi-constant features. Some algorithms
remove duplicated or correlated variables. Some algorithms select features
based on a machine learning model performance. Some transformers imple-
ment selection procedures used in finance. And some transformers support
functionality that has been developed in the industry or in data science com-
petitions.

In the following tables you find the algorithms that belong to each category.

Selection based on feature characteristics

Transformer Categorical vari-
ables

Allows
NA

Description

DropFeatures() Drops arbitrary features determined by user
DropConstantFeatures() Drops constant and quasi-constant features
DropDuplicateFeatures() Drops features that are duplicated
DropCorrelatedFeatures()× Drops features that are correlated
SmartCorrelatedSelection()× From a correlated feature group drops the less use-

ful features

530 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

Selection based on a machine learning model

Transformer Categorical
variables

Allows
NA

Description

SelectBySingleFeaturePerformance()× × Selects features based on single feature model
performance

RecursiveFeatureElimination()× × Removes features recursively by evaluating
model performance

RecursiveFeatureAddition() × × Adds features recursively by evaluating model
performance

Selection methods commonly used in finance

Transformer Categorical vari-
ables

Allows
NA

Description

DropHighPSIFeatures() × Drops features with high Population Stability
Index

SelectByInformationValue() x Drops features with low information value

Alternative feature selection methods

Transformer Categorical
variables

Allows
NA

Description

SelectByShuffling() × × Selects features if shuffling their values causes a drop
in model performance

SelectByTargetMeanPerformance() × Using the target mean as performance proxy, selects
high performing features

ProbeFeatureSelection() × × Selects features who importance is greater than those
of random variables

DropFeatures

class feature_engine.selection.DropFeatures(features_to_drop)

DropFeatures() drops a list of variables indicated by the user from the
dataframe.

More details in the User Guide.

Parameters

features_to_drop: str or list
Variable(s) to be dropped from the dataframe

Attributes

features_to_drop_:
The features that will be dropped.

10.3. API 531

feature_engine Documentation, Release 1.7.0

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> from feature_engine.selection import DropFeatures
>>> X = pd.DataFrame(dict(x1 = [1,2,3,4],
>>> x2 = ["a", "a", "b", "c"],
>>> ␣
→˓ x3 = [True, False, False, True]))
>>> df = DropFeatures(features_to_drop=["x2"])
>>> df.fit_transform(X)

x1 x3
0 1 True
1 2 False
2 3 False
3 4 True

Methods

fit: This transformer does not learn any parameter.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_support: Get a mask, or integer index, of the features selected.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Drops indicated features.

fit(X, y=None)

This transformer does not learn any parameter.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The input dataframe

y
[pandas Series, default = None] y is not needed for this transformer. You can
pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

532 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

10.3. API 533

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

534 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

DropConstantFeatures

class feature_engine.selection.DropConstantFeatures(variables=None, tol=1, missing_values='raise',
confirm_variables=False)

DropConstantFeatures() drops constant and quasi-constant variables from a
dataframe. Constant variables show the same value in all the observations in
the dataset. Quasi-constant variables show the same value in almost all the
observations in the dataset.

This transformer works with numerical and categorical variables. The user
can indicate a list of variables to examine. Alternatively, the transformer will
evaluate all the variables in the dataset.

The transformer will first identify and store the constant and quasi-constant
variables. Next, the transformer will drop these variables from a dataframe.

More details in the User Guide.

Parameters

variables: list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
variables in the dataset.

tol: float,int, default=1
Threshold to detect constant/quasi-constant features. Variables showing the
same value in a percentage of observations greater than tol will be considered
constant / quasi-constant and dropped. If tol=1, the transformer removes
constant variables. Else, it will remove quasi-constant variables. For example,
if tol=0.98, the transformer will remove variables that show the same value in
98% of the observations.

missing_values: str, default=raises
Whether the missing values should be raised as error, ignored or included as
an additional value of the variable. Takes values ‘raise’, ‘ignore’, ‘include’.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

features_to_drop_:
List with constant and quasi-constant features.

10.3. API 535

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

variables_:
The variables that will be considered for the feature selection procedure.:

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

sklearn.feature_selection.VarianceThreshold

Notes

This transformer is a similar concept to the VarianceThreshold from Scikit-
learn, but it evaluates number of unique values instead of variance.

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.selection import DropConstantFeatures
>>> X = pd.DataFrame(dict(x1 = [1,1,1,1],
>>> x2 = ["a", "a", "b", "c"],
>>> x3 = [True, False, False, True]))
>>> dcf = DropConstantFeatures()
>>> dcf.fit_transform(X)

x2 x3
0 a True
1 a False
2 b False
3 c True

Additionally, you can set the Threshold for quasi-constant features:

>>> X = pd.DataFrame(dict(x1 = [1,1,1,1],
>>> x2 = ["a", "a", "b", "c"],
>>>
→˓ x3 = [True, False, False, False]))
>>> dcf = DropConstantFeatures(tol = 0.75)
>>> dcf.fit_transform(X)

x2
0 a
1 a
2 b
3 c

536 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold

feature_engine Documentation, Release 1.7.0

Methods

fit: Find constant and quasi-constant features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Remove constant and quasi-constant features.

fit(X, y=None)

Find constant and quasi-constant features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input dataframe.

y: None
y is not needed for this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

10.3. API 537

feature_engine Documentation, Release 1.7.0

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

538 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

DropDuplicateFeatures

class feature_engine.selection.DropDuplicateFeatures(variables=None, missing_values='ignore',
confirm_variables=False)

DropDuplicateFeatures() finds and removes duplicated features in a dataframe.

Duplicated features are identical features, regardless of the variable or column
name. If they show the same values for every observation, then they are con-
sidered duplicated.

10.3. API 539

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

This transformer works with numerical and categorical variables. The user
can indicate a list of variables to examine. Alternatively, the transformer will
evaluate all the variables in the dataset.

The transformer will first identify and store the duplicated variables. Next, the
transformer will drop these variables from a dataframe.

More details in the User Guide.

Parameters

variables: list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
variables in the dataset.

missing_values: str, default=ignore
Whether the missing values should be raised as error or ignored when deter-
mining correlation. Takes values ‘raise’ and ‘ignore’.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

features_to_drop_:
Set with the duplicated features that will be dropped.

duplicated_feature_sets_:
Groups of duplicated features. Each list is a group of duplicated features.

variables_:
The variables that will be considered for the feature selection procedure.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.selection import DropDuplicateFeatures
>>> X = pd.DataFrame(dict(x1 = [1,1,1,1],
>>> x2 = [1,1,1,1],
>>> x3 = [True, False, False, False]))
>>> ddf = DropDuplicateFeatures()
>>> ddf.fit_transform(X)

x1 x3
0 1 True
1 1 False
2 1 False
3 1 False

540 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Methods

fit: Find duplicated features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Remove duplicated features.

fit(X, y=None)

Find duplicated features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input dataframe.

y: None
y is not needed for this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

10.3. API 541

feature_engine Documentation, Release 1.7.0

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

542 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

DropCorrelatedFeatures

class feature_engine.selection.DropCorrelatedFeatures(variables=None, method='pearson',
threshold=0.8, missing_values='ignore',
confirm_variables=False)

DropCorrelatedFeatures() finds and removes correlated features. Correlation
is calculated with pandas.corr(). Features are removed on first found, first
removed basis, without any further insight.

10.3. API 543

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

DropCorrelatedFeatures() works only with numerical variables. Categorical
variables will need to be encoded to numerical or will be excluded from the
analysis.

To make the selector deterministic, features are sorted alphabetically before
examining correlation.

More details in the User Guide.

Parameters

variables: str or list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
numerical features in the dataset.

method: string or callable, default=’pearson’
Can take ‘pearson’, ‘spearman’, ‘kendall’ or callable. It refers to the correlation
method to be used to identify the correlated features.

• ‘pearson’: standard correlation coefficient

• ‘kendall’: Kendall Tau correlation coefficient

• ‘spearman’: Spearman rank correlation

• callable: callable with input two 1d ndarrays and returning a float.

For more details on this parameter visit the pandas.corr() documentation.

threshold: float, default=0.8
The correlation threshold above which a feature will be deemed correlated
with another one and removed from the dataset.

missing_values: str, default=ignore
Whether the missing values should be raised as error or ignored when deter-
mining correlation. Takes values ‘raise’ and ‘ignore’.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

features_to_drop_:
Set with the correlated features that will be dropped.

correlated_feature_sets_:
Groups of correlated features. Each list is a group of correlated features.

correlated_feature_dict_: dict
Dictionary containing the correlated feature groups. The key is the feature
against which all other features were evaluated. The values are the features
correlated with the key. Key + values should be the same as the set found
in correlated_feature_groups. We introduced this attribute in version
1.17.0 because from the set, it is not easy to see which feature will be retained
and which ones will be removed. The key is retained, the values will be
dropped.

variables_:
The variables that will be considered for the feature selection procedure.

544 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

pandas.corr
feature_engine.selection.SmartCorrelationSelection

Notes

If you want to select from each group of correlated features those that are per-
haps more predictive or more complete, check Feature-engine’s SmartCorre-
lationSelection.

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.selection import DropCorrelatedFeatures
>>> X = pd.DataFrame(dict(x1␣
→˓= [1,2,1,1], x2 = [2,4,3,1], x3 = [1, 0, 0, 1]))
>>> dcf = DropCorrelatedFeatures(threshold=0.7)
>>> dcf.fit_transform(X)

x1 x3
0 1 1
1 2 0
2 1 0
3 1 1

Methods

fit: Find correlated features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Remove correlated features.

fit(X, y=None)

Find the correlated features.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The training dataset.

10.3. API 545

feature_engine Documentation, Release 1.7.0

y
[pandas series. Default = None] y is not needed in this transformer. You can
pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

546 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

10.3. API 547

https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

SmartCorrelatedSelection

class feature_engine.selection.SmartCorrelatedSelection(variables=None, method='pearson',
threshold=0.8, missing_values='ignore',
selection_method='missing_values',
estimator=None, scoring='roc_auc', cv=3,
confirm_variables=False)

SmartCorrelatedSelection() finds groups of correlated features and then se-
lects, from each group, a feature following certain criteria:

• Feature with the least missing values.

• Feature with the highest cardinality (greatest number of unique values).

• Feature with the highest variance.

• Feature with the highest importance according to an estimator.

SmartCorrelatedSelection() returns a dataframe containing from each group
of correlated features, the selected variable, plus all the features that were not
correlated to any other.

Correlation is calculated with pandas.corr().

SmartCorrelatedSelection() works only with numerical variables. Categorical
variables will need to be encoded to numerical or will be excluded from the
analysis.

More details in the User Guide.

Parameters

variables: str or list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
numerical features in the dataset.

548 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

method: string or callable, default=’pearson’
Can take ‘pearson’, ‘spearman’, ‘kendall’ or callable. It refers to the correlation
method to be used to identify the correlated features.

• ‘pearson’: standard correlation coefficient

• ‘kendall’: Kendall Tau correlation coefficient

• ‘spearman’: Spearman rank correlation

• callable: callable with input two 1d ndarrays and returning a float.

For more details on this parameter visit the pandas.corr() documentation.

threshold: float, default=0.8
The correlation threshold above which a feature will be deemed correlated
with another one and removed from the dataset.

missing_values: str, default=ignore
Whether the missing values should be raised as error or ignored when deter-
mining correlation. Takes values ‘raise’ and ‘ignore’.

selection_method: str, default= “missing_values”
Takes the values “missing_values”, “cardinality”, “variance” and
“model_performance”.

“missing_values”: keeps the feature from the correlated group with the least
missing observations.

“cardinality”: keeps the feature from the correlated group with the highest
cardinality.

“variance”: keeps the feature from the correlated group with the highest vari-
ance.

“model_performance”: trains a machine learning model using each of the
features in a correlated group and retains the feature with the highest impor-
tance.

estimator: object
A Scikit-learn estimator for regression or classification.

scoring: str, default=’roc_auc’
Metric to evaluate the performance of the estimator. Comes from
sklearn.metrics. See the model evaluation documentation for more op-
tions: https://scikit-learn.org/stable/modules/model_evaluation.html

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter: (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same
across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

10.3. API 549

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/glossary.html#term-CV-splitter

feature_engine Documentation, Release 1.7.0

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

correlated_feature_sets_:
Groups of correlated features. Each list is a group of correlated features.

correlated_feature_dict_: dict
Dictionary containing the correlated feature groups. The key is the feature
against which all other features were evaluated. The values are the features
correlated with the key. Key + values should be the same as the set found
in correlated_feature_groups. We introduced this attribute in version
1.17.0 because from the set, it is not easy to see which feature will be retained
and which ones will be removed. The key is retained, the values will be
dropped.

features_to_drop_:
The correlated features to remove from the dataset.

variables_:
The variables that will be considered for the feature selection procedure.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

pandas.corr
feature_engine.selection.DropCorrelatedFeatures

Notes

For brute-force correlation selection, check Feature-engine’s DropCorrelated-
Features().

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.selection import SmartCorrelatedSelection
>>> X = pd.DataFrame(dict(x1 = [1,2,1,1],
>>> x2 = [2,4,3,1],
>>> x3 = [1, 0, 0, 0]))
>>> scs = SmartCorrelatedSelection(threshold=0.7)
>>> scs.fit_transform(X)

x2 x3
0 2 1
1 4 0

(continues on next page)

550 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2 3 0
3 1 0

It is also possible to use alternative selection methods. Here, we select those
features with the higher variance:

>>> X = pd.DataFrame(dict(x1 = [2,4,3,1],
>>> x2 = [1000,2000,1500,500],
>>> x3 = [1, 0, 0, 0]))
>>> scs = SmartCorrelatedSelection(threshold=0.
→˓7, selection_method="variance")
>>> scs.fit_transform(X)

x2 x3
0 1000 1
1 2000 0
2 1500 0
3 500 0

Methods

fit: Find best feature from each correlated group.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Return selected features.

fit(X, y=None)

Find the correlated feature groups. Determine which feature should be selected
from each group.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset.

y: pandas series. Default = None
y is needed if selection_method == ‘model_performance’.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

10.3. API 551

feature_engine Documentation, Release 1.7.0

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

552 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

10.3. API 553

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

SelectBySingleFeaturePerformance

class feature_engine.selection.SelectBySingleFeaturePerformance(estimator, scoring='roc_auc',
cv=3, threshold=None,
variables=None,
confirm_variables=False)

SelectBySingleFeaturePerformance() selects features based on the perfor-
mance of a machine learning model trained utilising a single feature. In
other words, it trains a machine learning model for every single feature, then
determines each model’s performance. If the performance of the model is
greater than a user specified threshold, then the feature is retained, otherwise
removed.

The models are trained on each individual features using cross-validation. The
performance metric to evaluate and the machine learning model to train are
specified by the user.

More details in the User Guide.

Parameters

estimator: object
A Scikit-learn estimator for regression or classification.

variables: str or list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
numerical features in the dataset.

scoring: str, default=’roc_auc’
Metric to evaluate the performance of the estimator. Comes from
sklearn.metrics. See the model evaluation documentation for more op-
tions: https://scikit-learn.org/stable/modules/model_evaluation.html

threshold: float, int, default = 0.01
The value that defines whether a feature will be selected. Note that for metrics
like the roc-auc, r2, and the accuracy, the threshold will be a float between
0 and 1. For metrics like the mean squared error and the root mean squared
error, the threshold can take any number. The threshold must be defined by
the user. With bigger thresholds, fewer features will be selected.

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter: (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

554 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/glossary.html#term-CV-splitter

feature_engine Documentation, Release 1.7.0

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same
across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

features_to_drop_:
List with the features that will be removed.

feature_performance_:
Dictionary with the single feature model performance per feature.

variables_:
The variables that will be considered for the feature selection procedure.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

References

Selection based on single feature performance was used in Credit Risk mod-
elling as discussed in the following talk at PyData London 2017:

[1]

Examples

>>> import pandas as pd
>>> from sklearn.ensemble import RandomForestClassifier
>>> from feature_
→˓engine.selection import SelectBySingleFeaturePerformance
>>> X =␣
→˓pd.DataFrame(dict(x1 = [1000,2000,1000,1000,2000,3000],
>>> x2 = [2,4,3,1,2,2],
>>> x3 = [1,1,1,0,0,0],
>>> x4 = [1,2,1,1,0,1],
>>> x5 = [1,1,1,1,1,1]))
>>> y = pd.Series([1,0,0,1,1,0])
>>> sfp = SelectBySingleFeaturePerformance(
>>> ␣
→˓ RandomForestClassifier(random_state=42),
>>> cv=2)
>>> sfp.fit_transform(X, y)

x2 x3
(continues on next page)

10.3. API 555

feature_engine Documentation, Release 1.7.0

(continued from previous page)

0 2 1
1 4 1
2 3 1
3 1 0
4 2 0
5 2 0

Methods

fit: Find the important features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Reduce X to the selected features.

fit(X, y)

Determines model performance based on single features. Selects features
whose performance is above the threshold.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input dataframe

y: array-like of shape (n_samples)
Target variable. Required to train the estimator.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

556 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

10.3. API 557

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

558 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

RecursiveFeatureElimination

class feature_engine.selection.RecursiveFeatureElimination(estimator, scoring='roc_auc', cv=3,
threshold=0.01, variables=None,
confirm_variables=False)

RecursiveFeatureElimination() selects features following a recursive elimina-
tion process.

The process is as follows:

1. Train an estimator using all the features.

2. Rank the features according to their importance derived from the estimator.

3. Remove the least important feature and fit a new estimator.

4. Calculate the performance of the new estimator.

5. Calculate the performance difference between the new and original estimator.

6. If the performance drop is below the threshold the feature is removed.

7. Repeat steps 3-6 until all features have been evaluated.

Model training and performance evaluation are done with cross-validation.

More details in the User Guide.

Parameters

estimator: object
A Scikit-learn estimator for regression or classification. The estimator must
have either a feature_importances or a coef_ attribute after fitting.

variables: str or list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
numerical features in the dataset.

scoring: str, default=’roc_auc’
Metric to evaluate the performance of the estimator. Comes from
sklearn.metrics. See the model evaluation documentation for more op-
tions: https://scikit-learn.org/stable/modules/model_evaluation.html

threshold: float, int, default = 0.01
The value that defines whether a feature will be selected. Note that for metrics
like the roc-auc, r2, and the accuracy, the threshold will be a float between
0 and 1. For metrics like the mean squared error and the root mean squared
error, the threshold can take any number. The threshold must be defined by
the user. With bigger thresholds, fewer features will be selected.

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter: (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

10.3. API 559

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/glossary.html#term-CV-splitter

feature_engine Documentation, Release 1.7.0

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same
across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

initial_model_performance_:
The model’s performance when trained with the original dataset.

feature_importances_:
Pandas Series with the feature importance (comes from step 2)

performance_drifts_:
Dictionary with the performance drift per examined feature (comes from step
5).

features_to_drop_:
List with the features that will be removed.

variables_:
The variables that will be considered for the feature selection procedure.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> from sklearn.ensemble import RandomForestClassifier
>>> from feature_
→˓engine.selection import RecursiveFeatureElimination
>>> X =␣
→˓pd.DataFrame(dict(x1 = [1000,2000,1000,1000,2000,3000],
>>> x2 = [2,4,3,1,2,2],
>>> x3 = [1,1,1,0,0,0],
>>> x4 = [1,2,1,1,0,1],
>>> x5 = [1,1,1,1,1,1]))
>>> y = pd.Series([1,0,0,1,1,0])
>
→˓>
→˓>
→˓␣
→˓rfe␣
→˓=␣
→˓RecursiveFeatureElimination(RandomForestClassifier(random_
→˓state=2), cv=2)

(continues on next page)

560 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

>>> rfe.fit_transform(X, y)
x2

0 2
1 4
2 3
3 1
4 2
5 2

Methods

fit: Find the important features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Reduce X to the selected features.

fit(X, y)

Find the important features. Note that the selector trains various models at
each round of selection, so it might take a while.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input dataframe

y: array-like of shape (n_samples)
Target variable. Required to train the estimator.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

10.3. API 561

feature_engine Documentation, Release 1.7.0

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

562 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

10.3. API 563

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

RecursiveFeatureAddition

class feature_engine.selection.RecursiveFeatureAddition(estimator, scoring='roc_auc', cv=3,
threshold=0.01, variables=None,
confirm_variables=False)

RecursiveFeatureAddition() selects features following a recursive addition
process.

The process is as follows:

1. Train an estimator using all the features.

2. Rank the features according to their importance derived from the estimator.

3. Train an estimator with the most important feature and determine performance.

4. Add the second most important feature and train a new estimator.

5. Calculate the difference in performance between estimators.

6. If the performance increases beyond the threshold, the feature is kept.

7. Repeat steps 4-6 until all features have been evaluated.

Model training and performance calculation are done with cross-validation.

More details in the User Guide.

Parameters

estimator: object
A Scikit-learn estimator for regression or classification. The estimator must
have either a feature_importances or a coef_ attribute after fitting.

variables: str or list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
numerical features in the dataset.

scoring: str, default=’roc_auc’
Metric to evaluate the performance of the estimator. Comes from
sklearn.metrics. See the model evaluation documentation for more op-
tions: https://scikit-learn.org/stable/modules/model_evaluation.html

threshold: float, int, default = 0.01
The value that defines whether a feature will be selected. Note that for metrics
like the roc-auc, r2, and the accuracy, the threshold will be a float between
0 and 1. For metrics like the mean squared error and the root mean squared
error, the threshold can take any number. The threshold must be defined by
the user. With bigger thresholds, fewer features will be selected.

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter: (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

564 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/glossary.html#term-CV-splitter

feature_engine Documentation, Release 1.7.0

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same
across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

initial_model_performance_:
The model’s performance when trained with the original dataset.

feature_importances_:
Pandas Series with the feature importance (comes from step 2)

performance_drifts_:
Dictionary with the performance drift per examined feature (comes from step
5).

features_to_drop_:
List with the features that will be removed.

variables_:
The variables that will be considered for the feature selection procedure.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>> from sklearn.ensemble import RandomForestClassifier
>>> from␣
→˓feature_engine.selection import RecursiveFeatureAddition
>>> X =␣
→˓pd.DataFrame(dict(x1 = [1000,2000,1000,1000,2000,3000],
>>> x2 = [2,4,3,1,2,2],
>>> x3 = [1,1,1,0,0,0],
>>> x4 = [1,2,1,1,0,1],
>>> x5 = [1,1,1,1,1,1]))
>>> y = pd.Series([1,0,0,1,1,0])
>>> rfa =␣
→˓RecursiveFeatureAddition(RandomForestClassifier(random_
→˓state=42), cv=2)
>>> rfa.fit_transform(X, y)

x2 x4
0 2 1
1 4 2
2 3 1

(continues on next page)

10.3. API 565

feature_engine Documentation, Release 1.7.0

(continued from previous page)

3 1 1
4 2 0
5 2 1

Methods

fit: Find the important features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Reduce X to the selected features.

fit(X, y)

Find the important features. Note that the selector trains various models at
each round of selection, so it might take a while.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input dataframe

y: array-like of shape (n_samples)
Target variable. Required to train the estimator.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

566 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

10.3. API 567

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

568 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

DropHighPSIFeatures

class feature_engine.selection.DropHighPSIFeatures(split_col=None, split_frac=0.5,
split_distinct=False, cut_off=None, switch=False,
threshold=0.25, bins=10,
strategy='equal_frequency',
min_pct_empty_bins=0.0001,
missing_values='raise', variables=None,
confirm_variables=False, p_value=0.001)

DropHighPSIFeatures() drops features which Population Stability Index (PSI)
is above a given threshold.

The PSI is used to compare distributions. Higher PSI values mean greater
changes in a feature’s distribution. Therefore, a feature with high PSI can be
considered unstable.

To compute the PSI, DropHighPSIFeatures() splits the dataset in two: a basis
and a test set. Then, it compares the distribution of each feature between those
sets.

To determine the PSI, continuous features are sorted into discrete intervals,
and then, the number of observations per interval are compared between the 2
distributions.

The PSI is calculated as:

PSI = sum ((test_i - basis_i) x ln(test_i/basis_i))

where basis and test are the 2 datasets, i refers to each interval, and then,
test_i and basis_i are the number of observations in interval i in each data
set.

The PSI has traditionally been used to assess changes in distributions of con-
tinuous variables.

In version 1.7, we extended the functionality of DropHighPSIFeatures() to cal-
culate the PSI for categorical features as well. In this case, i is each unique
category, and test_i and basis_i are the number of observations in cate-
gory i.

Threshold
Different thresholds can be used to assess the magnitude of the distribution
shift according to the PSI value. The most commonly used thresholds are:

• Below 10%, the variable has not experienced a significant shift.

• Above 25%, the variable has experienced a major shift.

• Between those two values, the shift is intermediate.

Data split
To compute the PSI, DropHighPSIFeatures() splits the dataset in two: a basis
and a test set. Then, it compares the distribution of each feature between those
sets.

There are various options to split a dataset:

First, you can indicate which variable should be used to guide the data split.
This variable can be of any data type. If you do not enter a variable name,

10.3. API 569

feature_engine Documentation, Release 1.7.0

DropHighPSIFeatures() will use the dataframe index.

Next, you need to specify how that variable (or the index) should be used to
split the data. You can specify a proportion of observations to be put in each
data set, or alternatively, provide a cut-off value.

If you specify a proportion through the split_frac parameter, the data will
be sorted to accommodate that proportion. If split_frac is 0.5, 50% of the
observations will go to either basis or test sets. If split_frac is 0.6, 60% of
the samples will go to the basis data set and the remaining 40% to the test set.

If split_distinct is True, the data will be sorted considering unique values
in the selected variables. Check the parameter below for more details.

If you define a numeric cut-off value or a specific date using the cut_off
parameter, the observations with value <= cut-off will go to the basis data set
and the remaining ones to the test set. If the variable used to guide the split is
categorical, its values are sorted alphabetically and cut accordingly.

If you pass a list of values in the cut-off, the observations with the values in
the list, will go to the basis set, and the remaining ones to the test set.

More details in the User Guide.

Parameters

split_col: string or int, default=None.
The variable that will be used to split the dataset into the basis and test sets.
If None, the dataframe index will be used. split_col can be a numerical,
categorical or datetime variable. If split_col is a categorical variable, and
the splitting criteria is given by split_frac, it will be assumed that the
labels of the variable are sorted alphabetically.

split_frac: float, default=0.5.
The proportion of observations in each of the basis and test dataframes. If
split_frac is 0.6, 60% of the observations will be put in the basis data set.

If split_distinct is True, the indicated fraction may not be achieved ex-
actly. See parameter split_distinct for more details.

If cut_off is not None, split_frac will be ignored and the data split based
on the cut_off value.

split_distinct: boolean, default=False.
If True, split_frac is applied to the vector of unique values in split_col
instead of being applied to the whole vector of values. For example, if the
values in split_col are [1, 1, 1, 1, 2, 2, 3, 4] and split_frac is 0.5, we
have the following:

• split_distinct=False splits the vector in two equally sized parts:
[1, 1, 1, 1] and [2, 2, 3, 4]. This involves that 2 dataframes with 4 observations
each are used for the PSI calculations.

• split_distinct=True computes the vector of unique values in split_col
([1, 2, 3, 4]) and splits that vector in two equal parts: [1, 2] and [3, 4]. The
number of observations in the two dataframes used for the PSI calculations is
respectively 6 ([1, 1, 1, 1, 2, 2]) and 2 ([3, 4]).

cut_off: int, float, date or list, default=None
Threshold to split the dataset based on the split_col variable. If int, float

570 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

or date, observations where the split_col values are <= threshold will
go to the basis data set and the rest to the test set. If cut_off is a list, the
observations where the split_col values are within the list will go to the
basis data set and the remaining observations to the test set. If cut_off is
not None, this parameter will be used to split the data and split_frac will
be ignored.

switch: boolean, default=False.
If True, the order of the 2 dataframes used to determine the PSI (basis and
test) will be switched. This is important because the PSI is not symmetric,
i.e., PSI(a, b) != PSI(b, a)).

threshold: float, str, default = 0.25.
The threshold to drop a feature. If the PSI for a feature is >= threshold, the
feature will be dropped. The most common threshold values are 0.25 (large
shift) and 0.10 (medium shift). If ‘auto’, the threshold will be calculated
based on the size of the basis and test dataset and the number of bins as:

threshold = 2(q, B1) × (1/N + 1/M)

where:

• q = quantile of the distribution (or 1 - p-value),

• B = number of bins/categories,

• N = size of basis dataset,

• M = size of test dataset.

See formula (5.2) from reference [1].

bins: int, default = 10
Number of bins or intervals. For continuous features with good value spread,
10 bins is commonly used. For features with lower cardinality or highly
skewed distributions, lower values may be required.

strategy: string, default=’equal_frequency’
If the intervals into which the features should be discretized are of equal size
or equal number of observations. Takes values “equal_width” for equally
spaced bins or “equal_frequency” for bins based on quantiles, that is, bins
with similar number of observations.

min_pct_empty_bins: float, default = 0.0001
Value to add to empty bins or intervals. If after sorting the variable values
into bins, a bin is empty, the PSI cannot be determined. By adding a small
number to empty bins, we can avoid this issue. Note, that if the value added
is too large, it may disturb the PSI calculation.

missing_values: str, default=’raise’
Whether to perform the PSI feature selection on a dataframe with missing
values. Takes values ‘raise’ or ‘ignore’. If ‘ignore’, missing values will be
dropped when determining the PSI for that particular feature. If ‘raise’ the
transformer will raise an error and features will not be selected.

p_value: float, default = 0.001
The p-value to test the null hypothesis that there is no feature drift. In that
case, the PSI-value approximates a random variable that follows a chi-square
distribution. See [1] for details. This parameter is used only if threshold is
set to ‘auto’.

10.3. API 571

feature_engine Documentation, Release 1.7.0

variables: int, str, list, default = None
The list of variables to evaluate. If None, the transformer will evaluate all
numerical variables in the dataset. If "all" the transformer will evaluate
all categorical and numerical variables in the dataset. Alternatively, the
transformer will evaluate the variables indicated in the list or string.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

features_to_drop_:
List with the features that will be dropped.

variables_:
The variables that will be considered for the feature selection procedure.

psi_values_:
Dictionary containing the PSI value per feature.

cut_off_:
Value used to split the dataframe into basis and test. This value is computed
when not given as parameter.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

feature_engine.discretisation.EqualFrequencyDiscretiser
feature_engine.discretisation.EqualWidthDiscretiser

References

[1]

Examples

>>> import pandas as pd
>>>␣
→˓from feature_engine.selection import DropHighPSIFeatures
>>> X = pd.DataFrame(dict(
>>>
→˓ x1 = [1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
>>> x2␣
→˓= [32,87,6,32,11,44,8,7,9,0,32,87,6,32,11,44,8,7,9,0],
>>>))
>>> psi = DropHighPSIFeatures()
>>> psi.fit_transform(X)

x2
(continues on next page)

572 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

0 32
1 87
2 6
3 32
4 11
5 44
6 8
7 7
8 9
9 0
10 32

Methods

fit: Find features with high PSI values.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Remove features with high PSI values.

fit(X, y=None)

Find features with high PSI values.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The training dataset.

y
[pandas series. Default = None] y is not needed in this transformer. You can
pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

10.3. API 573

feature_engine Documentation, Release 1.7.0

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

574 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

10.3. API 575

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

SelectByInformationValue

class feature_engine.selection.SelectByInformationValue(variables=None, bins=5,
strategy='equal_width', threshold=0.2,
confirm_variables=False)

SelectByInformationValue() selects features based on their information value
(IV). The IV is calculated as:

𝐼𝑉 = (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑎𝑠𝑒𝑠− 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑎𝑠𝑒𝑠) *𝑊𝑜𝐸

where:

• the fraction of positive cases is the proportion of observations of class 1,
from the total class 1 observations.

• the fraction of negative cases is the proportion of observations of class 0,
from the total class 0 observations.

• WoE is the weight of the evidence.

SelectByInformationValue() is only suitable to select features for binary clas-
sification.

SelectByInformationValue() can determine the IV for numerical and categori-
cal variables. For numerical variables, it first sorts the variables into intervals,
and then determines the IV.

You can pass a list of variables to examine. Alternatively, the transformer will
examine all variables.

The IV allows you to assess each variable’s independent contribution to the
target variable. The transformer selects those variables whose IV is higher
than the threshold.

More details in the User Guide.

Parameters

variables: list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
variables in the dataset (except datetime).

bins: int, default = 5
If the dataset contains numerical variables, the number of bins into which the
values will be sorted.

strategy: str, default = ‘equal_width’
Whether the bins should be of equal width (‘equal_width’) or equal frequency
(‘equal_frequency’).

threshold: float, int, default = 0.2.
The threshold to drop a feature. If the IV for a feature is < threshold, the
feature will be dropped.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

576 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Attributes

variables_:
The group of variables that will be transformed.

information_values_:
A dictionary with the information values for each feature.

features_to_drop_:
List with the features that will be removed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

feature_engine.encoding.WoEEncoder
feature_engine.discretisation.EqualWidthDiscretiser
feature_engine.discretisation.EqualFrequencyDiscretiser

References

[1], [2]

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.selection import SelectByInformationValue
>>> X = pd.DataFrame(dict(x1 = [1,1,1,1,1,1],
>>> x2 = [3,2,2,3,3,2],
>>> x3 = ["a","b","c","a","c","b"]))
>>> y = pd.Series([1,1,1,0,0,0])
>>> iv = SelectByInformationValue()
>>> iv.fit_transform(X, y)

x2
0 3
1 2
2 2
3 3
4 3
5 2

10.3. API 577

feature_engine Documentation, Release 1.7.0

Methods

fit: Find features with high information value.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Remove features with low information value.

fit(X, y)

Learn the information value. Find features with IV above the threshold.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training input samples.

y: pandas series of shape = [n_samples,]
Target, must be binary.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

578 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

10.3. API 579

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

SelectByShuffling

class feature_engine.selection.SelectByShuffling(estimator, scoring='roc_auc', cv=3,
threshold=None, variables=None,
random_state=None, confirm_variables=False)

SelectByShuffling() selects features by determining the drop in machine learn-
ing model performance when each feature’s values are randomly shuffled.

If the variables are important, a random permutation of their values will de-
crease dramatically the machine learning model performance. Contrarily, the

580 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

permutation of the values should have little to no effect on the model perfor-
mance metric we are assessing if the feature is not predictive.

The SelectByShuffling() first trains a machine learning model utilising all fea-
tures. Next, it shuffles the values of 1 feature, obtains a prediction with the
pre-trained model, and determines the performance drop (if any). If the drop
in performance is bigger than a threshold then the feature is retained, otherwise
removed. It continues until all features have been shuffled and examined.

The user can determine the model for which performance drop after feature
shuffling should be assessed. The user also determines the threshold in perfor-
mance under which a feature will be removed, and the performance metric to
evaluate.

Model training and performance calculation are done with cross-validation.

More details in the User Guide.

Parameters

estimator: object
A Scikit-learn estimator for regression or classification.

variables: str or list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
numerical features in the dataset.

scoring: str, default=’roc_auc’
Metric to evaluate the performance of the estimator. Comes from
sklearn.metrics. See the model evaluation documentation for more op-
tions: https://scikit-learn.org/stable/modules/model_evaluation.html

threshold: float, int, default = 0.01
The value that defines whether a feature will be selected. Note that for metrics
like the roc-auc, r2, and the accuracy, the threshold will be a float between
0 and 1. For metrics like the mean squared error and the root mean squared
error, the threshold can take any number. The threshold must be defined by
the user. With bigger thresholds, fewer features will be selected.

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter: (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same
across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

random_state: int, default=None
Controls the randomness when shuffling features.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be

10.3. API 581

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/glossary.html#term-CV-splitter

feature_engine Documentation, Release 1.7.0

removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

initial_model_performance_:
The model’s performance when trained with the original dataset.

performance_drifts_:
Dictionary with the performance drift per shuffled feature.

features_to_drop_:
List with the features that will be removed.

variables_:
The variables that will be considered for the feature selection procedure.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

sklearn.inspection.permutation_importance

Notes

This transformer is a similar concept to the permutation_importance from
Scikit-learn. The function in Scikit-learn is used to evaluate feature impor-
tance instead of to select features.

Examples

>>> import pandas as pd
>>> from sklearn.ensemble import RandomForestClassifier
>>> from feature_engine.selection import SelectByShuffling
>>> X =␣
→˓pd.DataFrame(dict(x1 = [1000,2000,1000,1000,2000,3000],
>>> x2 = [2,4,3,1,2,2],
>>> x3 = [1,1,1,0,0,0],
>>> x4 = [1,2,1,1,0,1],
>>> x5 = [1,1,1,1,1,1]))
>>> y = pd.Series([1,0,0,1,1,0])
>>> sbs = SelectByShuffling(
>>> RandomForestClassifier(random_state=42),
>>> cv=2,
>>> random_state=42,
>>>)
>>> sbs.fit_transform(X, y)

x2 x4 x5
0 2 1 1

(continues on next page)

582 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance

feature_engine Documentation, Release 1.7.0

(continued from previous page)

1 4 2 1
2 3 1 1
3 1 1 1
4 2 0 1
5 2 1 1

Methods

fit: Find the important features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Reduce X to the selected features.

fit(X, y, sample_weight=None)

Find the important features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input dataframe.

y: array-like of shape (n_samples)
Target variable. Required to train the estimator.

sample_weight
[array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

10.3. API 583

feature_engine Documentation, Release 1.7.0

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

584 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_fit_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$')→ SelectByShuffling

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config()). Please see User Guide on how the routing
mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to fit if provided. The request is
ignored if metadata is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to
fit.

• None: metadata is not requested, and the meta-estimator will raise an error if
the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias
instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some parameters
and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator
of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weight
[str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED]
Metadata routing for sample_weight parameter in fit.

Returns

self
[object] The updated object.

10.3. API 585

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

SelectByTargetMeanPerformance

class feature_engine.selection.SelectByTargetMeanPerformance(variables=None, bins=5,
strategy='equal_width',
scoring='roc_auc', cv=3,
threshold=None, regression=False,
confirm_variables=False)

SelectByTargetMeanPerformance() uses the mean value of the target per
category or per interval(if the variable is numerical), as proxy for target
estimation. With this proxy, the selector determines the performance of each
feature based on a metric of choice, and then selects the features based on this
performance value.

SelectByTargetMeanPerformance() can evaluate numerical and categorical
variables, without much prior manipulation. In other words, you don’t need
to encode the categorical variables or transform the numerical variables to as-
sess their importance if you use this transformer.

586 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

SelectByTargetMeanPerformance() requires that the dataset is complete, with-
out missing data.

SelectByTargetMeanPerformance() determines the performance of each vari-
able with cross-validation. More specifically:

For each categorical variable:

1. Determines the mean target value per category in the training folds.

2. Replaces the categories by the target mean values in the test folds.

3. Determines the performance of the transformed variables in the test folds.

For each numerical variable:

1. Discretises the variable into intervals of equal width or equal frequency.

2. Determines the mean value of the target per interval in the training folds.

3. Replaces the intervals by the target mean values in the test fold.

4. Determines the performance of the transformed variable in the test fold.

Finally, it selects the features which performance is bigger than the indicated
threshold. If the threshold if left to None, it selects features which performance
is bigger than the mean performance of all features.

All the steps are performed with cross-validation. That means, that intervals
and target mean values per interval or category are determined in a certain
portion of the data, and evaluated in a left-out sample. The performance metric
per variable is the average across the cross-validation folds.

More details in the User Guide.

Parameters

variables: list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
variables in the dataset (except datetime).

bins: int, default = 5
If the dataset contains numerical variables, the number of bins into which the
values will be sorted.

strategy: str, default = ‘equal_width’
Whether the bins should be of equal width (‘equal_width’) or equal frequency
(‘equal_frequency’).

scoring: str, default=’roc_auc’
Metric to evaluate the performance of the estimator. Comes from
sklearn.metrics. See the model evaluation documentation for more op-
tions: https://scikit-learn.org/stable/modules/model_evaluation.html

threshold: float, int, default = 0.01
The value that defines whether a feature will be selected. Note that for metrics
like the roc-auc, r2, and the accuracy, the threshold will be a float between
0 and 1. For metrics like the mean squared error and the root mean squared
error, the threshold can take any number. The threshold must be defined by
the user. With bigger thresholds, fewer features will be selected.

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

10.3. API 587

https://scikit-learn.org/stable/modules/model_evaluation.html

feature_engine Documentation, Release 1.7.0

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter: (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same
across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

regression: boolean, default=True
Indicates whether the target is one for regression or a classification.

confirm_variables: bool, default=False
If set to True, variables that are not present in the input dataframe will be
removed from the list of variables. Only used when passing a variable list to
the parameter variables. See parameter variables for more details.

Attributes

variables_:
The variables that will be considered for the feature selection procedure.

feature_performance_:
Dictionary with the performance of each feature.

features_to_drop_:
List with the features that will be removed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

feature_engine.encoding.MeanEncoder
feature_engine.discretisation.EqualWidthDiscretiser
feature_engine.discretisation.EqualFrequencyDiscretiser

Notes

Replacing the categories or intervals by the target mean is the equivalent to
target mean encoding.

588 Chapter 10. Table of Contents

https://scikit-learn.org/stable/glossary.html#term-CV-splitter

feature_engine Documentation, Release 1.7.0

References

[1]

Examples

>>> from sklearn.ensemble import RandomForestClassifier
>>> from feature_
→˓engine.selection import SelectByTargetMeanPerformance
>>> X =␣
→˓pd.DataFrame(dict(x1 = [1000,2000,1000,1000,2000,3000],
>>> x2 = [1,1,1,0,0,0],
>>> x3 = [1,2,1,1,0,1],
>>> x4 = [1,1,1,1,1,1]))
>>> y = pd.Series([1,0,0,1,1,0])
>>> tmp = SelectByTargetMeanPerformance(bins␣
→˓= 3, cv=2,scoring='accuracy')
>>> tmp.fit_transform(X, y)

x2 x3 x4
0 1 1 1
1 1 2 1
2 1 1 1
3 0 1 1
4 0 0 1
5 0 1 1

This transformer also works with Categorical examples:

>>> X = pd.DataFrame(dict(x1 = ["a","b","a","a","b","b"],
>>> x2 = ["a","a","a","b","b","b"]))
>>> y = pd.Series([1,0,0,1,1,0])
>>> tmp = SelectByTargetMeanPerformance(bins␣
→˓= 3, cv=2,scoring='accuracy')
>>> tmp.fit_transform(X, y)
x2

0 a
1 a
2 a
3 b
4 b
5 b

Methods

fit: Find the important features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Reduce X to the selected features.

10.3. API 589

feature_engine Documentation, Release 1.7.0

fit(X, y)

Find the important features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input dataframe.

y: array-like of shape (n_samples)
Target variable. Required to train the estimator.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

590 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

10.3. API 591

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

ProbeFeatureSelection

class feature_engine.selection.ProbeFeatureSelection(estimator, variables=None, scoring='roc_auc',
n_probes=1, distribution='normal', cv=5,
random_state=0, confirm_variables=False)

ProbeFeatureSelection() generates one or more probe features based on the
user-selected distribution. The distribution options are ‘normal’, ‘binomial’,
‘uniform’, or ‘all’. ‘all’ creates at least one distribution for each of the three
aforementioned distributions.

Using cross validation, the class fits a Scikit-learn estimator to the provided
dataset’s variables and the probe features.

The class derives the feature importance for each variable and probe feature. In
the case of there being more than one probe feature, ProbeFeatureSelection()
calculates the average feature importance of all the probe features.

The variables that have a feature importance less than the feature importance
or average feature importance of the probe feature(s) are dropped from the
dataset.

More details in the User Guide.

Parameters

592 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

estimator: object
A Scikit-learn estimator for regression or classification. The estimator must
have either a feature_importances or a coef_ attribute after fitting.

variables: str or list, default=None
The list of variables to evaluate. If None, the transformer will evaluate all
numerical features in the dataset.

scoring: str, default=’roc_auc’
Metric to evaluate the performance of the estimator. Comes from
sklearn.metrics. See the model evaluation documentation for more op-
tions: https://scikit-learn.org/stable/modules/model_evaluation.html

n_probes: int, default=1
Number of probe features to be created. If distribution is ‘all’, n_probes must
be a multiple of 3.

distribution: str, default=’normal’
The distribution used to create the probe features. The options are ‘normal’,
‘binomial’, ‘uniform’, and ‘all’. ‘all’ creates at least 1 or more probe features
comprised of each distribution type, i.e., normal, binomial, and uniform. The
remaining options create n_probes features of the selected distribution.

cv: int, cross-validation generator or an iterable, default=3
Determines the cross-validation splitting strategy. Possible inputs for cv are:

• None, to use cross_validate’s default 5-fold cross validation

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter: (https://scikit-learn.org/stable/glossary.html#term-CV-splitter)

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or
multiclass, StratifiedKFold is used. In all other cases, KFold is used. These
splitters are instantiated with shuffle=False so the splits will be the same
across calls. For more details check Scikit-learn’s cross_validate’s docu-
mentation.

Attributes

probe_features_:
A dataframe comprised of the pseudo-randomly generated features based on
the selected distribution.

feature_importances_:
Pandas Series with the feature importance.

features_to_drop_:
List with the features that will be removed.

variables_:
The variables that will be considered for the feature selection procedure.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

10.3. API 593

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/glossary.html#term-CV-splitter

feature_engine Documentation, Release 1.7.0

References

[1]

Examples

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from␣
→˓feature_engine.selection import ProbeFeatureSelection
>>> X,
→˓ y = load_breast_cancer(return_X_y=True, as_frame=True)
>>> sel = ProbeFeatureSelection(
>>> estimator=LogisticRegression(),
>>> scoring="roc_auc",
>>> n_probes=3,
>>> distribution="normal",
>>> cv=3,
>>> random_state=150,
>>>)
>>> X_tr = sel.fit_transform(X, y)
print(X.shape, X_tr.shape)

Methods

fit: Find the important features.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
get_support: Get a mask, or integer index, of the features selected.
transform: Reduce X to the selected features.

fit(X, y)

Find the important features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
y: array-like of shape (n_samples)

Target variable. Required to train the estimator.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

594 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

10.3. API 595

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

get_support(indices=False)

Get a mask, or integer index, of the features selected.

Parameters

indices
[bool, default=False] If True, the return value will be an array of integers,
rather than a boolean mask.

Returns

support
[array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which
an element is True if its corresponding feature is selected for retention. If
indices is True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Return dataframe with selected features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The input dataframe.

596 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

Returns

X_new: pandas dataframe of shape = [n_samples, n_selected_features]
Pandas dataframe with the selected features.

rtype
DataFrame ..

Other Feature Selection Libraries

For additional feature selection algorithms visit the following open-source li-
braries:

• Scikit-learn selection

• MLXtend selection

Scikit-learn hosts multiple filter and embedded methods that select features
based on statistical tests or machine learning model derived importance. MLX-
tend hosts greedy (wrapper) feature selection methods.

10.3.4 Time series

Time Series Features

Feature-engine’s time series transformers derive features from time series data.

Forecasting Features

Feature-engine’s time series forecasting transformers create and add new fea-
tures to the dataframe by lagging features or calculating statistics over windows
of time in the past.

LagFeatures

class feature_engine.timeseries.forecasting.LagFeatures(variables=None, periods=1, freq=None,
fill_value=None, sort_index=True,
missing_values='raise',
drop_original=False, drop_na=False)

LagFeatures adds lag features to the dataframe. A lag feature is a feature with
information about a prior time step.

LagFeatures has the same functionality as pandas shift() with the exception
that only one of periods or freq can be indicated at a time. LagFeatures
builds on top of pandas shift() in that multiple lags can be created at the
same time and the features with names will be concatenated to the original
dataframe.

To be compatible with LagFeatures, the dataframe’s index must have unique
values and no NaN.

10.3. API 597

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/feature_selection.html
http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.feature_selection/

feature_engine Documentation, Release 1.7.0

LagFeatures works only with numerical variables. You can pass a list of vari-
ables to lag. Alternatively, LagFeatures will automatically select and lag all
numerical variables found in the training set.

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

periods: int, list of ints, default=1
Number of periods to shift. Can be a positive integer or list of positive integers.
If list, features will be created for each one of the periods in the list. If the
parameter freq is specified, periods will be ignored.

freq: str, list of str, default=None
Offset to use from the tseries module or time rule. See parameter freq in
pandas shift(). It is the same functionality. If freq is a list, lag features will
be created for each one of the frequency values in the list. If freq is not None,
then this parameter overrides the parameter periods.

fill_value: object, optional
The scalar value to use for newly introduced missing values. The default
depends on the dtype of the variable. For numeric data, np.nan is used.
For datetime, timedelta, or period data, NaT is used. For extension dtypes,
self.dtype.na_value is used.

sort_index: bool, default=True
Whether to order the index of the dataframe before creating the lag features.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

drop_original: bool, default=False
If True, the original variables to transform will be dropped from the dataframe.

drop_na: bool, default=False.
Whether the NAN introduced in the lag features should be removed.

Attributes

variables_:
The group of variables that will be lagged.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

pandas.shift

598 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.timeseries.forecasting import LagFeatures
>>> X = pd.DataFrame(dict(date = ["2022-09-18",
>>> "2022-09-19",
>>> "2022-09-20",
>>> "2022-09-21",
>>> "2022-09-22"],
>>> x1 = [1,2,3,4,5],
>>> x2 = [6,7,8,9,10]
>>>))
>>> lf = LagFeatures(periods=[1,2])
>>> lf.fit_transform(X)

␣
→˓ date x1 x2 x1_lag_1 x2_lag_1 x1_lag_2 x2_lag_2
0 2022-
→˓09-18 1 6 NaN NaN NaN NaN
1 2022-
→˓09-19 2 7 1.0 6.0 NaN NaN
2 2022-
→˓09-20 3 8 2.0 7.0 1.0 6.0
3 2022-
→˓09-21 4 9 3.0 8.0 2.0 7.0
4 2022-
→˓09-22 5 10 4.0 9.0 3.0 8.0

Methods

fit: This transformer does not learn parameters.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Add lag features.
transform_x_y: Remove rows with missing data from X and y.

fit(X, y=None)

This transformer does not learn parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset.

y: pandas Series, default=None
y is not needed in this transformer. You can pass None or y.

fit_transform(X, y=None, **fit_params)

10.3. API 599

feature_engine Documentation, Release 1.7.0

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

600 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Adds lag features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: Pandas dataframe, shape = [n_samples, n_features + lag_features]
The dataframe with the original plus the new variables.

rtype
DataFrame ..

transform_x_y(X, y)

Transform, align and adjust both X and y based on the transformations applied

10.3. API 601

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

to X, ensuring that they correspond to the same set of rows if any were
removed from X.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The dataframe to transform.

y: pandas Series or Dataframe of length = n_samples
The target variable to transform. Can be multi-output.

Returns

X_new: pandas dataframe
The transformed dataframe of shape [n_samples - n_rows, n_features]. It may
contain less rows than the original dataset.

y_new: pandas Series or DataFrame
The transformed target variable of length [n_samples - n_rows]. It contains
as many rows as those left in X_new.

WindowFeatures

class feature_engine.timeseries.forecasting.WindowFeatures(variables=None, window=3,
min_periods=None, functions='mean',
periods=1, freq=None,
sort_index=True,
missing_values='raise',
drop_original=False, drop_na=False)

WindowFeatures adds new features to a dataframe based on window opera-
tions. Window operations are operations that perform an aggregation over a
sliding partition of past values. A window feature is, in other words, a feature
created after computing statistics (e.g., mean, min, max, etc.) using a window
over the past data. For example, the mean value of the previous 3 months of
data is a window feature. The maximum value of the previous three rows of
data is another window feature.

WindowFeatures uses pandas functions rolling(), agg() and shift().
With rolling(), it creates rolling windows. With agg() it applies multi-
ple functions within those windows. With shift() it allocates the values to
the correct rows.

For supported aggregation functions, see Rolling Window Functions.

With pandas rolling()we can perform rolling operations over 1 window size
at a time. WindowFeatures builds on top of pandas rolling() in that new
features can be derived from multiple window sizes, and the created features
will be automatically concatenated to the original dataframe.

To be compatible with WindowFeatures, the dataframe’s index must have
unique values and no missing data.

WindowFeatures works only with numerical variables. You can pass a list of
variables to use as input for the windows. Alternatively, WindowFeatures will
automatically select all numerical variables in the training set.

602 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/window.html

feature_engine Documentation, Release 1.7.0

More details in the User Guide.

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

window: int, offset, BaseIndexer subclass, or list, default=3
Size of the moving window. If an integer, the fixed number of observations
used for each window. If an offset (recommended), the time period of each
window. It can also take a function. See parameter windows in pandas
rolling() documentation for more details.

In addition to pandas normal input values, window can also take a list with the
above specified values, in which case, features will be created for each one of
the windows specified in the list.

min_periods: int, default None.
Minimum number of observations in the window required to have a value;
otherwise, the result is np.nan. See parameter min_periods in pandas
rolling() documentation for more details.

functions: string or list of strings, default = ‘mean’
The functions to apply within the window. Valid functions can be found here.

periods: int, list of ints, default=1
Number of periods to shift. Can be a positive integer. See param periods in
pandas shift().

freq: str, list of str, default=None
Offset to use from the tseries module or time rule. See parameter freq in
pandas shift().

sort_index: bool, default=True
Whether to order the index of the dataframe before creating the features.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

drop_original: bool, default=False
If True, the original variables to transform will be dropped from the dataframe.

drop_na: bool, default=False.
Whether the NAN introduced in the lag features should be removed.

Attributes

variables_:
The group of variables that will be used to create the window features.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

10.3. API 603

https://pandas.pydata.org/docs/reference/window.html

feature_engine Documentation, Release 1.7.0

See also:

pandas.rolling
pandas.aggregate
pandas.shift

Examples

>>> import pandas as pd
>>> from feature_
→˓engine.timeseries.forecasting import WindowFeatures
>>> X = pd.DataFrame(dict(date = ["2022-09-18",
>>> "2022-09-19",
>>> "2022-09-20",
>>> "2022-09-21",
>>> "2022-09-22"],
>>> x1 = [1,2,3,4,5],
>>> x2 = [6,7,8,9,10]
>>>))
>>> wf = WindowFeatures(window = 2)
>>> wf.fit_transform(X)

date x1 x2 x1_window_2_mean x2_window_2_mean
0 2022-09-18 1 6 NaN NaN
1 2022-09-19 2 7 NaN NaN
2 2022-09-20 3 8 1.5 6.5
3 2022-09-21 4 9 2.5 7.5
4 2022-09-22 5 10 3.5 8.5

Methods

fit: This transformer does not learn parameters.
transform: Add window features.
transform_x_y: Remove rows with missing data from X and y.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.

fit(X, y=None)

This transformer does not learn parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset.

y: pandas Series, default=None
y is not needed in this transformer. You can pass None or y.

604 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

10.3. API 605

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Adds window features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: Pandas dataframe, shape = [n_samples, n_features + window_features]
The dataframe with the original plus the new variables.

rtype
DataFrame ..

transform_x_y(X, y)

Transform, align and adjust both X and y based on the transformations applied

606 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

to X, ensuring that they correspond to the same set of rows if any were
removed from X.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The dataframe to transform.

y: pandas Series or Dataframe of length = n_samples
The target variable to transform. Can be multi-output.

Returns

X_new: pandas dataframe
The transformed dataframe of shape [n_samples - n_rows, n_features]. It may
contain less rows than the original dataset.

y_new: pandas Series or DataFrame
The transformed target variable of length [n_samples - n_rows]. It contains
as many rows as those left in X_new.

ExpandingWindowFeatures

class feature_engine.timeseries.forecasting.ExpandingWindowFeatures(variables=None,
min_periods=None,
functions='mean',
periods=1, freq=None,
sort_index=True,
missing_values='raise',
drop_original=False,
drop_na=False)

ExpandingWindowFeatures adds new features to a dataframe based on ex-
panding window operations. Expanding window operations are operations
that perform an aggregation over an expanding window of all past values
relative to the value of interest. An expanding window feature is, in other
words, a feature created after computing statistics (e.g., mean, min, max, etc.)
using a window over all the past data. For example, the mean value of all
months prior to the month of interest is an expanding window feature.

ExpandingWindowFeatures uses the pandas’ functions expanding(), agg()
and shift(). With expanding(), it creates expanding windows. With
agg() it applies multiple functions within those windows. With ‘shift()’ it
allocates the values to the correct rows.

For supported aggregation functions, see Expanding Window Functions.

To be compatible with ExpandingWindowFeatures, the dataframe’s index must
have unique values and no NaN.

ExpandingWindowFeatures works only with numerical variables. You can
pass a list of variables to use as input for the expanding window. Alternatively,
ExpandingWindowFeatures will automatically select all numerical variables
in the training set.

More details in the User Guide.

10.3. API 607

https://pandas.pydata.org/docs/reference/window.html#expanding-window-functions

feature_engine Documentation, Release 1.7.0

Parameters

variables: list, default=None
The list of numerical variables to transform. If None, the transformer will
automatically find and select all numerical variables.

min_periods: int, default None.
Minimum number of observations in window required to have a value; oth-
erwise, result is np.nan. See parameter min_periods in the pandas
expanding() documentation for more details.

functions: str, list of str, default = ‘mean’
The functions to apply within the window. Valid functions can be found here.

periods: int, list of ints, default=1
Number of periods to shift. Can be a positive integer. See param periods in
pandas shift.

freq: str, list of str, default=None
Offset to use from the tseries module or time rule. See parameter freq in
pandas shift().

sort_index: bool, default=True
Whether to order the index of the dataframe before creating the expanding
window feature.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

drop_original: bool, default=False
If True, the original variables to transform will be dropped from the dataframe.

drop_na: bool, default=False.
Whether the NAN introduced in the created features should be removed.

Attributes

variables_:
The group of variables that will be used to create the expanding window
features.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

pandas.expanding
pandas.aggregate
pandas.shift

608 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/window.html

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> from feature_engine.
→˓timeseries.forecasting import ExpandingWindowFeatures
>>> X = pd.DataFrame(dict(date = ["2022-09-18",
>>> "2022-09-19",
>>> "2022-09-20",
>>> "2022-09-21",
>>> "2022-09-22"],
>>> x1 = [1,2,3,4,5],
>>> x2 = [6,7,8,9,10]
>>>))
>>> ewf = ExpandingWindowFeatures()
>>> ewf.fit_transform(X)
␣

→˓ date x1 x2 x1_expanding_mean x2_expanding_mean
0 ␣
→˓2022-09-18 1 6 NaN NaN
1 ␣
→˓2022-09-19 2 7 1.0 6.0
2 ␣
→˓2022-09-20 3 8 1.5 6.5
3 ␣
→˓2022-09-21 4 9 2.0 7.0
4 ␣
→˓2022-09-22 5 10 2.5 7.5

Methods

fit: This transformer does not learn parameters.
transform: Add expanding window features.
transform_x_y: Remove rows with missing data from X and y.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.

fit(X, y=None)

This transformer does not learn parameters.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset.

y: pandas Series, default=None
y is not needed in this transformer. You can pass None or y.

fit_transform(X, y=None, **fit_params)

10.3. API 609

feature_engine Documentation, Release 1.7.0

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

610 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Adds expanding window features.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: Pandas dataframe, shape = [n_samples, n_features + window_features]
The dataframe with the original plus the new variables.

rtype
DataFrame ..

transform_x_y(X, y)

Transform, align and adjust both X and y based on the transformations applied

10.3. API 611

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

to X, ensuring that they correspond to the same set of rows if any were
removed from X.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The dataframe to transform.

y: pandas Series or Dataframe of length = n_samples
The target variable to transform. Can be multi-output.

Returns

X_new: pandas dataframe
The transformed dataframe of shape [n_samples - n_rows, n_features]. It may
contain less rows than the original dataset.

y_new: pandas Series or DataFrame
The transformed target variable of length [n_samples - n_rows]. It contains
as many rows as those left in X_new.

10.3.5 Other

Preprocessing

Feature-engine’s preprocessing transformers apply general data pre-processing
and transformation procedures.

MatchCategories

class feature_engine.preprocessing.MatchCategories(variables=None, ignore_format=False,
missing_values='raise')

MatchCategories() ensures that categorical variables are encoded as pandas
'categorical' dtype, instead of generic python 'object' or other dtypes.

Under the hood, 'categorical' dtype is a representation that maps each
category to an integer, thus providing a more memory-efficient object structure
than, e.g., ‘str’, and allowing faster grouping, mapping, and similar operations
on the resulting object.

MatchCategories() remembers the encodings or levels that represent each cat-
egory, and can thus can be used to ensure that the correct encoding gets applied
when passing categorical data to modeling packages that support this dtype, or
to prevent unseen categories from reaching a further transformer or estimator
in a pipeline, for example.

More details in the User Guide.

Parameters

variables: list, default=None
The list of categorical variables that will be encoded. If None, the encoder will
find and transform all variables of type object or categorical by default. You

612 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

can also make the transformer accept numerical variables, see the parameter
ignore_format.

ignore_format: bool, default=False
This transformer operates only on variables of type object or categorical.
To override this behaviour and allow the transformer to transform numerical
variables as well, set to True.

If ignore_format is False, the encoder will automatically select variables
of type object or categorical, or check that the variables entered by the user are
of type object or categorical. If True, the encoder will select all variables or
accept all variables entered by the user, including those cast as numeric.

In short, set to True when you want to encode numerical variables.

missing_values: string, default=’raise’
Indicates if missing values should be ignored or raised. If 'raise' the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If 'ignore', missing data will be ignored when learning
parameters or performing the transformation.

Attributes

category_dict_:
Dictionary with the category encodings assigned to each variable.

variables_:
The group of variables that will be transformed.

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

Examples

>>> import pandas as pd
>>>␣
→˓from feature_engine.preprocessing import MatchCategories
>>> X_train␣
→˓= pd.DataFrame(dict(x1 = ["a","b","c"], x2 = [4,5,6]))
>>> X_test = pd.
→˓DataFrame(dict(x1 = ["c","b","a","d"], x2 = [5,6,4,7]))
>>> mc = MatchCategories(missing_values="ignore")
>>> mc.fit(X_train)
>>> mc.transform(X_train)
x1 x2

0 a 4
1 b 5
2 c 6
>>> mc.transform(X_test)

x1 x2
0 c 5
1 b 6

(continues on next page)

10.3. API 613

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2 a 4
3 NaN 7

Methods

fit: Learn the encodings or levels to use for each variable.
fit_transform: Fit to the data. Then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Enforce the type of categorical variables as dtype categorical.

fit(X, y=None)

Learn the encodings or levels to use for representing categorical variables.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The training dataset. Can be the entire dataframe, not just the variables to be
transformed.

y: pandas Series, default = None
y is not needed in this encoder. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

614 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the encoded variable back to the original values.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The transformed dataframe.

Returns

10.3. API 615

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

feature_engine Documentation, Release 1.7.0

X_tr: pandas dataframe of shape = [n_samples, n_features].
The un-transformed dataframe, with the categorical variables containing the
original values.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Encode categorical variables as pandas categorical dtype.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The dataset to encode.

Returns

X_new: pandas dataframe of shape = [n_samples, n_features].
The dataframe with the variables encoded as pandas categorical dtype.

rtype
DataFrame ..

MatchVariables

class feature_engine.preprocessing.MatchVariables(fill_value=nan, missing_values='raise',
match_dtypes=False, verbose=True)

MatchVariables() ensures that the same variables observed in the train set are
present in the test set. If the dataset to transform contains variables that were
not present in the train set, they are dropped. If the dataset to transform lacks
variables that were present in the train set, these variables are added to the
dataframe with a value determined by the user (np.nan by default).

616 Chapter 10. Table of Contents

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

train = pd.DataFrame({
"Name": ["tom", "nick", "krish", "jack"],
"City

→˓": ["London", "Manchester", "Liverpool", "Bristol"],
"Age": [20, 21, 19, 18],
"Marks": [0.9, 0.8, 0.7, 0.6],

})

test = pd.DataFrame({
"Name": ["tom", "sam", "nick"],
"Age": [20, 22, 23],
"Marks": [0.9, 0.7, 0.6],
"Hobbies": ["tennis", "rugby", "football"]

})

match_columns = MatchVariables()

match_columns.fit(train)

df_transformed = match_columns.transform(test)

Note that in the returned dataframe, the variable “Hobbies” was removed and
the variable “City” was added with np.nan:

df_transformed

Name City Age Marks
0 tom np.nan 20 0.9
1 sam np.nan 22 0.7
2 nick np.nan 23 0.6

The order of the variables in the transformed dataset is also adjusted to match
that observed in the train set.

More details in the User Guide.

Parameters

fill_value: integer, float or string. Default=np.nan
The values for the variables that will be added to the transformed dataset.

missing_values: string, default=’ignore’
Indicates if missing values should be ignored or raised. If ‘raise’ the trans-
former will return an error if the the datasets to fit or transform contain
missing values. If ‘ignore’, missing data will be ignored when learning
parameters or performing the transformation.

match_dtypes: bool, default=False
Indicates whether the dtypes observed in the train set should be applied to
variables in the test set.

verbose: bool, default=True
If True, the transformer will print out the names of the variables that are
added and / or removed from the dataset.

10.3. API 617

feature_engine Documentation, Release 1.7.0

Attributes

feature_names_in_:
The variables present in the train set, in the order observed during fit.

n_features_in_:
The number of features in the train set used in fit.

dtype_dict_:
If match_dtypes is set to True, then this attribute will exist, and it will
contain a dictionary of variables and their corresponding dtypes.

Examples

>>> import pandas as pd
>>>
→˓ from feature_engine.preprocessing import MatchVariables
>>> X_train␣
→˓= pd.DataFrame(dict(x1 = ["a","b","c"], x2 = [4,5,6]))
>>> X_test = pd.DataFrame(dict(x1 = ["c","b","a","d"],
>>> x2 = [5,6,4,7],
>>> x3 = [1,1,1,1]))
>>> mv = MatchVariables(missing_values="ignore")
>>> mv.fit(X_train)
>>> mv.transform(X_train)
x1 x2
0 a 4
1 b 5
2 c 6
>>> mv.transform(X_test)
The following␣
→˓variables are dropped from the DataFrame: ['x3']
x1 x2

0 c 5
1 b 6
2 a 4
3 d 7

>>> import pandas as pd
>>>
→˓ from feature_engine.preprocessing import MatchVariables
>>> X_train = pd.DataFrame(dict(x1 = ["a","b","c"],
>>>␣
→˓ x2 = [4,5,6], x3 = [1,1,1]))
>>> X_test = pd.
→˓DataFrame(dict(x1 = ["c","b","a","d"], x2 = [5,6,4,7]))
>>> mv = MatchVariables(missing_values="ignore")
>>> mv.fit(X_train)
>>> mv.transform(X_train)
x1 x2 x3

0 a 4 1
1 b 5 1

(continues on next page)

618 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

(continued from previous page)

2 c 6 1
>>> mv.transform(X_test)
The following variables are added to the DataFrame: ['x3']
x1 x2 x3

0 c 5 NaN
1 b 6 NaN
2 a 4 NaN
3 d 7 NaN

Methods

fit: Identify the variable names in the train set.
fit_transform: Fit to the data. Then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
transform: Add or delete variables to match those observed in the train set.

fit(X, y=None)

Learns and stores the names of the variables in the training dataset.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The input dataframe.

y: None
y is not needed for this transformer. You can pass y or None.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

10.3. API 619

feature_engine Documentation, Release 1.7.0

get_feature_names_out(input_features=None)

Get output feature names for transformation. In other words, returns the
variable names of transformed dataframe.

Parameters

input_features
[array or list, default=None] This parameter exits only for compatibility with
the Scikit-learn pipeline.

• If None, then feature_names_in_ is used as feature names in.

• If an array or list, then input_features must match feature_names_in_.

Returns

feature_names_out: list
Transformed feature names.

rtype
List[Union[str, int]] ..

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form

620 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Drops variables that were not seen in the train set and adds variables that were
in the train set but not in the data to transform. In other words, it returns a
dataframe with matching columns.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The data to transform.

Returns

X_new: Pandas dataframe, shape = [n_samples, n_features]
The dataframe with variables that match those observed in the train set.

rtype
DataFrame ..

Scikit-learn Wrapper

Feature-engine’s Scikit-learn wrappers wrap Scikit-learn transformers allow-
ing their implementation only on a selected subset of features.

SklearnTransformerWrapper

class feature_engine.wrappers.SklearnTransformerWrapper(transformer, variables=None)

Wrapper to apply Scikit-learn transformers to a selected group of variables. It
supports the following transformers:

• Binarizer and KBinsDiscretizer (only when encoding=Ordinal)

• FunctionTransformer, PowerTransformer and QuantileTransformer

• SimpleImputer, IterativeImputer and KNNImputer (only when
add_indicators=False)

• OrdinalEncoder and OneHotEncoder (only when sparse is False)

• MaxAbsScaler, MinMaxScaler, StandardScaler, RobustScaler, Normalizer

10.3. API 621

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

• All selection transformers including VarianceThreshold

• PolynomialFeautures

More details in the User Guide.

Parameters

transformer: sklearn transformer
The desired Scikit-learn transformer.

variables: list, default=None
The list of variables to be transformed. If None, the wrapper will select all
variables of type numeric for all transformers, except the SimpleImputer,
OrdinalEncoder and OneHotEncoder, in which case, it will select all variables
in the dataset.

Attributes

transformer_:
The fitted Scikit-learn transformer.

variables_:
The group of variables that will be transformed.

features_to_drop_:
The variables that will be dropped. Only present when using selection trans-
formers

feature_names_in_:
List with the names of features seen during fit.

n_features_in_:
The number of features in the train set used in fit.

See also:

sklearn.compose.ColumnTransformer

Notes

This transformer offers similar functionality to the ColumnTransformer from
Scikit-learn, but it allows entering the transformations directly into a Pipeline
and returns pandas dataframes.

Examples

>>> import pandas as pd
>>> from␣
→˓feature_engine.wrappers import SklearnTransformerWrapper
>>> from sklearn.preprocessing import StandardScaler
>>> X = pd.DataFrame(dict(x1␣
→˓= ["a","b","c"], x2 = [1,2,3], x3 = [4,5,6]))
>>> skw = SklearnTransformerWrapper(StandardScaler())

(continues on next page)

622 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html#sklearn.compose.ColumnTransformer

feature_engine Documentation, Release 1.7.0

(continued from previous page)

>>> skw.fit(X)
>>> skw.transform(X)
x1 x2 x3

0 a -1.224745 -1.224745
1 b 0.000000 0.000000
2 c 1.224745 1.224745

>>> import pandas as pd
>>> from␣
→˓feature_engine.wrappers import SklearnTransformerWrapper
>>> from sklearn.preprocessing import OneHotEncoder
>>> X = pd.DataFrame(dict(x1␣
→˓= ["a","b","c"], x2 = [1,2,3], x3 = [4,5,6]))
>>> skw = SklearnTransformerWrapper(
>>> ␣
→˓ OneHotEncoder(sparse_output = False), variables = "x1")
>>> skw.fit(X)
>>> skw.transform(X)

x2 x3 x1_a x1_b x1_c
0 1 4 1.0 0.0 0.0
1 2 5 0.0 1.0 0.0
2 3 6 0.0 0.0 1.0

>>> import pandas as pd
>>> from␣
→˓feature_engine.wrappers import SklearnTransformerWrapper
>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = pd.DataFrame(dict(x1␣
→˓= ["a","b","c"], x2 = [1,2,3], x3 = [4,5,6]))
>>> skw␣
→˓= SklearnTransformerWrapper(PolynomialFeatures(include_
→˓bias = False))
>>> skw.fit(X)
>>> skw.transform(X)
x1 x2 x3 x2^2 x2 x3 x3^2

0 a 1.0 4.0 1.0 4.0 16.0
1 b 2.0 5.0 4.0 10.0 25.0
2 c 3.0 6.0 9.0 18.0 36.0

Methods

fit: Fit Scikit-learn transformer.
fit_transform: Fit to data, then transform it.
get_feature_names_out: Get output feature names for transformation.
get_params: Get parameters for this estimator.
set_params: Set the parameters of this estimator.
inverse_transform: Convert the data back to the original representation.
transform: Transform data with the Scikit-learn transformer.

fit(X, y=None)

10.3. API 623

feature_engine Documentation, Release 1.7.0

Fits the Scikit-learn transformer to the selected variables.

Parameters

X: Pandas DataFrame
The dataset to fit the transformer.

y: pandas Series, default=None
The target variable.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns
a transformed version of X.

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None]
Target values (None for unsupervised transformations).

**fit_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names_out(input_features=None)

Get output feature names for transformation.

input_features: list, default=None
If None, then the names of all the variables in the transformed dataset is
returned. For those transformers that create and add new features to the
dataset, like the OneHotEncoder or the PolynomialFeatures, you have the
option to pass a list with the input features to obtain the newly created
variables. For all other transformers, this parameter will be ignored.

Returns

feature_names_out: list
The feature names.

rtype
List ..

624 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List

feature_engine Documentation, Release 1.7.0

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

inverse_transform(X)

Convert the transformed variables back to the original values. Only imple-
mented for the following Scikit-learn transformers:

PowerTransformer, QuantileTransformer, OrdinalEncoder, MaxAbsScaler,
MinMaxScaler, StandardScaler, RobustScaler.

If you would like this method implemented for additional transformers, please
check if they have the inverse_transform method in Scikit-learn and then raise
an issue in our repo.

Parameters

X: pandas dataframe of shape = [n_samples, n_features].
The transformed dataframe.

Returns

X_tr: pandas dataframe of shape = [n_samples, n_features].
The dataframe with the original values.

rtype
DataFrame ..

set_params(**params)

Set the parameters of this estimator.

10.3. API 625

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

feature_engine Documentation, Release 1.7.0

The method works on simple estimators as well as on nested ob-
jects (such as Pipeline). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)

Apply the transformation to the dataframe. Only the selected variables will
be modified.

If the Scikit-learn transformer is the OneHotEncoder or the PolynomialFea-
tures, the new features will be concatenated to the input dataset.

If the Scikit-learn transformer is for feature selection, the non-selected features
will be dropped from the dataframe.

For all other transformers, the original variables will be replaced by the trans-
formed ones.

Parameters

X: Pandas DataFrame
The data to transform.

Returns

X_new: Pandas DataFrame
The transformed dataset.

rtype
DataFrame ..

Other wrappers

The SklearnTransformerWrapper() offers a similar function to the
ColumnTransformer class available in Scikit-learn. They differ in the imple-
mentation to select the variables.

626 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html

feature_engine Documentation, Release 1.7.0

10.3.6 Pipeline

Pipeline

Feature-engine’s Pipeline is equivalent to Scikit-learn’s pipeline, and in addi-
tion, it accepts the method transform_x_y, to adjust both X and y, in those
cases where rows are removed from X.

Pipeline

class feature_engine.pipeline.Pipeline(steps, *, memory=None, verbose=False)

A sequence of data transformers with an optional final predictor.

Pipeline allows you to sequentially apply a list of transformers to preprocess
the data and, if desired, conclude the sequence with a final predictor for
predictive modeling.

Intermediate steps of the pipeline must be ‘transforms’, that is, they must im-
plement fit and transform methods. The final estimator only needs to
implement fit. The transformers in the pipeline can be cached using memory
argument.

This pipeline allows intermediate transformers to remove rows from the
dataset. It will automatically adjust the target variable to match the remain-
ing observations.

The purpose of the pipeline is to assemble several steps that can be cross-
validated together while setting different parameters. For this, it enables set-
ting parameters of the various steps using their names and the parameter name
separated by a '__', as in the example below. A step’s estimator may be re-
placed entirely by setting the parameter with its name to another estimator, or
a transformer removed by setting it to 'passthrough' or None.

More details in the User Guide.

Parameters

steps
[list of tuples] List of (name of step, estimator) tuples that are to be chained
in sequential order. To be compatible with the scikit-learn API, all steps must
define fit. All non-last steps must also define transform. See Combining
Estimators for more details.

memory
[str or object with the joblib.Memory interface, default=None] Used to cache
the fitted transformers of the pipeline. The last step will never be cached, even
if it is a transformer. By default, no caching is performed. If a string is given,
it is the path to the caching directory. Enabling caching triggers a clone of
the transformers before fitting. Therefore, the transformer instance given to
the pipeline cannot be inspected directly. Use the attribute named_steps or
steps to inspect estimators within the pipeline. Caching the transformers is
advantageous when fitting is time consuming.

10.3. API 627

https://scikit-learn.org/stable/modules/compose.html#combining-estimators
https://scikit-learn.org/stable/modules/compose.html#combining-estimators

feature_engine Documentation, Release 1.7.0

verbose
[bool, default=False] If True, the time elapsed while fitting each step will be
printed as it is completed.

Attributes

named_steps
[Bunch] Access the steps by name.

classes_
[ndarray of shape (n_classes,)] The classes labels.

n_features_in_
[int] Number of features seen during first step fit method.

feature_names_in_
[ndarray of shape (n_features_in_,)] Names of features seen during first
step fit method.

Examples

>>> from sklearn.svm import SVC
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from feature_engine.pipeline import Pipeline
>>> X, y = make_classification(random_state=0)
>>> X_
→˓train, X_test, y_train, y_test = train_test_split(X, y,
... ␣
→˓ random_state=0)
>>> pipe =␣
→˓Pipeline([('scaler', StandardScaler()), ('svc', SVC())])
>>> # The pipeline can be used as any other estimator
>>> # and avoids leaking the test set into the train set
>>> pipe.fit(X_train, y_train).score(X_test, y_test)
0.88
>>> # An estimator's parameter can be set using '__' syntax
>>> pipe.set_params(svc_
→˓_C=10).fit(X_train, y_train).score(X_test, y_test)
0.76

property classes_

The classes labels. Only exist if the last step is a classifier.

decision_function(X, **params)

Transform the data, and apply decision_function with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are
finally passed to the final estimator that calls decision_function method.
Only valid if the final estimator implements decision_function.

Parameters

628 Chapter 10. Table of Contents

https://scikit-learn.org/stable/modules/generated/sklearn.utils.Bunch.html#sklearn.utils.Bunch

feature_engine Documentation, Release 1.7.0

X
[iterable] Data to predict on. Must fulfill input requirements of first step of
the pipeline.

**params
[dict of string -> object] Parameters requested and accepted by steps. Each
step must have requested certain metadata for these parameters to be forwarded
to them.

New in version 1.4: Only available if enable_metadata_routing=True.
See Metadata Routing User Guide for more details.

Returns

y_score
[ndarray of shape (n_samples, n_classes)] Result of calling
decision_function on the final estimator.

property feature_names_in_

Names of features seen during first step fit method.

fit(X, y=None, **params)

Fit the model.

Fit all the transformers one after the other and transform the data, then fit the
transformed data using the final estimator.

Parameters

X
[iterable] Training data. Must fulfill input requirements of first step of the
pipeline.

y
[iterable, default=None] Training targets. Must fulfill label requirements for
all steps of the pipeline.

**params
[dict of str -> object]

• If enable_metadata_routing=False (default):

Parameters passed to the fitmethod of each step, where each parameter name
is prefixed such that parameter p for step s has key s__p.

• If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Changed in version 1.4: Parameters are now passed to the transform
method of the intermediate steps as well, if requested, and if
enable_metadata_routing=True is set via set_config().

See Metadata Routing User Guide for more details.

Returns

10.3. API 629

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

self
[Pipeline] This estimator.

fit_predict(X, y=None, **params)

Transform the data, and apply fit_predict with the final estimator.

Call fit_transform of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls fit_predict method.
Only valid if the final estimator implements fit_predict.

Parameters

X
[iterable] Training data. Must fulfill input requirements of first step of the
pipeline.

y
[iterable, default=None] Training targets. Must fulfill label requirements for
all steps of the pipeline.

**params
[dict of str -> object]

• If enable_metadata_routing=False (default):

Parameters to the predict called at the end of all transformations in the
pipeline.

• If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

New in version 0.20.

Changed in version 1.4: Parameters are now passed to the transform
method of the intermediate steps as well, if requested, and if
enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Note that while this may be used to return uncertainties from some models with
return_std or return_cov, uncertainties that are generated by the transfor-
mations in the pipeline are not propagated to the final estimator.

Returns

y_pred
[ndarray] Result of calling fit_predict on the final estimator.

fit_transform(X, y=None, **params)

Fit the model and transform with the final transformer.

Fit all the transformers one after the other and sequentially transform the data.
Only valid if last step of the pipeline has method transform.

Parameters

630 Chapter 10. Table of Contents

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

X
[iterable] Training data. Must fulfill input requirements of first step of the
pipeline.

y
[iterable, default=None] Training targets. Must fulfill label requirements for
all steps of the pipeline.

**params
[dict of str -> object]

• If enable_metadata_routing=False (default):

Parameters passed to the fitmethod of each step, where each parameter name
is prefixed such that parameter p for step s has key s__p.

• If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Changed in version 1.4: Parameters are now passed to the transform
method of the intermediate steps as well, if requested, and if
enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Returns

Xt
[array-like of shape (n_samples, n_transformed_features)] Transformed sam-
ples.

get_feature_names_out(input_features=None)

Get output feature names for transformation.

Transform input features using the pipeline.

Parameters

input_features
[array-like of str or None, default=None] Input features.

Returns

feature_names_out
[ndarray of str objects] Transformed feature names.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRouter] A MetadataRouter encapsulating routing information.

10.3. API 631

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRouter.html#sklearn.utils.metadata_routing.MetadataRouter

feature_engine Documentation, Release 1.7.0

get_params(deep=True)

Get parameters for this estimator.

Returns the parameters given in the constructor as well as the estimators con-
tained within the steps of the Pipeline.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns

params
[mapping of string to any] Parameter names mapped to their values.

inverse_transform(Xt, **params)

Apply inverse_transform for each step in a reverse order.

All estimators in the pipeline must support inverse_transform.

Parameters

Xt
[array-like of shape (n_samples, n_transformed_features)] Data samples,
where n_samples is the number of samples and n_features is the num-
ber of features. Must fulfill input requirements of last step of pipeline’s
inverse_transform method.

**params
[dict of str -> object] Parameters requested and accepted by steps. Each step
must have requested certain metadata for these parameters to be forwarded to
them.

New in version 1.4: Only available if enable_metadata_routing=True.
See Metadata Routing User Guide for more details.

Returns

Xt
[ndarray of shape (n_samples, n_features)] Inverse transformed data, that is,
data in the original feature space.

property n_features_in_

Number of features seen during first step fit method.

property named_steps

Access the steps by name.

Read-only attribute to access any step by given name. Keys are steps names
and values are the steps objects.

632 Chapter 10. Table of Contents

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

predict(X, **params)

Transform the data, and apply predict with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are
finally passed to the final estimator that calls predict method. Only valid if
the final estimator implements predict.

Parameters

X
[iterable] Data to predict on. Must fulfill input requirements of first step of
the pipeline.

**params
[dict of str -> object]

• If enable_metadata_routing=False (default):

Parameters to the predict called at the end of all transformations in the
pipeline.

• If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

New in version 0.20.

Changed in version 1.4: Parameters are now passed to the transform
method of the intermediate steps as well, if requested, and if
enable_metadata_routing=True is set via set_config().

See Metadata Routing User Guide for more details.

Note that while this may be used to return uncertainties from some models with
return_std or return_cov, uncertainties that are generated by the transfor-
mations in the pipeline are not propagated to the final estimator.

Returns

y_pred
[ndarray] Result of calling predict on the final estimator.

predict_log_proba(X, **params)

Transform the data, and apply predict_log_proba with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are
finally passed to the final estimator that calls predict_log_proba method.
Only valid if the final estimator implements predict_log_proba.

Parameters

X
[iterable] Data to predict on. Must fulfill input requirements of first step of
the pipeline.

**params
[dict of str -> object]

10.3. API 633

https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

• If enable_metadata_routing=False (default):

Parameters to the predict_log_proba called at the end of all transformations
in the pipeline.

• If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

New in version 0.20.

Changed in version 1.4: Parameters are now passed to the transform
method of the intermediate steps as well, if requested, and if
enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Returns

y_log_proba
[ndarray of shape (n_samples, n_classes)] Result of calling
predict_log_proba on the final estimator.

predict_proba(X, **params)

Transform the data, and apply predict_proba with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are
finally passed to the final estimator that calls predict_proba method. Only
valid if the final estimator implements predict_proba.

Parameters

X
[iterable] Data to predict on. Must fulfill input requirements of first step of
the pipeline.

**params
[dict of str -> object]

• If enable_metadata_routing=False (default):

Parameters to the predict_proba called at the end of all transformations in
the pipeline.

• If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

New in version 0.20.

Changed in version 1.4: Parameters are now passed to the transform
method of the intermediate steps as well, if requested, and if
enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Returns

634 Chapter 10. Table of Contents

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

y_proba
[ndarray of shape (n_samples, n_classes)] Result of calling predict_proba
on the final estimator.

score(X, y=None, sample_weight=None, **params)

Transform the data, and apply score with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are
finally passed to the final estimator that calls score method. Only valid if the
final estimator implements score.

Parameters

X
[iterable] Data to predict on. Must fulfill input requirements of first step of
the pipeline.

y
[iterable, default=None] Targets used for scoring. Must fulfill label require-
ments for all steps of the pipeline.

sample_weight
[array-like, default=None] If not None, this argument is passed as
sample_weight keyword argument to the score method of the final
estimator.

**params
[dict of str -> object] Parameters requested and accepted by steps. Each step
must have requested certain metadata for these parameters to be forwarded to
them.

New in version 1.4: Only available if enable_metadata_routing=True.
See Metadata Routing User Guide for more details.

Returns

score
[float] Result of calling score on the final estimator.

score_samples(X)

Transform the data, and apply score_samples with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are
finally passed to the final estimator that calls score_samples method. Only
valid if the final estimator implements score_samples.

Parameters

X
[iterable] Data to predict on. Must fulfill input requirements of first step of
the pipeline.

Returns

10.3. API 635

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

y_score
[ndarray of shape (n_samples,)] Result of calling score_samples on the
final estimator.

set_params(**kwargs)

Set the parameters of this estimator.

Valid parameter keys can be listed with get_params(). Note that you can
directly set the parameters of the estimators contained in steps.

Parameters

**kwargs
[dict] Parameters of this estimator or parameters of estimators contained in
steps. Parameters of the steps may be set using its name and the parameter
name separated by a ‘__’.

Returns

self
[object] Pipeline class instance.

set_score_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$')→ Pipeline

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config()). Please see User Guide on how the routing
mechanism works.

The options for each parameter are:

• True: metadata is requested, and passed to score if provided. The request is
ignored if metadata is not provided.

• False: metadata is not requested and the meta-estimator will not pass it to
score.

• None: metadata is not requested, and the meta-estimator will raise an error if
the user provides it.

• str: metadata should be passed to the meta-estimator with this given alias
instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some parameters
and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator
of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters

636 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

feature_engine Documentation, Release 1.7.0

sample_weight
[str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED]
Metadata routing for sample_weight parameter in score.

Returns

self
[object] The updated object.

transform(X, **params)

Transform the data, and apply transform with the final estimator.

Call transform of each transformer in the pipeline. The transformed data are
finally passed to the final estimator that calls transform method. Only valid
if the final estimator implements transform.

This also works where final estimator is None in which case all prior transfor-
mations are applied.

Parameters

X
[iterable] Data to transform. Must fulfill input requirements of first step of the
pipeline.

**params
[dict of str -> object] Parameters requested and accepted by steps. Each step
must have requested certain metadata for these parameters to be forwarded to
them.

New in version 1.4: Only available if enable_metadata_routing=True.
See Metadata Routing User Guide for more details.

Returns

Xt
[ndarray of shape (n_samples, n_transformed_features)] Transformed data.

transform_x_y(X, y, **params)

Fit the model and transform with the final estimator.

Fit all the transformers one after the other and sequentially transform the
data and the target. Only valid if the final estimator either implements
fit_transform or fit and transform.

Parameters

X
[iterable] Training data. Must fulfill input requirements of first step of the
pipeline.

y
[iterable] Training targets. Must fulfill label requirements for all steps of the
pipeline.

10.3. API 637

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

**params
[dict of str -> object]

• If enable_metadata_routing=False (default):

Parameters passed to the fitmethod of each step, where each parameter name
is prefixed such that parameter p for step s has key s__p.

• If enable_metadata_routing=True:

Parameters requested and accepted by steps. Each step must have requested
certain metadata for these parameters to be forwarded to them.

Changed in version 1.4: Parameters are now passed to the transform
method of the intermediate steps as well, if requested, and if
enable_metadata_routing=True.

See Metadata Routing User Guide for more details.

Returns

Xt
[ndarray of shape (n_samples - n_rows, n_transformed_features)] Transformed
samples.

yt
[ndarray of length (n_samples - n_rows)] Transformed target.

make_pipeline

feature_engine.pipeline.make_pipeline(*steps, memory=None, verbose=False)

Construct a Pipeline from the given estimators.

This is a shorthand for the Pipeline constructor; it does not require, and
does not permit, naming the estimators. Instead, their names will be set to the
lowercase of their types automatically.

More details in the User Guide.

Parameters

*steps
[list of Estimator objects] List of the scikit-learn estimators that are chained
together.

memory
[str or object with the joblib.Memory interface, default=None] Used to cache
the fitted transformers of the pipeline. The last step will never be cached, even
if it is a transformer. By default, no caching is performed. If a string is given,
it is the path to the caching directory. Enabling caching triggers a clone of
the transformers before fitting. Therefore, the transformer instance given to
the pipeline cannot be inspected directly. Use the attribute named_steps or
steps to inspect estimators within the pipeline. Caching the transformers is
advantageous when fitting is time consuming.

638 Chapter 10. Table of Contents

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

feature_engine Documentation, Release 1.7.0

verbose
[bool, default=False] If True, the time elapsed while fitting each step will be
printed as it is completed.

Returns

p
[Pipeline] Returns a scikit-learn Pipeline object.

See also:

Pipeline
Class for creating a pipeline of transforms with a final estimator.

Examples

>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.preprocessing import StandardScaler
>>> from feature_engine.pipeline import make_pipeline
>>>␣
→˓make_pipeline(StandardScaler(), GaussianNB(priors=None))
Pipeline(steps=[('standardscaler', StandardScaler()),

('gaussiannb', GaussianNB())])

10.3.7 Datasets

Datasets

We are starting to build a library of functions that allow you and us to quickly
load datasets to demonstrate and test the functionality of Feature-engine (and,
why not, other Python libraries).

At the moment, we support the following functions:

load__titanic

feature_engine.datasets.load_titanic(return_X_y_frame=False, predictors_only=False,
handle_missing=False, cabin=None)

The load_titanic() function returns the well-known titanic dataset.

Note that you need to have an internet connection for this function to work, as
we are calling the dataset stored in openML which can be downloaded from
here.

Parameters

return_X_y_frame: bool, default=False
If True, it returns a DataFrame (X) with the predictors and a Series (y) with
the target variable. If False, it returns a single DataFrame with predictors
and target.

10.3. API 639

https://www.openml.org/d/40945
https://www.openml.org/data/get_csv/16826755/phpMYEkMl

feature_engine Documentation, Release 1.7.0

predictors_only: bool, default=False
If False, it returns all the variables from the original Titanic Dataset. If
True, it reurns only relevant predictors.

handle_missing: bool, default=False
If False, it returns the original dataset with missing values. If True, missing
data is replaced with the string “Missing” in categorical variables and the
mean in numerical variables.

cabin: str, default=None
If None, it returns the variable cabin as in the original data. If ‘drop’, it
removes the variable from the data. If ‘letter_only’ it returns just the first
letter of the cabin, without the number.

Examples

>>> from feature_engine.datasets import load_titanic
>>>
→˓ data = load_titanic(predictors_only=True, cabin="drop")
>>> print(data.head())

pclass survived␣
→˓ sex age sibsp parch fare embarked
0 1 ␣
→˓ 1 female 29.0000 0 0 211.3375 S
1 1 ␣
→˓ 1 male 0.9167 1 2 151.5500 S
2 1 ␣
→˓ 0 female 2.0000 1 2 151.5500 S
3 1 ␣
→˓ 0 male 30.0000 1 2 151.5500 S
4 1 ␣
→˓ 0 female 25.0000 1 2 151.5500 S

10.3.8 Tools

Variable handling functions

This set of functions find variables of a specific type in a dataframe, or check
that a list of variables is of a specified data type.

The find functions take a dataframe as an argument and returns a list with the
names of the variables of the desired type.

The check functions check that the list of variables are all of the desired data
type.

The retain functions select the variables in a list if they fulfill a condition.

These functions are used under-the-hood by all Feature-engine transformers to
select the variables that they will modify.

640 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

find_all_variables

feature_engine.variable_handling.find_all_variables(X, exclude_datetime=False)

Returns a list with the names of all the variables in the dataframe. It has the
option to exlcude variables that can be parsed as datetime.

More details in the User Guide.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset

exclude_datetime: bool, default=False
Whether to exclude datetime variables.

Returns

variables: List
The names of the variables.

Examples

>>> import pandas as pd
>>> from feature_
→˓engine.variable_handling import find_all_variables
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> vars_all = find_all_variables(X)
>>> vars_all
['var_num', 'var_cat', 'var_date']

Return type
List[Union[str, int]]

find_categorical_variables

feature_engine.variable_handling.find_categorical_variables(X)

Returns a list with the names of all the categorical variables in a dataframe.
Note that variables cast as object that can be parsed to datetime will be
excluded.

More details in the User Guide.

Parameters

10.3. API 641

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset

Returns

variables: List
The names of the categorical variables.

Examples

>>> import pandas as pd
>>> from feature_engine.
→˓variable_handling import find_categorical_variables
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> var_ = find_categorical_variables(X)
>>> var_
['var_cat']

Return type
List[Union[str, int]]

find_datetime_variables

feature_engine.variable_handling.find_datetime_variables(X)

Returns a list with the names of the variables that are or can be parsed as
datetime.

Note that this function will select variables cast as object if they can be cast as
datetime as well.

More details in the User Guide.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset.

Returns

variables: List
The names of the datetime variables.

642 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> from feature_
→˓engine.variable_handling import find_datetime_variables
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> var_date = find_datetime_variables(X)
>>> var_date
['var_date']

Return type
List[Union[str, int]]

find_numerical_variables

feature_engine.variable_handling.find_numerical_variables(X)

Returns a list with the names of all the numerical variables in a dataframe.

More details in the User Guide.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset.

Returns

variables: List
The names of the numerical variables.

Examples

>>> import pandas as pd
>>> from feature_
→˓engine.variable_handling import find_numerical_variables
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> var_ = find_numerical_variables(X)
>>> var_
['var_num']

10.3. API 643

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

Return type
List[Union[str, int]]

find_categorical_and_numerical_variables

feature_engine.variable_handling.find_categorical_and_numerical_variables(X, variables=None)

Find numerical and categorical variables in a dataframe or from a list.

The function returns two lists; the first one with the names of the variables of
type object or categorical and the second list with the names of the numerical
variables.

More details in the User Guide.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset

variables
[list, default=None] If None, the function will find all categorical and nu-
merical variables in X. Alternatively, it will find categorical and numerical
variables in X, selecting from the given list.

Returns

variables: tuple
Tupe containing a list with the categorical variables, and a List with the nu-
merical variables.

Examples

>>> import pandas as pd
>>> from feature_engine.variable_handling import (
>>> find_categorical_and_numerical_variables
>>>)
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> var_cat,
→˓ var_num = find_categorical_and_numerical_variables(X)
>>> var_cat, var_num
(['var_cat'], ['var_num'])

Return type
Tuple[List[Union[str, int]], List[Union[str, int]]]

644 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

check_all_variables

feature_engine.variable_handling.check_all_variables(X, variables)

Checks that the variables in the list are in the dataframe.

More details in the User Guide.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset

variables
[list] The list with the names of the variables to check.

Returns

variables: List
The names of the variables.

Examples

>>> import pandas as pd
>>> from feature_
→˓engine.variable_handling import check_all_variables
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> vars_all = check_
→˓all_variables(X, ['var_num', 'var_cat', 'var_date'])
>>> vars_all
['var_num', 'var_cat', 'var_date']

Return type
List[Union[str, int]]

check_categorical_variables

feature_engine.variable_handling.check_categorical_variables(X, variables)

Checks that the variables in the list are of type object or categorical.

More details in the User Guide.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset

10.3. API 645

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

variables
[list] The list with the names of the variables to check.

Returns

variables: List
The names of the categorical variables.

Examples

>>> import pandas as pd
>>> from feature_engine.
→˓variable_handling import check_categorical_variables
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> var_ = check_categorical_variables(X, "var_cat")
>>> var_
['var_cat']

Return type
List[Union[str, int]]

check_datetime_variables

feature_engine.variable_handling.check_datetime_variables(X, variables)

Checks that the variables in the list are or can be parsed as datetime.

More details in the User Guide.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset

variables
[list] The list with the names of the variables to check.

Returns

variables: List
The names of the datetime variables.

646 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

Examples

>>> import pandas as pd
>>> from feature_
→˓engine.variable_handling import check_datetime_variables
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> var_date = check_datetime_variables(X, "var_date")
>>> var_date
['var_date']

Return type
List[Union[str, int]]

check_numerical_variables

feature_engine.variable_handling.check_numerical_variables(X, variables)

Checks that the variables in the list are of type numerical.

More details in the User Guide.

Parameters

X
[pandas dataframe of shape = [n_samples, n_features]] The dataset.

variables
[List] The list with the names of the variables to check.

Returns

variables: List
The names of the numerical variables.

Examples

>>> import pandas as pd
>>> from feature_engine.
→˓variable_handling import check_numerical_variables
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> var_

(continues on next page)

10.3. API 647

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

(continued from previous page)

→˓ = check_numerical_variables(X, variables=["var_num"])
>>> var_
['var_num']

Return type
List[Union[str, int]]

retain_variables_if_in_df

feature_engine.variable_handling.retain_variables_if_in_df(X, variables)

Returns the subset of variables in the list that are present in the dataframe.

More details in the User Guide.

Parameters

X: pandas dataframe of shape = [n_samples, n_features]
The dataset.

variables: string, int or list of strings or int.
The names of the variables to check.

Returns

variables_in_df: List.
The subset of variables that is present X.

Examples

>>> import pandas as pd
>>> from feature_engine.
→˓variable_handling import retain_variables_if_in_df
>>> X = pd.DataFrame({
>>> "var_num": [1, 2, 3],
>>> "var_cat": ["A", "B", "C"],
>>> "var_
→˓date": pd.date_range("2020-02-24", periods=3, freq="T")
>>> })
>>> vars_in_df = retain_variables_
→˓if_in_df(X, ['var_num', 'var_cat', 'var_other'])
>>> vars_in_df
['var_num', 'var_cat']

648 Chapter 10. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

feature_engine Documentation, Release 1.7.0

10.4 Resources

Here you find learning resources to know more about Feature-engine and fea-
ture engineering and selection in general.

We have gathered online courses, books, blogs, videos, podcasts, jupyter note-
book and kaggle kernels, so you can follow the resource with the way of learn-
ing that you like the most.

10.4.1 Courses

You can learn more about how to use Feature-engine and, feature engineering
and feature selection in general in the following online courses:

Fig. 120: Feature Engineering for Machine Learning

Fig. 121: Feature Selection for Machine Learning

Fig. 122: Forecasting with Machine Learning

10.4. Resources 649

https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://www.trainindata.com/p/feature-selection-for-machine-learning
https://www.courses.trainindata.com/p/forecasting-with-machine-learning

feature_engine Documentation, Release 1.7.0

Fig. 123: Feature Engineering for Time Series Forecast-
ing

Fig. 124: Interpreting Machine Learning Models

10.4.2 Books

You can learn more about how to use Feature-engine and
feature engineering in general in the following books:

650 Chapter 10. Table of Contents

https://www.trainindata.com/p/feature-engineering-for-forecasting
https://www.courses.trainindata.com/p/machine-learning-interpretability

feature_engine Documentation, Release 1.7.0

Fig. 126: Python Feature Engineering
Cookbook

10.4.3 Blogs, Videos and More

Here you find articles and videos about Feature-engine and feature engineering
and selection in general.

Blogs

Feature engineering

• Feature-engine: A new open-source Python package for feature engineering.

• Practical Code Implementations of Feature Engineering for Machine Learning
with Python.

• Streamlining Feature Engineering Pipelines with Feature-engine.

• Feature Engineering for Machine Learning: A comprehensive Overview.

• Variance Stabilizing Transformations.

Feature selection

• Feature selection in machine learning with Python.

• Recursive feature elimination with Python.

• Population Stability Index and feature selection in Python

• Feature Selection for Machine Learning: A comprehensive Overview.

10.4. Resources 651

https://packt.link/0ewSo
https://trainindata.medium.com/feature-engine-a-new-open-source-python-package-for-feature-engineering-29a0ab88ea7c/
https://towardsdatascience.com/practical-code-implementations-of-feature-engineering-for-machine-learning-with-python-f13b953d4bcd
https://towardsdatascience.com/practical-code-implementations-of-feature-engineering-for-machine-learning-with-python-f13b953d4bcd
https://towardsdatascience.com/streamlining-feature-engineering-pipelines-with-feature-engine-e781d551f470?gi=e0fa6e5c0c1a/
https://www.blog.trainindata.com/feature-engineering-for-machine-learning/
https://www.blog.trainindata.com/variance-stabilizing-transformations-in-machine-learning/
https://www.blog.trainindata.com/feature-selection-machine-learning-with-python/
https://www.blog.trainindata.com/recursive-feature-elimination-with-python/
https://www.blog.trainindata.com/population-stability-index-and-feature-selection-python/
https://www.blog.trainindata.com/feature-selection-for-machine-learning/

feature_engine Documentation, Release 1.7.0

Videos

• Streamlining Feature Engineering Pipes with Feature-engine, Data Science
Festival, 2020.

• Optimising Feature Engineering Pipelines with Feature-engine, Pydata Cam-
bridge 2020, from minute 51:43.

• Feature selection in machine learning - DataTalks.Club, DataTalks.Club 2022.

• Feature engineering for time series forecasting DataTalks.Club 2022.

Podcasts

• Build Composable And Reusable Feature Engineering Pipelines with Feature-
Engine.

En Español

Empezamos una nueva website con blogs en español. Chequeala:

• Entrena en Datos.

Ademas, te pueden interesar:

• Ingeniería de variables, MachinLenin, charla con video online.

More resources will be added as they appear online. If you know of a good
resource, let us know.

10.4.4 Tutorials

How To

Check our jupyter notebooks showcasing the functionality of each Feature-
engine transformer.

Kaggle Kernels

We also prepared Kaggle kernels with demos mixing data exploration, feature
engineering, feature creation, feature selection and hyperparameter optimiza-
tion of entire pipelines.

• Feature selection for bank customer satisfaction prediction

• Feature engineering and selection for house price prediction

• Feature creation for wine quality prediction

• Feature engineering and model stacking for house price modelling

• Feature engineering with Feature-engine and Randomized search

• Feature engineering with Feature-engine and Grid search

652 Chapter 10. Table of Contents

https://www.youtube.com/watch?v=0V3_uXX30Ko
https://www.youtube.com/watch?v=qT-3KUaFYmk/
https://www.youtube.com/watch?v=blvmNWbcPDo
https://www.youtube.com/watch?v=2vMNiSeNUjI
https://www.pythonpodcast.com/feature-engine-feature-engineering-pipelines-episode-338/
https://www.pythonpodcast.com/feature-engine-feature-engineering-pipelines-episode-338/
https://www.es.trainindata.com/
https://www.youtube.com/watch?v=NhCxOOoFXds
https://nbviewer.jupyter.org/github/feature-engine/feature-engine-examples/tree/main/
https://www.kaggle.com/solegalli/feature-selection-with-feature-engine
https://www.kaggle.com/solegalli/predict-house-price-with-feature-engine
https://www.kaggle.com/solegalli/create-new-features-with-feature-engine
https://www.kaggle.com/solegalli/feature-engineering-and-model-stacking
https://www.kaggle.com/solegalli/feature-engineering-with-randomized-search
https://www.kaggle.com/solegalli/feature-engineering-pipeline-and-hyperparam-tuning

feature_engine Documentation, Release 1.7.0

Video tutorials

You can find some videos on how to use Feature-engine in the Feature-engine
playlist in Train in Data’s YouTube channel. The list is a bit short at the mo-
ment, apologies.

10.5 Contribute

Feature-engine is an open source project, originally designed to support the
online course Feature Engineering for Machine Learning, but has now gained
popularity and supports transformations beyond those taught in the course.

Feature-engine is currently supported by a growing community and we will be
delighted to accept contributions, large or small, that you wish to make to the
project.

Contributing to open-source is a great way to learn and improve coding skills,
and also a fun thing to do. If you’ve never contributed to an open source project,
we hope to make it easy for you with the following guidelines.

Read more about “Why Contribute to Open-Source”.

10.5.1 Ways to contribute

There are many ways to contribute to Feature-engine:

• Create a new transformer

• Enhance functionality of current transformers

• Fix a bug

• If you find a bug, let us know by creating an issue on Github.

• If you would like additional functionality or a new feature, create an issue on
Github.

• Add a Jupyter notebook to our Jupyter notebooks example gallery.

• Improve our documentation, i.e., fix typos, improve grammar, or add more
code examples.

• Write a blog, tweet, or share our project with others.

• Use Feature-engine in your lectures if you teach.

• Sponsor us.

With plenty of ways to get involved, we would be happy for you to support the
project. You only need to abide by the principles of openness, respect, and
consideration of others, as described in the Python Software Foundation Code
of Conduct and you are ready to go!.

Read more about “Ways to Contribute to Open Source”.

10.5. Contribute 653

https://www.youtube.com/playlist?list=PL_7uaHXkQmKVlqlvgQJuaWEKjagHbERtp
https://www.youtube.com/playlist?list=PL_7uaHXkQmKVlqlvgQJuaWEKjagHbERtp
https://www.trainindata.com/p/feature-engineering-for-machine-learning
https://opensource.guide/how-to-contribute/#why-contribute-to-open-source
https://github.com/feature-engine/feature_engine/issues/
https://github.com/feature-engine/feature_engine/issues/
https://github.com/feature-engine/feature-engine-examples
https://github.com/sponsors/feature-engine
http://www.python.org/psf/codeofconduct/
http://www.python.org/psf/codeofconduct/
https://opensource.guide/how-to-contribute/#what-it-means-to-contribute

feature_engine Documentation, Release 1.7.0

10.5.2 Getting in touch

We prefer to handle most contributions through the github repository. You can
also join our Gitter community.

1. Open issues.

2. Gitter community.

10.5.3 Contributing Guide

Contribute Code

Contributing code to Feature-engine is fun and easy. If you want to make a
code contribution, you can check the issue tracker for already requested and
wanted functionality. Alternatively, you can create a new issue with function-
ality you would like to see included in Feature-engine and then work it through.

Contributing workflow

A typical contributing workflow goes like this:

1. Suggest new functionality or pick up an issue from the issue tracker.

2. Mention in the issue that you are “working on it”.

3. Fork the repository into your GitHub account.

4. Clone your fork into your local computer.

5. Set up the development environment.
6. Create a new branch with the name of your feature

7. Code the feature, the tests and update or add the documentation.

8. Commit the changes to your fork.

9. Make a Pull Request (PR) with your changes from your fork to the main repo.

10. Test the code.

11. Review the code with us.

12. Make the changes and commit them to your fork, using the same branch cre-
ated in 5.

13. When it is ready, we will merge your contribution into Feature-engine’s source
code base.

To avoid extra work or duplication, it is important that we communicate right
from the beginning, so we can build together a clear understanding of how you
would like to get involved and what is needed to complete the task. This is
particularly important for big code additions.

In the rest of the document, we will describe steps 3 to 13 in more detail.

654 Chapter 10. Table of Contents

https://github.com/feature-engine/feature_engine/issues/
https://gitter.im/feature_engine/community
https://github.com/feature-engine/feature_engine/issues/
https://github.com/feature-engine/feature_engine/issues/

feature_engine Documentation, Release 1.7.0

Fork the Repository

When you fork the repository, you create a copy of Feature-engine’s source
code into your Github account, which you can edit. To fork Feature-engine’s
repository, click the fork button in the upper right corner of Feature-engine’s
Repository.

Clone the Repository

Once you forked the repository, clone the fork to your local machine.

1. Clone your fork into your local machine:

$ git␣
→˓clone https://github.com/<YOURUSERNAME>/feature_engine

2. Set up an upstream remote from where you can pull the latest code changes
occurring in the main Feature-engine repository:

$ git remote add upstream␣
→˓https://github.com/feature-engine/feature_engine.git

3. Check that the remote was set correctly:

$ git remote -v

You should see both your fork (origin) and the main repository (upstream)
linked to your local copy:

10.5. Contribute 655

https://github.com/feature-engine/feature_engine
https://github.com/feature-engine/feature_engine

feature_engine Documentation, Release 1.7.0

origin https:/
→˓/github.com/YOUR_USERNAME/feature_engine.git (fetch)
origin https:/
→˓/github.com/YOUR_USERNAMEfeature_engine.git (push)
upstream https:/
→˓/github.com/feature-engine/feature_engine.git (fetch)
upstream https:/
→˓/github.com/feature-engine/feature_engine.git (push)

Keep in mind that Feature-engine is being actively developed, so you may need
to update your fork regularly. See below how to Keep your fork up to date.

Set up the Development Environment

After creating a local copy of the repo, you need to set up the development
environment. Setting up a development environment will ensure that you have
all the libraries you need for the development, no more and no less. These
libraries include Feature-engine dependencies, like Pandas, NumPy and Scikit-
learn and also software development libraries like pytest, mypy, flake8, isort
and black.

It is optional but highly advisable that you create a virtual environment. A vir-
tual environment is a “separate space”, where you can install Feature-engine’s
dependencies. To create a virtual environment, use any virtual environment
tool of your choice. Some examples include:

1. venv

2. conda environments

In the previous links, you find details on how to create the environments. We
provide some guidelines below.

venv

If you use venv, from the windows cmd or Mac terminal, create and activate
the environment like this:

python -m venv /path/to/new/virtual/environment

For example I would do:

python -m venv Documents/Repositories/envs/featureengine

where “featureengine” will be the name of the environment and “Docu-
ments/Repositories/envs” the location where the environment will be created.

Then, to activate the environment, run:

Documents/Repositories/envs/featureengine/Scripts/activate

Note for windows users: you may need to use \ instead of /.

656 Chapter 10. Table of Contents

https://github.com/feature-engine/feature_engine/blob/main/requirements.txt
https://github.com/feature-engine/feature_engine/blob/main/test_requirements.txt
https://docs.python.org/3/library/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

feature_engine Documentation, Release 1.7.0

conda

If you are using anaconda, from your conda prompt, create and activate the
environment like this:

conda create --name myenv

where “myenv” will be the name of the environment, so you probably want to
change that to something more meaningful.

Then, to activate the environment, run:

conda activate myenv

Install dependencies

Now, you are ready to install all dependencies, that is, all the Python libraries
used by Feature-engine. First, navigate to your clone of Feature-engine:

$ cd feature_engine

Now, install Feature_engine in developer mode:

$ pip install -e .

Don’t forget the . after the -e. This will add Feature-engine to your PYTHON-
PATH so your code edits are automatically picked up, and there is no need
to re-install the package after each code change. This will also install Fea-
ture’engine’s dependencies.

Finally, install the additional dependencies for tests and documentation:

$ pip install -r test_requirements.txt
$ pip install -r docs/requirements.txt

Make sure that your local main branch is up to date with the remote main
branch:

$ git pull --rebase upstream main

If you just cloned your fork, your local main branch should be up to date. If
you cloned your fork a time ago, probably the main repository had some code
changes. To sync your fork main branch to the main repository, read below the
section Keep your fork up to date.

10.5. Contribute 657

feature_engine Documentation, Release 1.7.0

Create a branch

It is important to create a new branch, different from main, where you will
code your changes. It is advisable, almost never to work on the main branch.

Create a new branch where you will develop your feature:

$ git checkout -b myfeaturebranch

where “myfeaturebranch” is the name you choose for your branch.

There are 3 things to keep in mind when creating a feature branch:

1. Give the branch a name that identifies the feature you are going to build.

2. Make sure you checked out your branch from the main branch.

3. Make sure your local main branch was updated with the upstream main branch.

Code your feature

Now, you are ready to make your code changes. When you develop a new
feature, fix a bug, or make any code contribution, there are a few things to
consider:

1. Make regular code commits to your branch, locally.

2. Give clear messages to your commits, indicating which changes were made at
each commit (use present tense).

3. Try and push regularly to your fork, so that you don’t lose your changes.

Commit

Make small changes and commit immediately. This way it is easier to track
what was changed. To commit changes do the following:

$ git add .
$ git commit -m "my commit message"

and make sure to include an informative but succinct commit message in the
present tense, for example “fix style in imputation error message”.

The previous commands will commit all files that have changes. If you want
to commit just 1 or 2 files, you can do so as follows:

$ git add file1.py file2.py
$ git commit -m "my commit message"

It is important that you commit only the files relevant to your feature, and not
others that may have been accidentally changed, for example through code
styling (more on this in Test the Code below).

After making a few commits, push your changes to your fork:

$ git push origin myfeaturebranch

658 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

This will automatically create a branch in your remote fork called “myfeature-
branch” containing all your changes.

Make a Pull Request

After pushing the first changes, go to your fork in Github. You will see the
branch you just pushed and next to it a button to create a PR (Pull Request).
Go ahead and create a PR from your feature branch to Feature_engine’s main
branch. In the PR message, describe what the overall aim of the PR is, and if
it resolves an issue, link the issue in the message. This will notify us of your
changes.

Don’t worry, you can continue making changes and committing more code to
the branch. You basically need to repeat these steps as often as you need:

$ git add .
$ git commit -m "my commit message"
$ git push origin myfeaturebranch

Once you think your code is ready to review, leave a message in the PR saying
“please review” or something similar.

Create Docstrings

If you are coding an entire new class, make sure you follow our guidelines to
create the docstrings.

Test the Code

The code you submit must pass any test you add plus all current tests in the
library. The tests are triggered automatically when you first make a PR, and
then any time you commit new changes to the PR. It is important that the tests
pass when you ask us for review.

We have tests for:

1. Functionality, using pytest

2. Code style, using flake8

3. Typehints, using mypy

4. Documentation, using sphinx.

5. Coverage using coverage

In the following paragraphs, we will take you through how to test each of the
above.

10.5. Contribute 659

feature_engine Documentation, Release 1.7.0

Test functionality

We use pytest to create and run our tests. If you set up the development envi-
ronment as we described previously, you should have pytest installed. Alter-
natively, run from the windows cmd or mac terminal:

$ pip install pytest

You can now run the tests from your command line interface. Make sure you
are within the feature-engine folder. Then run:

$ pytest

These command will run all the test scripts within the test folder. It will take
a few minutes.

Alternatively, you can run a specific script as follows:

$ pytest tests/test_encoding/test_onehot_encoder.py

The previous command will just run the tests for the one hot encoder.

It will be faster if you just test the code you created, in which case you would
do:

$ pytest␣
→˓tests/test_my_new_feature_folder/test_my_new_feature.py

where test_my_new_feature.py is the name of your test script, and it is located
in the test_my_new_feature_folder.

If you are using Pycharm, this is even easier:

1. In your project directory (where you have all the files and scripts), right click
with the mouse on the folder “tests”.

2. Select “Run pytest in tests”.

This will run all tests.

To run your specific tests:

1. Locate your test file

2. Right click with the mouse on the test file.

3. Select “Run pytest in tests”.

Sweet, isn’t it?

With the above procedure you can also “click” on your individual test script
and run only those tests.

660 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Code coverage

We use coverage to test the extend of coverage of our tests. To evaluate the
code coverage, you need to run pytest with coverage:

$ coverage run -m pytest

And then, you can visualize the report like this:

$ coverage report

If you see that there is coverage missing in any of the classes you are working
with, try to add tests to increase coverage. We aim for 97%.

Test Code Style

We follow PEP8 and we keep our code lines up to 88 characters. Before testing
the code style, make sure to automatically fix anything that might not abide by
PEP8 with **black** and **isort**.

If you set up the development environment as we described previously, you
should have these libraries installed. Alternatively, run from the windows cmd
or mac terminal:

$ pip install black
$ pip install isort

Then, you can sort the imports alphabetically by running:

$ isort my_new_script.py

You can fix code style by running:

$ black my_new_script.py

You need to run isort and black on both code files and test files.
Black and isort may make changes to your file. Don’t forget to commit those
changes:

$ git add my_new_script.py
$ git commit -m "fix code style"
$ git push origin my_feature_branch

Now, you can go ahead and test that your scripts pass the code styling tests. To
do so, execute from the command line:

$ flake8 my_new_script.py

If the flake8 test pass, you are good to go. Alternatively, you will get an error,
indicating which line of code is not following the coding convention.

10.5. Contribute 661

https://pypi.org/project/coverage/
https://pep8.org/
https://pypi.org/project/black/
https://pypi.org/project/isort/

feature_engine Documentation, Release 1.7.0

Test Typehint

We use Typehint. To test typehinting we use **mypy**.

If you set up the development environment as we described previously, you
should have mypy installed. Alternatively, run from the windows cmd or mac
terminal:

$ pip install mypy

now, you test typehint by running:

$ mypy feature_engine

A few things to notice:

• We use typehint only on the code base and not on the tests.

• You need to run mypy on the entire module and not just your script.

Otherwise, you will most likely get an error.

Test the docs

If after running pytest, black and mypy you do not get errors, you are only left
with testing that the documentation builds correctly.

To do this, first make sure you have all the documentation dependencies in-
stalled. If you set up the environment as we described previously, they should
be installed. Alternatively, from the windows cmd or mac terminal, run:

$ pip install -r docs/requirements.txt

Make sure you are within the feature_engine module when you run the previous
command.

Now, you can go ahead and build the documentation:

$ sphinx-build -b html docs build

This will trigger the building of the docs, which will be stored in html format
in the “build” folder within the repository. You can open those up with your
browser. But the important thing is that you do not get any red warning during
the build process.

Using tox

In Feature-engine, we use tox to run all our tests automatically. If you want to
run all the tests using tox locally:

1. Install tox in your development environment:

$ pip install tox

2. Make sure you are in the repository folder, alternatively:

662 Chapter 10. Table of Contents

https://www.python.org/dev/peps/pep-0484/
http://mypy-lang.org/

feature_engine Documentation, Release 1.7.0

$ cd feature_engine

3. Run the tests in tox:

$ tox

Just writing tox, will trigger automatically the functionality tests, code styling
tests, typehint tests and documentation test. These will test the entire Feature-
engine ecosystem and not just your new scripts, so it will be more time con-
suming.

If the tests pass, the code is in optimal condition :)

A few things to note:
Tox runs our tests in Python versions 3.6, 3.7, 3.8 and 3.9. However, it will only
be able to run the tests in the version you have installed locally. All others will
fail. This is OK. As long as the tests in the Python version you have installed
pass, you are good to go.

Tox may modify some local files that are not relevant to your feature. Please
DO NOT add those files to your PR.

If you want to know more about tox check this link. If you want to know why
we prefer tox, this article will tell you everything ;)

Review Process

Once your contribution contains the new code, the tests and the documentation,
you can request a review by mentioning that in a comment in the Pull Request.
Likely, there will be some back and forth until the final submission. We will
work together to get the code in the final shape.

If you feel you would like to clarify something before the first draft is done, or
if you can’t get some tests to pass, do not hesitate to mention that in a comment,
and we will try to help.

We aim to review PRs within a week. If for some reason we can’t, we will
let you know through the PR as well.
Once the submission is reviewed and provided the continuous integration tests
have passed and the code is up to date with Feature-engine’s main branch, we
will be ready to “Squash and Merge” your contribution into the main branch
of Feature-engine. “Squash and Merge” combines all of your commits into a
single commit which helps keep the history of the repository clean and tidy.

Once your contribution has been merged into main, you will be listed as a
Feature-engine contributor :)

10.5. Contribute 663

https://tox.readthedocs.io
https://christophergs.com/python/2020/04/12/python-tox-why-use-it-and-tutorial/

feature_engine Documentation, Release 1.7.0

Merge Pull Requests

Only Core contributors have write access to the repository, can review and
merge pull requests. Some preferences for commit messages when merging in
pull requests:

• Make sure to use the “Squash and Merge” option in order to create a Git history
that is understandable.

• Keep the title of the commit short and descriptive; be sure it links all related
issues.

Releases

After a few features have been added to the main branch by yourself and other
contributors, we will merge main into a release branch, e.g. 1.2.X, to release
a new version of Feature-engine to PyPI and conda-forge.

Keep your Fork up to Date

When you’re collaborating using forks, it’s important to update your fork to
capture changes that have been made by other collaborators.

If your feature takes a few weeks or months to develop, it may happen that new
code changes are made to Feature_engine’s main branch by other contributors.
Some of the files that are changed maybe the same files you are working on.
Thus, it is really important that you pull and rebase the upstream main branch
into your feature branch. To keep your branches up to date:

1. Check out your local main branch:

$ git checkout main

If your feature branch has uncommitted changes, it will ask you to commit or
stage those first. Refer to the commit guidelines we described above.

2. Pull and rebase the upstream main branch on your local main branch:

$ git pull --rebase upstream main

Your main should be a copy of the upstream main after this. If was is not, there
may appear some conflicting files. You will need to resolve these conflicts and
continue the rebase.

3. Pull the changes to your fork:

$ git push -f origin main

The previous command will update your fork (remote) so that your fork’s main
branch is in sync with Feature-engine’s main. Now, you need to rebase main
onto your feature branch.

4. Check out your feature branch:

$ git checkout myfeaturebranch

664 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

5. Rebase main onto it:

$ git rebase main

Again, if conflicts arise, try and resolve them and continue the rebase.

Now you are good to go to continue developing your feature.

Contribute Docs

If you contribute a new transformer, or enhance the functionality of a current
transformer, most likely, you would have to add or update the documentation
as well.

This is Feature-engine’s documentation ecosystem:

• Feature-engine documentation is built using Sphinx and is hosted on Read the
Docs.

• We use the pydata sphinx theme.

• We follow PEP 257 for doscstring conventions and use numpydoc docstring
style.

• All documentation files are located within the docs folder in the repository.

To learn more about Sphinx check the Sphinx Quickstart documentation.

Documents organisation

Feature-engine has just adopted Scikit-learn’s documentation style, were we
offer API documentation, as well as, a User Guide with examples on how to
use the different transformers.

The API documentation is built directly from the docstrings from each trans-
former. If you are adding a new transformer, you need to reference it in a new
rst file placed within the api_doc folder.

If you would like to add additional examples, you need to update the rst files
located in the user_guide folder.

Docstrings

The quickest way to get started with writing the transformer docstrings, is too
look at the docstrings of some of the classes we already have in Feature-engine.
Then simply copy and paste those docstrings and edit the bits that you need.
If you copy and paste, make sure to delete irrelevant parameters and methods.

10.5. Contribute 665

https://www.sphinx-doc.org
https://readthedocs.org/
https://readthedocs.org/
https://pypi.org/project/pydata-sphinx-theme/
https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html
https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/feature-engine/feature_engine/tree/main/docs
https://www.sphinx-doc.org/en/master/usage/quickstart.html
https://github.com/feature-engine/feature_engine/tree/main/docs/api_doc
https://github.com/feature-engine/feature_engine/tree/main/docs/user_guide

feature_engine Documentation, Release 1.7.0

Link a new transformer

If you coded a new transformer from scratch, you need to update the following
files to make sure users can find information on how to use the class correctly:

Add the name of your transformer in these files:

• Readme.

• main index.

• api index.

• user guide index.

Add an rst file with the name of your transformer in these folders:

• api_doc folder.

• user_guide folder.

That’s it!

Expand the User Guide

You can add more examples or more details to our current User Guide exam-
ples. First, find the relevant rst file for the transformer you would like to work
with. Feel free to add more details on the description of the method, expand
the code showcasing other parameters or whatever you see fit.

We normally run the code on jupyter notebooks, and then copy and paste the
code and the output in the rst files.

Build the documentation

To build the documentation, make sure you have properly installed Sphinx and
the required dependencies. If you set up the development environment as we
described in the contribute code guide, you should have those installed already.

Alternatively, first activate your environment. Then navigate to the root folder
of Feature-engine. And now install the requirements for the documentation:

$ pip install -r docs/requirements.txt

To build the documentation (and test if it is working properly) run:

$ sphinx-build -b html docs build

This command tells sphinx that the documentation files are within the “docs”
folder, and the html files should be placed in the “build” folder.

If everything worked fine, you can open the html files located in build using
your browser. Alternatively, you need to troubleshoot through the error mes-
sages returned by sphinx.

Good luck and get in touch if stuck!

666 Chapter 10. Table of Contents

https://github.com/feature-engine/feature_engine/blob/main/README.md
https://github.com/feature-engine/feature_engine/blob/main/docs/index.rst
https://github.com/feature-engine/feature_engine/tree/main/docs/api_doc/index.rst
https://github.com/feature-engine/feature_engine/tree/main/docs/user_guide/index.rst
https://github.com/feature-engine/feature_engine/tree/main/docs/api_doc
https://github.com/feature-engine/feature_engine/tree/main/docs/user_guide

feature_engine Documentation, Release 1.7.0

Contribute Jupyter notebooks

We created a collection of Jupyter notebooks that showcase the main function-
ality of Feature-engine’s transformers. We link these notebooks throughout
the main documentation to offer users more examples and details about trans-
formers and how to use them.

Note that the Jupyter notebooks are hosted in a separate Github repository.

Here are some guidelines on how to add a new notebook or update an existing
one. The contribution workflow is the same we use for the main source code
base.

Jupyter contribution workflow

1. Fork the Github repository.

2. Clone your fork into your local computer: git clone https://github.
com/<YOURUSERNAME>/feature-engine-examples.git.

3. Navigate into the project directory: cd feature-engine-examples.

4. If you haven’t done so yet, install feature-engine: pip install
feature_engine.

5. Create a feature branch with a meaningful name: git checkout -b
mynotebookbranch.

6. Develop your notebook

7. Add the changes to your copy of the fork: git add ., git
commit -m "a meaningful commit message", git pull origin
mynotebookbranch.

8. Go to your fork on Github and make a PR to this repo

9. Done

The review process for notebooks is usually much faster than for the main
source code base.

Jupyter creation guidelines

If you want to add a new Jupyter notebook, there are a few things to note:

• Make sure that the dataset you use is publicly available and with a clear license
that it is free to use

• Do not upload datasets to the repository

• Add instructions on how to obtain and prepare the data for the demo

• Throughout the notebook, add guidelines on what you are going to do next,
and what is the conclusion of the output

That’s it! Fairly straightforward.

We look forward to your contribution :)

10.5. Contribute 667

https://github.com/feature-engine/feature-engine-examples
https://github.com/feature-engine/feature-engine-examples

feature_engine Documentation, Release 1.7.0

Other ways to contribute

A common misconception about contributing to open source is that you need to
contribute code. Equally important to the code contributions are contributions
to the documentation or to the gallery of examples on how to use the project,
which we already discussed.

However, a good project does no-one any good if people don’t know about it.
So spreading the word about Feature-engine is extremely important. You will
do the project a big favor if you help us spread the word about Feature-engine.

Here are some examples of how you could do that:

Spread the word

1. Star Feature-engine’s Repository.

2. Share Feature-engine or any of our blogs and videos on social media.

3. Write a blog about Feature-engine.

4. Give a talk about Feature-engine or mention it in one of your talks.

5. If you teach, use Feature-engine in your lectures.

6. Share Feature-engine with your colleagues.

If you write a blog or give a talk that is publicly available, and it features
Feature-engine, let us know so we link it to the project or share it on social.

If you teach Feature-engine, give a shout-out on Twiter or LinkedIn and tag
the maintainers.

If you have other ideas on how to spread the word, let us know or update this
page straightaway.

We are also happy to talk about the project in talks and podcasts. If you host
a meetup or a podcast channel, do get in touch.

Sponsor us

Empower Sole, the main developer of Feature-engine, to assemble a team of
paid contributors to accelerate the development of Feature-engine.

Currently, Sole and our contributors dedicate their free time voluntarily to ad-
vancing the project. You can help us reach a funding milestone, so that we
can gather on a group of 2-3 contributors who will commit regular hours each
week to enhance documentation and expand Feature-engine’s functionality at
a faster pace. Your contribution will play a vital role in propelling Feature-
engine to new heights, ensuring it remains a valuable resource for the data
science community.

If you don’t have a Github account, you can also sponsor us here.

668 Chapter 10. Table of Contents

https://github.com/feature-engine/feature_engine
https://github.com/sponsors/solegalli
https://github.com/sponsors/solegalli
https://buymeacoffee.com/solegalliy

feature_engine Documentation, Release 1.7.0

Code of Conduct

Feature-engine is an open source Python project. We follow the Python Soft-
ware Foundation Code of Conduct. All interactions among members of the
Feature-engine community must meet those guidelines. This includes (but is
not limited to) interactions through the mailing list, GitHub and StackOver-
flow.

Everyone is expected to be open, considerate, and respectful of others no mat-
ter what their position is within the project. We show gratitude for any con-
tribution, big or small. We welcome feedback and participation. We want to
make Feature-engine a nice, welcoming and safe place for you to do your first
contribution to open source, and why not the second, the third and so on :).

10.6 About

In this section you will find information about the Feature-engine’s origin,
main developers, roadmap and overall vision for the package. You will also
find information about how to cite Feature-engine and our main sponsors.

10.6.1 About

History

Data scientists spend a huge amount of time on data pre-processing and trans-
formation. It would be great (we thought back in the day) to gather the most fre-
quently used data pre-processing techniques and transformations in a library,
from which we could pick and choose the transformation that we need, and use
it just like we would use any other sklearn class. This was the original vision
for Feature-engine.

Feature-engine is an open source Python package originally designed to sup-
port the online course Feature Engineering for Machine Learning, but has now
gained popularity and supports transformations beyond those taught in the
course. It was launched in 2017, and since then, several releases have appeared
and a growing international community is beginning to lead the development.

10.6. About 669

https://github.com/sponsors/solegalli
http://www.python.org/psf/codeofconduct/
http://www.python.org/psf/codeofconduct/
https://courses.trainindata.com/p/feature-engineering-for-machine-learning

feature_engine Documentation, Release 1.7.0

Governance

The decision making process and governance structure of Feature-engine is
laid out in the **governance document**.

Core contributors

The following people are currently core contributors to Feature-engine’s de-
velopment and maintenance:

Former core contributors

The following people are former core contributors to Feature-engine’s devel-
opment and maintenance:

Contributors

A growing international community is beginning to lead Feature-engine’s de-
velopment. You can learn more about Feature-engine’s Contributors in the
GitHub contributors page.

Citing Feature-engine

If you use Feature-engine in a scientific publication, you can cite the follow-
ing paper: Galli, S., (2021). Feature-engine: A Python package for feature
engineering for machine learning. Journal of Open Source Software, 6(65),
3642.

Bibtex entry:

@article{Galli2021,
doi = {10.21105/joss.03642},
url = {https://doi.org/10.21105/joss.03642},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {65},

(continues on next page)

670 Chapter 10. Table of Contents

https://github.com/feature-engine/feature_engine/graphs/contributors
https://github.com/feature-engine/feature_engine/graphs/contributors
https://zenodo.org/badge/latestdoi/163630824
https://joss.theoj.org/papers/10.21105/joss.03642
https://joss.theoj.org/papers/10.21105/joss.03642
https://joss.theoj.org/papers/10.21105/joss.03642

feature_engine Documentation, Release 1.7.0

(continued from previous page)

pages = {3642},
author = {Soledad Galli},
title = {Feature-engine: A Python␣
→˓package for feature engineering for machine learning},
journal = {Journal of Open Source Software}
}

You can also find a DOI (digital object identifier) for every version of Feature-
engine on zenodo.org; use the BibTeX on this site to reference specific versions
of the software.

Artwork

High quality PNG and SVG logos are available in the docs/images/ source
directory of the repository.

10.6.2 Governance

The purpose of this document is to formalize the governance process used by
the Feature-engine project and clarify how decisions are made and how the
community works together. This is the first version of our governance policy
and will be updated as our community grows and more of us take on different
roles.

Roles and Responsibilities

Contributors

Contributors are community members who contribute in various ways to the
project. Anyone can become a contributor, and contributions can be of various
forms, not just code. To see how you can help check the **Contribute page**.

10.6. About 671

https://zenodo.org/badge/latestdoi/163630824
https://github.com/feature-engine/feature_engine/tree/main/docs/images/logo

feature_engine Documentation, Release 1.7.0

Core Contributors

Core Contributors are community members who are dedicated to the continued
development of the project through ongoing engagement with the community.
Core Contributors are expected to review code contributions, can approve and
merge pull requests, can decide on the fate of pull requests, and can be involved
in deciding major changes to the Feature-engine API. Core Contributors de-
termine who can join as a Core Contributor.

Founder and Leadership

Feature-engine was founded by Soledad Galli who at the time was solely re-
sponsible for the initial prototypes, documentation, and dissemination of the
project. In the tradition of Python, Sole is referred to as the “benevolent dic-
tator for life” (BDFL) of the project, or simply, “the founder”. From a gover-
nance perspective, the BDFL has a special role in that they provide vision,
thought leadership, and high-level direction for the project’s members and
contributors. The BDFL has the authority to make all final decisions for the
Feature-engine Project. However, in practice, the BDFL, chooses to defer that
authority to the consensus of the community discussion channels and the Core
Contributors. The BDFL can also propose and vote for new Core Contributors.

Join the community

Feature-engine is currently looking to expand the team of Core Contributors,
if you are interested, please get in touch.

If you want to Contribute to the project in any other way, get in touch using
our Github issues page or through Gitter:

1. Github issues.

2. Gitter community.

10.6.3 Roadmap

This document provides general directions on what the core contributors would
like to see developed in Feature-engine. As resources are limited, we can’t
promise when or if the transformers listed here will be included in the library.
We welcome all the help we can get to support this vision. If you are interested
in contributing, please get in touch.

Purpose

Feature-engine’s mission is to simplify and streamline the implementation of
end-to-end feature engineering pipelines. It aims to help users both during the
research phase and while putting a model in production.

Feature-engine makes data engineering easy by allowing the selection of fea-
ture subsets directly within its transformers. It also interlaces well with ex-
ploratory data analysis (EDA) by returning dataframes for easy data explo-
ration.

672 Chapter 10. Table of Contents

https://www.linkedin.com/in/soledad-galli/
https://github.com/feature-engine/feature_engine/issues/
https://gitter.im/feature_engine/community

feature_engine Documentation, Release 1.7.0

Feature-engine’s transformers preserve Scikit-learn functionality with the
methods fit() and transform() and can be integrated into a Pipeline to simplify
putting the model in production.

Feature-engine was designed to be used in real settings. Each transformer has a
concrete aim, and is tailored to certain variables and certain data. Transformers
raise errors and warnings to support the user to use a suitable transformation
given the data. These errors help avoid inadvertedly incorporating missing
values to the dataframe at unwanted stages of the development.

Vision

At the moment, Feature-engine’s functionality is tailored to tabular data, with
numerical, categorical, or datetime variables. We started supporting the cre-
ation of features for time series forecasting in 2022.

But we would like to extend Feature-engine’s functionality to work with text
and time series, as well as, expand its current functionality for tabular data.

In the following figure we show the overall structure and vision for Feature-
engine:

Fig. 128: Feature-engine structure

10.6. About 673

feature_engine Documentation, Release 1.7.0

Current functionality

Most of the functionality for tabular data is already included in the package.
We expand and update this arm of the library, based on user feedback and
suggestions, and our own research in the field. In grey, the transformers that
are not yet included in the package:

Fig. 129: Transformers for tabular data

The current transformations supported by Feature-engine return features that
are easy to interpret, and the effects of the transformations are clear and easy
to understand. The original aim of Feature-engine was to provide technology
that is suitable to create models that will be used in real settings, and return
understandable variables.

Having said this, more and more, users are requesting features to combine or
transform variables in ways that would return features that are not human read-
able, in an attempt to improve model performance and perhaps have an edge in
data science competitions. We are currently contemplating the incorporation
of this functionality to the package.

Wanted functionality

We would also like to add a module that returns straightforward features from
simple text variables, to capture text complexity, like for example counting the
number of words, unique words, lexical complexity, number of paragraphs and
sentences. We would also consider integrating the Bag of Words and TFiDF
from sklearn with a wrapper that returns a dataframe ready to use to train ma-
chine learning models. Below we show more detail into these new modules.

In addition, we would like to expand our module for time series forecasting
features. The transformations we are considering are shown in this image:

674 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Fig. 130: New models wanted: datetime and text
10.6. About 675

feature_engine Documentation, Release 1.7.0

Fig. 131: Time series module and the transformations envisioned

Goals

Our main goals are:

• Continue maintaining a high-quality, well-documented collection of canonical
tools for data processing.

• Expand the documentation with more examples about Feature-engine’s func-
tionality.

• Expand the documentation with more detail on how to contribute to the pack-
age.

• Expand the library’s functionality as per the precedent paragraphs.

For more fine-grained goals and current and lined-up issues please visit the
issues section in our repo.

676 Chapter 10. Table of Contents

https://github.com/feature-engine/feature_engine/issues/

feature_engine Documentation, Release 1.7.0

10.7 What’s new

Find out what’s new in each new version release.

10.7.1 Version 1.7.X

Version 1.7.0

Deployed: 24th March 2024

Contributors

• dlaprins

• Gleb Levitski

• Chris Samiullah

• Morgan Sell

• Darigov Research

• Soledad Galli

There are a few big additions in this new release. First, we introduce a new
Pipeline that supports transformers that remove rows from the dataset dur-
ing the data transformation. From now on, you can use DropMissingData,
OutlierTrimmer, LagFeatures and WindowFeatures as part of a feature
engineering pipeline that will transform your variables, re-align the target to
the remaining rows if necessary, and then fit a model. All in one go!

10.7. What’s new 677

https://github.com/dlaprins
https://github.com/GLevv
https://github.com/christophergs
https://github.com/Morgan-Sell
https://github.com/darigovresearch
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

In addition, transformers that remove rows from the dataset,
like DropMissingData, OutlierTrimmer, LagFeatures and
WindowFeatures, can now adjust the target value to the remaining
rows through the new method transform_x_y.

The third big improvement consists in a massive speed optimization of our
correlation transformers, which now find and remove correlated features at
doble the speed, and also, let you easily identify the feature against which the
correlated ones were determined.

Other than that, we did a lot of work to catch up with the latest developments
of Scikit-learn and pandas, to ensure that our transformers keep on being com-
patible. That being said, we are a small team and maintenance is hard for us,
so we’ve deprecated support of earlier releases of these libraries.

Read on to find out more what we’ve been up to!

New functionality

• We now have a Pipeline() and make_pipeline that support transformers
that remove rows from the dataset (Soledad Galli)

• DropMissingData, OutlierTrimmer, LagFeatures,
ExpandingWindowFeatures and WindowFeatures have the method
transform_x_y to remove rows from the data and then adjust the target
variable (Soledad Galli)

Enhancements

• DropCorrelatedFeatures() and SmartCorrelationSelection have a
new attribute to indicate which feature will be retained from each correlated
group (Soledad Galli, dlaprins)

• DropCorrelatedFeatures() and SmartCorrelationSelection are
twice as fast and can sort variables based on variance, cardinality or
alphabetically before the search (Soledad Galli, dlaprins)

• LagFeatures can now impute the introduced nan values (Soledad Galli)

Bug fixes

• DropCorrelatedFeatures() and SmartCorrelationSelection are now
deterministic (Soledad Galli, Gleb Levitski, dlaprins)

In addition to these bug fixes, we fixed other pandas, and scikit-learn new ver-
sion and deprecation related bugs.

678 Chapter 10. Table of Contents

https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/dlaprins
https://github.com/solegalli
https://github.com/dlaprins
https://github.com/solegalli
https://github.com/solegalli
https://github.com/GLevv
https://github.com/dlaprins

feature_engine Documentation, Release 1.7.0

Code improvements

• Improves logic to select the variables to examine in all feature selection trans-
formers (Soledad Galli)

• Add circleCI tests for python 3.11 and 3.12 (Soledad Galli, Chris Samiullah)

Documentation

• Improve user guide for DropCorrelatedFeatures() and
SmartCorrelationSelection (Soledad Galli)

• Improve user guide for DropMissingData()`(`Soledad Galli)

• Improve user guide for OutlierTrimmer()`(`Soledad Galli)

• Improve user guide for LagFeatures, ExpandingWindowFeatures and
WindowFeatures`(`Soledad Galli)

• Add user guide for Pipeline (Soledad Galli)

• Improve feature creation user guide index (Soledad Galli and Morgan Sell)

• Make one click copyable code in Readme (Darigov Research)

Deprecations

• We remove support for Python 3.8 (Soledad Galli)

• We bump the dependencies on pandas and Scikit-learn to their latest versions
(Soledad Galli)

10.7.2 Version 1.6.X

Version 1.6.2

Deployed: 18th September 2023

Contributors

• Giorgio Segalla

• David Cortes

• Kyle Gilde

• Darigov Research

• Soledad Galli

10.7. What’s new 679

https://github.com/solegalli
https://github.com/solegalli
https://github.com/christophergs
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/Morgan-Sell
https://github.com/darigovresearch
https://github.com/solegalli
https://github.com/solegalli
https://github.com/GiorgioSgl
https://github.com/david-cortes
https://github.com/kylegilde
https://github.com/darigovresearch
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

New functionality

• MatchVariables() can now also match the dtypes of the variables (Kyle
Gilde)

• DatetimeFeatures() and DatetimeSubtraction() can now specify the
format of the datetime variables (Soledad Galli)

• Add inverse_transform method to YeoJohnsonTransformer() (Giorgio
Segalla)

Bug fixes

This bugs were introduced by the latest releases of pandas, Scikit-learn and
Scipy.

• Fix failing test for YeoJohnsonTransformer() (Soledad Galli)

• Fix failing test for RareLabelEncoder() (Soledad Galli)

• Fix failing test for DatetimeFeatures() (Soledad Galli)

• Fix failing test for many encoders: removed downcast=infer as it will be
deprecated (Soledad Galli)

• Fix version related failing style checks (Soledad Galli)

• Fix version related failing type checks (Soledad Galli)

• Fix version related failing doc checks (Soledad Galli)

• Fix future warning categorical imputation (Soledad Galli)

Code improvements

• Routine in DatetimeFeatures() does not enter into our check for utc=True
when working with different timezones any more (Soledad Galli)

• Improve performance in OneHotEncoder() (Soledad Galli)

• Add check for dupicated variable names in dataframe (David Cortes)

Documentation

• Fix various typos in user guide (Soledad Galli)

• Update readthedocs.yml file (Soledad Galli)

• Add link to license in Readme (Darigov Research)

680 Chapter 10. Table of Contents

https://github.com/kylegilde
https://github.com/kylegilde
https://github.com/solegalli
https://github.com/GiorgioSgl
https://github.com/GiorgioSgl
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/david-cortes
https://github.com/solegalli
https://github.com/solegalli
https://github.com/darigovresearch

feature_engine Documentation, Release 1.7.0

Version 1.6.1

Deployed: 8th June 2023

Contributors

• dlaprins

• Claudio Salvatore Arcidiacono

• Morgan Sell

• Gleb Levitski

• Soledad Galli

In this release, we make Feature-engine compatible with pandas 2.0, extend the
functionality of some transformers, and we fix bugs introduced in the previous
release.

Thank you so much to all contributors, Gleb Levitski and Claudio Salvatore
Arcidiacono for helping with review and to those of you who created issues
flagging bugs or requesting new functionality.

New functionality

• The Population Stability Index can now be used to evaluate categorical vari-
ables (dlaprins and Claudio Salvatore Arcidiacono)

• RelativeFeatures has the option to add a constant to avoid dividing by zero
(Morgan Sell and Soledad Galli)

• SelectByShuffling now accepts sample weights (Soledad Galli)

• WoEEncoder now let’s you know which variables fail in the encoding (Soledad
Galli)

• WoEEncoder has the option to add a constant to avoid dividing by zero
(Soledad Galli)

Bug fixes

• Fixed various bugs in RareLabelEncoder() (Soledad Galli)

• Renamed transform method in base classes to
check_transform_input_and_state, which fixed bugs raised when
set_output(transform="pandas") in various classes (Soledad Galli and
Claudio Salvatore Arcidiacono)

10.7. What’s new 681

https://github.com/dlaprins
https://github.com/ClaudioSalvatoreArcidiacono
https://github.com/Morgan-Sell
https://github.com/GLevv
https://github.com/solegalli
https://github.com/GLevv
https://github.com/ClaudioSalvatoreArcidiacono
https://github.com/ClaudioSalvatoreArcidiacono
https://github.com/dlaprins
https://github.com/ClaudioSalvatoreArcidiacono
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/ClaudioSalvatoreArcidiacono

feature_engine Documentation, Release 1.7.0

Code improvements

• Made code base compatible with pandas 2.0 (Claudio Salvatore Arcidiacono)

• Moved docstrings of selection transformers to docstrings module (Soledad
Galli)

Version 1.6.0

Deployed: 16th March 2023

Contributors

• Gleb Levitski

• Morgan Sell

• Alfonso Tobar

• Nodar Okroshiashvili

• Luís Seabra

• Kyle Gilde

• Soledad Galli

In this release, we make Feature-engine transformers compatible with the
set_output API from Scikit-learn, which was released in version 1.2.0. We
also make Feature-engine compatible with the newest direction of pandas, in
removing the inplace functionality that our transformers use under the hood.

We introduce a major change: most of the categorical encoders can now
encode variables even if they have missing data.

We are also releasing 3 brand new transformers: One for discretization, one
for feature selection and one for operations between datetime variables.

We also made a major improvement in the performance of the
DropDuplicateFeatures and some smaller bug fixes here and there.

We’d like to thank all contributors for fixing bugs and expanding the function-
ality and documentation of Feature-engine.

Thank you so much to all contributors and to those of you who created issues
flagging bugs or requesting new functionality.

New transformers

• ProbeFeatureSelection: introduces random features and selects variables
whose importance is greater than the random ones (Morgan Sell and Soledad
Galli)

• DatetimeSubtraction: creates new features by subtracting datetime variables
(Kyle Gilde and Soledad Galli)

• GeometricWidthDiscretiser: sorts continuous variables into intervals deter-
mined by geometric progression (Gleb Levitski)

682 Chapter 10. Table of Contents

https://github.com/ClaudioSalvatoreArcidiacono
https://github.com/solegalli
https://github.com/solegalli
https://github.com/GLevv
https://github.com/Morgan-Sell
https://github.com/datacubeR
https://github.com/Okroshiashvili
https://github.com/luismavs
https://github.com/kylegilde
https://github.com/solegalli
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/solegalli
https://github.com/kylegilde
https://github.com/solegalli
https://github.com/GLevv

feature_engine Documentation, Release 1.7.0

New functionality

• Allow categorical encoders to encode variables with NaN (Soledad Galli)

• Make transformers compatible with new set_output functionality from
sklearn (Soledad Galli)

• The ArbitraryDiscretiser() now includes the lowest limits in the inter-
vals (Soledad Galli)

New modules

• New Datasets module with functions to load specific datasets (Alfonso Tobar)

• New variable_handling module with functions to automatically select numer-
ical, categorical, or datetime variables (Soledad Galli)

Bug fixes

• Fixed bug in DropFeatures() (Luís Seabra)

• Fixed bug in RecursiveFeatureElimination() caused when only 1 fea-
ture remained in data (Soledad Galli)

Documentation

• Add example code snippets to the selection module API docs (Alfonso Tobar)

• Add example code snippets to the outlier module API docs (Alfonso Tobar)

• Add example code snippets to the transformation module API docs (Alfonso
Tobar)

• Add example code snippets to the time series module API docs (Alfonso Tobar)

• Add example code snippets to the preprocessing module API docs (Alfonso
Tobar)

• Add example code snippets to the wrapper module API docs (Alfonso Tobar)

• Updated documentation using new Dataset module (Alfonso Tobar and
Soledad Galli)

• Reorganized Readme badges (Gleb Levitski)

• New Jupyter notebooks for GeometricWidthDiscretiser (Gleb Levitski)

• Fixed typos (Gleb Levitski)

• Remove examples using the boston house dataset (Soledad Galli)

• Update sponsor page and contribute page (Soledad Galli)

10.7. What’s new 683

https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/datacubeR
https://github.com/solegalli
https://github.com/luismavs
https://github.com/solegalli
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/solegalli
https://github.com/GLevv
https://github.com/GLevv
https://github.com/GLevv
https://github.com/solegalli
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

Deprecations

• The class PRatioEncoder is no longer supported and was removed from the
API (Soledad Galli)

Code improvements

• Massive improvement in the performance (speed) of
DropDuplicateFeatures() (Nodar Okroshiashvili)

• Remove inplace and other issues related to pandas new direction (Luís
Seabra)

• Move most docstrings to dedicated docstrings module (Soledad Galli)

• Unnest tests for encoders (Soledad Galli)

10.7.3 Version 1.5.X

Version 1.5.2

Deployed: 21th November 2022

Contributors

• Gleb Levitski

• Alfonso Tobar

• pxn39

• Soledad Galli

In this release, we expand the functionality of existing classes and the docu-
mentation.

New functionality

• The StringSimilarityEncoder can now create similarity variables based
on keywords entered by the user (Gleb Levitski)

• The Winsorizer and OutlierTrimmer now automatically adjust the value
of the fold parameter based on the capping_method (pxn39)

684 Chapter 10. Table of Contents

https://github.com/solegalli
https://github.com/Okroshiashvili
https://github.com/luismavs
https://github.com/luismavs
https://github.com/solegalli
https://github.com/solegalli
https://github.com/GLevV
https://github.com/datacubeR
https://github.com/px39n
https://github.com/solegalli
https://github.com/GLevV
https://github.com/px39n

feature_engine Documentation, Release 1.7.0

Bug fixes

• Type checks errors raised by newer versions (Gleb Levitski)

Documentation

• Add example code snippets to the categorical encoding API docs (Alfonso
Tobar)

• Add example code snippets to the imputation module API docs (Alfonso To-
bar)

• Add example code snippets to the discretisation module API docs (Alfonso
Tobar)

• Add example code snippets to the creation module API docs (Alfonso Tobar)

• Add example code snippets to the datetime module API docs (Alfonso Tobar)

• Update the user guide docs for the forecasting feature transformers (Soledad
Galli)

• Update the user guide docs for datetime features and cyclical features (Soledad
Galli)

• Fix badges in README (Gleb Levitski)

Version 1.5.0

Deployed: 17th October 2022

Contributors

• Gleb Levitski

• David Cortes

• Alfonso Tobar

• Morgan Sell

• Soledad Galli

In this release, we fix a bug that made the get_feature_names_out not com-
patible with the Scikit-learn pipeline.

In addition, thanks to Gleb Levitski, we’ve got a new encoder to replace cat-
egories by string similarity variables. Gleb Levitski also made a number of
code enhancements to various transformers across the library, making a lot of
new functionality available.

Finally, we’d like to thank Alfonso Tobar, David Cortes and Morgan Sell
for creating new transformers, fixing bugs and expanding the functionality of
Feature-engine.

Thank you so much to all contributors and to those of you who created issues
flagging bugs or requesting new functionality.

10.7. What’s new 685

https://github.com/GLevV
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/datacubeR
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/GLevV
https://github.com/GLevV
https://github.com/david-cortes
https://github.com/datacubeR
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/GLevV
https://github.com/GLevV
https://github.com/datacubeR
https://github.com/david-cortes
https://github.com/Morgan-Sell

feature_engine Documentation, Release 1.7.0

New transformers

• StringSimilarityEncoder: encodes categorical variables based on string sim-
ilarity (Gleb Levitski)

• MatchCategories: matches the categories in train and test set when of type
pandas categorical (David Cortes)

• SelectByInformationValue: selects features based on the information value
(Morgan Sell and Soledad Galli)

New functionality

• The MeanEncoder can now implement smoothing during the encoding to han-
dle high cardinality (Gleb Levitski)

• The MeanEncoder can now encode unseen categories (Gleb Levitski)

• The OrdinalEncoder can now encode unseen categories (Soledad Galli)

• The CountFrequencyEncoder can now encode unseen categories (David
Cortes)

• All outlier transformers can now detect outliers based on the MAD rule (Gleb
Levitski)

• Add automatic calculation of PSI threshold in DropHighPSIFeatures (Gleb
Levitski)

• All feature selection transformers now have the method get_support()
(Soledad Galli)

Bug fixes

• get_feature_names_out is now compatible with the Scikit-learn pipeline
in all transformers (Soledad Galli)

• The inverse_transform method in encoders now correctly handles unseen
categories or raises not implemented errors (Soledad Galli)

• Fixes output of SklearnTransformerWrapper for OneHotEncoder and
PolynomialFeatures (Alfonso Tobar)

Documentation

• Add more resources to documentation (Soledad Galli)

• User guide for StringSimilarityEncoder (Gleb Levitski)

• New Jupyter notebook for StringSimilarityEncoder (Gleb Levitski)

• User guide for SelectByInformationValue (Morgan Sell and Soledad Galli)

686 Chapter 10. Table of Contents

https://github.com/GLevV
https://github.com/david-cortes
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/GLevV
https://github.com/GLevV
https://github.com/solegalli
https://github.com/david-cortes
https://github.com/david-cortes
https://github.com/GLevV
https://github.com/GLevV
https://github.com/GLevV
https://github.com/GLevV
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/datacubeR
https://github.com/solegalli
https://github.com/GLevV
https://github.com/GLevV
https://github.com/Morgan-Sell
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

Deprecations

• Parameter errors in encoders is now replaced by unseen (Soledad Galli)

• The classes MathematicalCombination,
CombineWithFeatureReference and CyclicalTransformer are re-
moved (Soledad Galli)

• We are deprecating PRatioEncoder in version 1.5 and it will be removed in
version 1.6 (Soledad Galli)

Code improvements

• Adds code coverage test (Soledad Galli)

• Changes logic of encoding unseen categories to work with inverse_transform
(Soledad Galli)

• Increases code coverage for encoders (Soledad Galli)

• Removes CategoricalInitExpandedMixin (Soledad Galli)

• Removes checks for encoding dictionaries in all encoders (Soledad Galli)

• Refactors creation module (Soledad Galli)

• Refactors docstring module (Soledad Galli)

• Refactors variable handling module (Soledad Galli)

• Refactors numerical dictionary checks (Soledad Galli)

• Refactors base transformers module (Soledad Galli)

• Makes dataframe checks more performant (Soledad Galli)

• Replaces pd.concat by pd.group in all target based encoders (Soledad Galli)

10.7.4 Version 1.4.X

Version 1.4.1

Deployed: 13th June 2022

Contributors

• Sangam

• Soledad Galli

10.7. What’s new 687

https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/SangamSwadiK
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

Enhancements

• The BoxCoxTransformer has now inverse_transform functionality
(Sangam)

• Transformers now check for duplicated variable names entered in the init
variables parameter (Soledad Galli)

Bug fixes

• Fix test on Python 3.10 in CircleCI (Sangam and Soledad Galli)

• Fix numpy typing error related to numpy newest version (Sangam and Soledad
Galli)

Documentation

• Update python versions in setup file (Soledad Galli)

Version 1.4.0

Deployed: 9th June 2022

Contributors

• tomtom-95

• Fernando Barbosa

• Sangam

• Swati A Firangi

• Mohamed Emad

• Brice

• Soledad Galli

In this release, we fix a major bug that was preventing you guys from using the
new module introduced in version 1.3: timeseries. We basically, forgot to add
the __init__ file and for some reason, we did not pick up this error from our
development environments. Thank you Brice for reporting this very important
issue.

In addition, we updated our code base to work with the latest release of Scikit-
learn (1.1.1) and pandas (1.4.2), which means that like Scikit-learn, we no
longer support Python 3.7.

We are delaying the complete deprecation of MathematicalCombination,
CombineWithFeatureReference, and CyclicalTransformer to our next
release (1.5), as this release is a bit short notice, to give you more time to adapt
your code bases.

In addition, we’ve added a new transformer, a number of new badges and made
some enhancements to our code base.

688 Chapter 10. Table of Contents

https://github.com/SangamSwadiK
https://github.com/solegalli
https://github.com/SangamSwadiK
https://github.com/solegalli
https://github.com/SangamSwadiK
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/tomtom-95
https://github.com/nandevers
https://github.com/SangamSwadiK
https://github.com/Safirangi
https://github.com/iMezemz
https://github.com/BriceChivu
https://github.com/solegalli
https://github.com/BriceChivu

feature_engine Documentation, Release 1.7.0

I am very happy to announce that for this release, we had a number of contri-
butions from first time contributors. Thank you so much for your support!

Thank you so much to all contributors to this release for making it possible!

New transformers

• ArcsinTransformer: transforms variables with the arcsin transformation: arc-
sin(sqrt(x)) (tomtom-95)

Bug fixes

• The SklearnTransformerWrapper now accepts categorical variables when
used with the FunctionTransformer (Fernando Barbosa)

• Added init file to allow import of time series module (Soledad Galli)

Documentation

• Add Yeo-Johnson article as reference (Sangam)

• Add first timers friendly badge (Swati A Firangi)

• Fixed source of logo in readme (Mohamed Emad)

Deprecations

• We are extending the complete deprecation of MathematicalCombination,
CombineWithFeatureReference and CyclicalTransformer to version
1.5

Code improvements

• Improved message returned when y is not what expected (following sklearn
1.1.1) (Soledad Galli)

• Introduced check for some selectors to ensure user passes more than 1 variable
(Soledad Galli)

For developers

• We broke down base categorical classes into MixIns (Soledad Galli)

• Accommodated lack of future pandas support for sets as indexers (Soledad
Galli)

10.7. What’s new 689

https://github.com/tomtom-95
https://github.com/nandevers
https://github.com/solegalli
https://github.com/SangamSwadiK
https://github.com/Safirangi
https://github.com/iMezemz
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

10.7.5 Version 1.3.X

Version 1.3.0

Deployed: 5th May 2022

Contributors

• Morgan Sell

• Kishan Manani

• Gilles Verbockhaven

• Noah Green

• Ben Reiniger

• Edoardo Argiolas

• Alejandro Giacometti

• Tim Vink

• Soledad Galli

In this release, we add the get_feature_names_out functionality to all our
transformers! You asked for it, we delivered :)

In addition, we introduce a new module for time series forecasting. This
module will host transformers that create features suitable for, well. . . , time
series forecasting. We created three new transformers: LagFeatures, Win-
dowFeatures and ExpandingWindowFeatures. We had the extraordinary
support from Kishan Manani who is an experienced forecaster, and Morgan
Sell who helped us draft the new classes. Thank you both for the incredible
work!

We also improved the functionality of our feature creation classes. To do
this, we are deprecating our former classes, MathematicalCombination and
CombineWithFeatureReference, which are a bit of a mouthful, for the new
classes MathFeatures and RelativeFeatures.

We are also renaming the class CyclicalTransformer to
CyclicalFeatures.

We’ve also enhanced the functionality of the
SelectByTargetMeanPerformance and SklearnTransformerWrapper.

In addition, we’ve had some bug reports and bug fixes that we list below, and
a number of enhancements to our current classes.

Thank you so much to all contributors to this release for making this massive
release possible!

690 Chapter 10. Table of Contents

https://github.com/Morgan-Sell
https://github.com/KishManani
https://github.com/gverbock
https://github.com/noahjgreen295
https://github.com/bmreiniger
https://github.com/dodoarg
https://github.com/janrito
https://github.com/timvink
https://github.com/solegalli
https://github.com/KishManani
https://github.com/Morgan-Sell
https://github.com/Morgan-Sell

feature_engine Documentation, Release 1.7.0

New modules

• timeseries-forecasting: this module hosts transformers that create features suitable for time series
forecasting (Morgan Sell, Kishan Manani and Soledad Galli)

– LagFeatures

– WindowFeatures

– ExpandingWindowFeatures

New transformers

• LagFeatures: adds lag versions of the features (Morgan Sell, Kishan Manani
and Soledad Galli)

• WindowFeatures: creates features from operations on past time windows
(Morgan Sell, Kishan Manani and Soledad Galli)

• ExpandingWindowFeatures: creates features from operations on all past data
(Kishan Manani)

• MathFeatures: replaces MathematicalCombination and expands its func-
tionality (Soledad Galli)

• RelativeFeatures: replaces CombineWithFeatureReference and expands
its functionality (Soledad Galli)

• CyclicalFeatures: new name for CyclicalTransformer with same func-
tionality (Soledad Galli)

New functionality

• All our transformers have now the get_feature_names_out functionality
to obtain the names of the output features (Alejandro Giacometti, Morgan Sell
and Soledad Galli)

• SelectByTargetMeanPerformance now uses cross-validation and supports all
possible performance metrics for classification and regression (Morgan Sell
and Soledad Galli)

Enhancements

• All our feature selection transformers can now check that the variables were
not dropped in a previous selection step (Gilles Verbockhaven)

• The DecisionTreeDiscretiser and the DecisionTreeEncoder now
check that the user enters a target suitable for regression or classification (Mor-
gan Sell)

• The DecisionTreeDiscretiser and the DecisionTreeEncoder now ac-
cept all sklearn cross-validation constructors (Soledad Galli)

• The SklearnTransformerWrapper now implements the method
inverse_transform (Soledad Galli)

10.7. What’s new 691

https://github.com/Morgan-Sell
https://github.com/KishManani
https://github.com/solegalli
https://github.com/Morgan-Sell
https://github.com/KishManani
https://github.com/solegalli
https://github.com/Morgan-Sell
https://github.com/KishManani
https://github.com/solegalli
https://github.com/KishManani
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/janrito
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/gverbock
https://github.com/Morgan-Sell
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

• The SklearnTransformerWrapper now supports additional transformers,
for example, PolynomialFeatures (Soledad Galli)

• The CategoricalImputer() now let’s you know which variables have more
than one mode (Soledad Galli)

• The DatetimeFeatures() now can extract features from the dataframe index
(Edoardo Argiolas)

• Transformers that take y now check that X and y match (Noah Green and Ben
Reiniger)

Bug fixes

• The SklearnTransformerWrapper now works with cross-validation when
using the one hot encoder (Noah Green)

• The SelectByShuffling now evaluates the initial performance and the per-
formance after shuffling in the same data parts (Gilles Verbockhaven)

• Discretisers: when setting return_boundaries=True the interval limits are
now returned as strings and the variables as object data type (Soledad Galli)

• DecisionTreeEncoder now enforces passing y to fit() (Soledad Galli)

• DropMissingData can now take a string in the variables parameter
(Soledad Galli)

• DropFeatures now accepts a string as input of the features_to_drop param-
eter (Noah Green)

• Categorical encoders now work correctly with numpy arrays as inputs (Noah
Green and Ben Reiniger)

Documentation

• Improved user guide for SelectByTargetMeanPerformance with lots of
tips for troubleshooting (Soledad Galli)

• Added guides on how to use MathFeatures and RelativeFeatures
(Soledad Galli)

• Expanded user guide on how to use CyclicalFeatureswith explanation and
demos of what these features are (Soledad Galli)

• Added a Jupyter notebook with a demo of the CyclicalFeatures class
(Soledad Galli)

• We now display all available methods in the documentation methods summary
(Soledad Galli)

• Fixes typo in ArbitraryNumberImputer documentation (Tim Vink)

692 Chapter 10. Table of Contents

https://github.com/solegalli
https://github.com/solegalli
https://github.com/dodoarg
https://github.com/noahjgreen295
https://github.com/bmreiniger
https://github.com/bmreiniger
https://github.com/noahjgreen295
https://github.com/gverbock
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/noahjgreen295
https://github.com/noahjgreen295
https://github.com/noahjgreen295
https://github.com/bmreiniger
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/timvink

feature_engine Documentation, Release 1.7.0

Deprecations

• We are deprecating MathematicalCombination,
CombineWithFeatureReference and CyclicalTransformer in ver-
sion 1.3 and they will be removed in version 1.4

• Feature-engine does not longer work with Python 3.6 due to dependence on
latest versions of Scikit-learn

• In MatchColumns the attribute input_features_ was replaced by
feature_names_in_ to adopt Scikit-learn convention

Code improvements

• Imputers: removed looping over every variable to replace NaN. Now passing
imputer dictionary to pd.fillna() (Soledad Galli)

• AddMissingIndicators: removed looping over every variable to add miss-
ing indicators. Now using pd.isna() (Soledad Galli)

• CategoricalImputer now captures all modes in one go, without looping
over variables (Soledad Galli)

• Removed workaround to import docstrings for transform() method in vari-
ous transformers (Soledad Galli)

For developers

• Created functions and docstrings for common descriptions of methods and at-
tributes (Soledad Galli)

• We introduce the use of common tests that are applied to all transformers
(Soledad Galli)

Experimental

New experimental, currently private module: prediction, that hosts classes
that are used by the SelectByTargetMeanPerformance feature selection
transformer. The estimators in this module have functionality that exceed that
required by the selector, in that, they can output estimates of the target by tak-
ing the average across a group of variables.

• New private module, prediction with a regression and a classification estima-
tor (Morgan Sell and Soledad Galli)

• TargetMeanRegressor: estimates the target based on the average target
mean value per class or interval, across variables (Morgan Sell and Soledad
Galli)

• TargetMeanClassifier: estimates the target based on the average target
mean value per class or interval, across variables (Morgan Sell and Soledad
Galli)

10.7. What’s new 693

https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/solegalli
https://github.com/Morgan-Sell
https://github.com/solegalli
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

10.7.6 Version 1.2.X

Version 1.2.0

Deployed: 4th January 2022

Contributors

• Edoardo Argiolas

• gverbock

• Thibault Blanc

• David Cortes

• Morgan Sell

• Kevin Kurek

• Soledad Galli

In this big release, we add 3 new transformers, we expand the functionality of
existing classes, we add information about citing Feature-engine and we ex-
pand the documentation with a new look, extended user guide with examples,
and more details on how to contribute to the project.

Thank you so much to the contributors for making this massive release possi-
ble!

Thank you to reviewers Nicolas Galli and Chris Samiullah for useful advice
on various PRs.

New transformers

• DatetimeFeatures: extracts date and time features from datetime variables
(Edoardo Argiolas)

• DropHishPSIFeatures: finds and drops features with high population stabil-
ity index (gverbock)

• Matchvariables: ensures that the same variables observed in the train set are
present in the test set (Thibault Blanc)

Enhancements

• The Winsorizer can now add binary variable indicators to flag outlier values
(David Cortes)

• The DropMissingData now allows to drop rows based on % of missing data
(Kevin Kurek)

• Categorical encoders can now either raise a warning or an error when encod-
ing categories not seen in the train set (Morgan Sell)

• The ArbitraryDiscretiser can now either raise a warning or an error when
values fall outside the limits entered by the user (Morgan Sell)

694 Chapter 10. Table of Contents

https://github.com/dodoarg
https://github.com/gverbock
https://github.com/thibaultbl
https://github.com/david-cortes
https://github.com/Morgan-Sell
https://github.com/kevinkurek
https://github.com/solegalli
https://github.com/nicogalli
https://github.com/christophergs
https://github.com/dodoarg
https://github.com/gverbock
https://github.com/thibaultbl
https://github.com/david-cortes
https://github.com/kevinkurek
https://github.com/Morgan-Sell
https://github.com/Morgan-Sell

feature_engine Documentation, Release 1.7.0

• CombineWithReferenceFeature and MathematicalCombination have now
the option to drop the original input variables after the feature creation
(Edoardo Argiolas)

Bug fixes

• All Encoders are now able to exclude datetime variables cast as object or cat-
egorical when searching for categorical variables automatically (Edoardo Ar-
giolas)

• All transformers will now raise an error when users pass an empty list to the
variables parameter (Edoardo Argiolas)

• All transformers now check the variable type when user passes a single variable
to the variables parameter (Edoardo Argiolas)

Documentation

• We changed the template to pydata (Soledad Galli)

• We split the information about transformers into a user guide and an API
(Soledad Galli)

• The API documentation shows how to use the transformers (Soledad Galli)

• The user guide expands the API docs with plenty of examples and tips on when
and how to use the transformers (Soledad Galli)

• We expanded the contribute section with plenty of details on how to make a
contribution and how to check your code is top notch (Soledad Galli)

• You can now sponsor Feature-engine (Soledad Galli)

• You can now cite our JOSS article when using Feature-engine (Soledad Galli)

• We added plenty of examples on how to use the new class DropHighPSIFea-
tures (gverbock)

• We included various examples on how to extract date and time features using
the new DatetimeFeatures class (Edoardo Argiolas)

• We included examples on how to use the new class MatchVariables (Thibault
Blanc)

• We added a Jupyter notebook with a demo of the new DatetimeFeatures class
(Edoardo Argiolas)

• We added a Jupyter notebook with a demo of the new DropHighPSIFeatures
class (Soledad Galli)

10.7. What’s new 695

https://github.com/dodoarg
https://github.com/dodoarg
https://github.com/dodoarg
https://github.com/dodoarg
https://github.com/dodoarg
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/solegalli
https://github.com/gverbock
https://github.com/dodoarg
https://github.com/thibaultbl
https://github.com/thibaultbl
https://github.com/dodoarg
https://github.com/solegalli

feature_engine Documentation, Release 1.7.0

10.7.7 Version 1.1.X

Version 1.1.2

Deployed: 31th August 2021

Contributors

• Soledad Galli

This small release fixes a Bug in how the OneHotEncoder handles binary cat-
egorical variables when the parameter drop_last_binary is set to True. It
also ensures that the values in the OneHotEncoder.encoder_dict_ are lists
of categories and not arrays. These bugs were introduced in v1.1.0.

Bug fix

• OneHotEncoder: drop_last_binary now outputs 1 dummy variable per binary
variable when set to true

Version 1.1.1

Deployed: 6th August 2021

Contributors

• Miguel Trema Marrufo

• Nicolas Galli

• Soledad Galli

In this release, we add a new transformer, expand the functionality of 2 other
transformers and migrate the repo to its own organisation!

Mayor changes

• Feature-engine is now hosted in its own Github organisation

New transformer

• LogCpTransformer: applies the logarithm transformation after adding a con-
stant (Miguel Trema Marrufo)

696 Chapter 10. Table of Contents

https://github.com/feature-engine/feature_engine

feature_engine Documentation, Release 1.7.0

Minor changes

• Expands functionality of DropCorrelatedFeatures and
SmartCorrelationSelectionFeature to accept callables as a corre-
lation function (Miguel Trema Marrufo)

• Adds inverse_transform to all transformers from the transformation mod-
ule (Nicolas Galli).

Documentation

• Migrates main repo to Feature-engine’s Github organisation

• Migrates example jupyter notebooks to separate repo

• Adds Roadmap

Version 1.1.0

Deployed: 22st June 2021

Contributors

• Hector Patino

• Andrew Tan

• Shubhmay Potdar

• Agustin Firpo

• Indy Navarro Vidal

• Ashok Kumar

• Chris Samiullah

• Soledad Galli

In this release, we enforce compatibility with Scikit-learn by adding the
check_estimator tests to all transformers in the package.

In order to pass the tests, we needed to modify some of the internal function-
ality of Feature-engine transformers and create new attributes. We tried not to
break backwards compatibility as much as possible.

Mayor changes

• Most transformers have now the additional attribute variables_ containing
the variables that will be modified. The former attribute variables is re-
tained. variables_ will almost always be identical to variables except
when the transformer is initialised with variables=None.

• The parameter transformer in the SklearnTransformerWrapper and the
parameter estimator in the SelectBySingleFeaturePerformance, Select-
ByShuffling, RecursiveFeatureElimination and RecursiveFeatureAddition

10.7. What’s new 697

https://github.com/feature-engine/feature_engine
https://github.com/feature-engine/feature-engine-examples
https://scikit-learn.org/stable/developers/develop.html

feature_engine Documentation, Release 1.7.0

need a compulsory entry, and cannot be left blank when initialising the trans-
formers.

• Categorical encoders support now variables cast as category as well as
object (Shubhmay Potdar and Soledad Galli)

• Categorical encoders have now the parameter ignore_format to allow the
transformer to work with any variable type, and not just object or categorical.

• CategoricalImputer has now the parameter ignore_format to allow the
transformer to work with any variable type, and not just object or categorical.

• All transformers have now the new attribute n_features_inwith captures the
number of features in the dataset used to train the transformer (during fit()).

Minor changes

• Feature selection transformers support now all cross-validation schemes in the
cv parameter, and not just an integer. That is, you can initialize the transformer
with LOOCV, or StratifiedCV for example.

• The OneHotEncoder includes additional functionality to return just 1 dummy
variable for categorical variables that contain only 2 categories. In the new
attribute variables_binary_ you can identify the original binary variables.

• MathematicalCombinator now supports use of dataframes with null values
(Agustin Firpo).

New transformer

• CyclicalTransformer: applies a cyclical transformation to numerical vari-
ables (Hector Patino)

Code improvement

• Tests from check_estimator added to all transformers

• Test for compatibility with Python 3.9 added to circleCI (Chris Samiullah
and Soledad Galli)

• Automatic black8 and linting added to tox

• Additional code fixes (Andrew Tan and Indy Navarro Vidal).

Documentation

• Additional comparison tables for imputers and encoders.

• Updates Readme with new badges and resources.

• Expanded SklearnWrapper demos in Jupyter notebooks.

• Expanded outlier transformer demos in Jupyter notebooks (Ashok Kumar)

• Expanded Pipeline demos in Jupyter notebooks.

698 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Community

• Created Gitter community to support users and foster knowledge exchange

Version 1.0.2

Deployed: 22th January 2021

Contributors

• Nicolas Galli

• Pradumna Suryawanshi

• Elamraoui Sohayb

• Soledad Galli

New transformers

• CombineWithReferenceFeatures: applies mathematical operations between
a group of variables and reference variables (by Nicolas Galli)

• DropMissingData: removes missing observations from a dataset (Pradumna
Suryawanshi)

Bug Fix

• Fix bugs in SelectByTargetMeanPerformance.

• Fix documentation and jupyter notebook typos.

Tutorials

• Creation: updated “how to” examples on how to combine variables into new
features (by Elamraoui Sohayb and Nicolas Galli)

• Kaggle Kernels: include links to Kaggle kernels

Version 1.0.1

Deployed: 11th January 2021

10.7. What’s new 699

feature_engine Documentation, Release 1.7.0

Bug Fix

• Fix use of r2 in SelectBySingleFeaturePerformance and SelectByTargetMean-
Performance.

• Fix documentation not showing properly in readthedocs.

Version 1.0.0

Deployed: 31st December 2020

Contributors

• Ashok Kumar

• Christopher Samiullah

• Nicolas Galli

• Nodar Okroshiashvili

• Pradumna Suryawanshi

• Sana Ben Driss

• Tejash Shah

• Tung Lee

• Soledad Galli

In this version, we made a major overhaul of the package, with code quality
improvement throughout the code base, unification of attributes and methods,
addition of new transformers and extended documentation. Read below for
more details.

New transformers for Feature Selection

We included a whole new module with multiple transformers to select features.

• DropConstantFeatures: removes constant and quasi-constant features from
a dataframe (by Tejash Shah)

• DropDuplicateFeatures: removes duplicated features from a dataset (by Te-
jash Shah and Soledad Galli)

• DropCorrelatedFeatures: removes features that are correlated (by Nicolas
Galli)

• SmartCorrelationSelection: selects feature from group of correlated features
based on certain criteria (by Soledad Galli)

• ShuffleFeaturesSelector: selects features by drop in machine learning model
performance after feature’s values are randomly shuffled (by Sana Ben Driss)

• SelectBySingleFeaturePerformance: selects features based on a ML model
performance trained on individual features (by Nicolas Galli)

700 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

• SelectByTargetMeanPerformance: selects features encoding the categories
or intervals with the target mean and using that as proxy for performance (by
Tung Lee and Soledad Galli)

• RecursiveFeatureElimination: selects features recursively, evaluating the
drop in ML performance, from the least to the most important feature (by Sana
Ben Driss)

• RecursiveFeatureAddition: selects features recursively, evaluating the in-
crease in ML performance, from the most to the least important feature (by
Sana Ben Driss)

Renaming of Modules

Feature-engine transformers have been sorted into submodules to smooth the
development of the package and shorten import syntax for users.

• Module imputation: missing data imputers are now imported
from feature_engine.imputation instead of feature_engine.
missing_data_imputation.

• Module encoding: categorical variable encoders are now
imported from feature_engine.encoding instead of
feature_engine_categorical_encoders.

• Module discretisation: discretisation transformers are now imported
from feature_engine.discretisation instead of feature_engine.
discretisers.

• Module transformation: transformers are now imported from
feature_engine.transformation instead of feature_engine.
variable_transformers.

• Module outliers: transformers to remove or censor outliers are now im-
ported from feature_engine.outliers instead of feature_engine.
outlier_removers.

• Module selection: new module hosts transformers to select or remove vari-
ables from a dataset.

• Module creation: new module hosts transformers that combine variables into
new features using mathematical or other operations.

Renaming of Classes

We shortened the name of categorical encoders, and also renamed other classes
to simplify import syntax.

• Encoders: the word Categoricalwas removed from the classes name. Now,
instead of MeanCategoricalEncoder, the class is called MeanEncoder. In-
stead of RareLabelCategoricalEncoder it is RareLabelEncoder and so
on. Please check the encoders documentation for more details.

• Imputers: the CategoricalVariableImputer is now called
CategoricalImputer.

• Discretisers: the UserInputDiscretiser is now called
ArbitraryDiscretiser.

10.7. What’s new 701

feature_engine Documentation, Release 1.7.0

• Creation: the MathematicalCombinator is not called
MathematicalCombination.

• WoEEncoder and PRatioEncoder: the WoEEncoder now applies only en-
coding with the weight of evidence. To apply encoding by probability ratios,
use a different transformer: the PRatioEncoder (by Nicolas Galli).

Renaming of Parameters

We renamed a few parameters to unify the nomenclature across the Package.

• EndTailImputer: the parameter distribution is now called
imputation_method to unify convention among imputers. To impute
using the IQR, we now need to pass imputation_method="iqr" instead of
imputation_method="skewed".

• AddMissingIndicator: the parameter missing_only now takes the boolean
values True or False.

• Winzoriser and OutlierTrimmer: the parameter distribution is now
called capping_method to unify names across Feature-engine transformers.

Tutorials

• Imputation: updated “how to” examples of missing data imputation (by Prad-
umna Suryawanshi)

• Encoders: new and updated “how to” examples of categorical encoding (by
Ashok Kumar)

• Discretisation: new and updated “how to” examples of discretisation (by
Ashok Kumar)

• Variable transformation: updated “how to” examples on how to apply math-
ematical transformations to variables (by Pradumna Suryawanshi)

For Contributors and Developers

Code Architecture

• Submodules: transformers have been grouped within relevant submodules
and modules.

• Individual tests: testing classes have been subdivided into individual tests

• Code Style: we adopted the use of flake8 for linting and PEP8 style checks,
and black for automatic re-styling of code.

• Type hint: we rolled out the use of type hint throughout classes and functions
(by Nodar Okroshiashvili, Soledad Galli and Chris Samiullah)

702 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Documentation

• Switched fully to numpydoc and away from Napoleon

• Included more detail about methods, parameters, returns and raises, as per
numpydoc docstring style (by Nodar Okroshiashvili, Soledad Galli)

• Linked documentation to github repository

• Improved layout

Other Changes

• Updated documentation: documentation reflects the current use of Feature-
engine transformers

• Typo fixes: Thank you to all who contributed to typo fixes (Tim Vink, Github
user @piecot)

10.7.8 Version 0.6.X

Version 0.6.1

Deployed: Friday, September 18, 2020

Contributors: Soledad Galli

Minor Changes:

• Updated docs: updated and expanded Contributing guidelines, added Gover-
nance, updated references to Feature-engine online.

• Updated Readme: updated and expanded readme.

Version 0.6.0

Deployed: Friday, August 14, 2020

Contributors:

• Michał Gromiec

• Surya Krishnamurthy

• Gleb Levitskiy

• Karthik Kothareddy

• Richard Cornelius Suwandi

• Chris Samiullah

• Soledad Galli

Major Changes:

10.7. What’s new 703

feature_engine Documentation, Release 1.7.0

• New Transformer: the MathematicalCombinator allows you combine
multiple features into new variables by performing mathematical operations
like sum, product, mean, standard deviation, or finding the minimum and max-
imum values (by Michał Gromiec).

• New Transformer: the DropFeatures allows you remove specified variables
from a dataset (by Karthik Kothareddy).

• New Transformer: the DecisionTreeCategoricalEncoder encodes cat-
egorical variables with a decision tree (by Surya Krishnamurthy).

• Bug fix: the SklearnTransformerWrapper can now automatically select
numerical or numerical and categorical variables depending on the Scikit-learn
transformer the user implements (by Michał Gromiec).

• Bug fix: the SklearnTransformerWrapper can now wrap Scikit-learn’s
OneHotEncoder and concatenate the binary features back to the original
dataframe (by Michał Gromiec).

• Added functionality: the ArbitraryNumberImputer can now take a dic-
tionary of variable, arbitrary number pairs, to impute different variables with
different numbers (by Michał Gromiec).

• Added functionality: the CategoricalVariableImputer can now replace
missing data in categorical variables by a string defined by the user (by Gleb
Levitskiy).

• Added functionality: the RareLabelEnoder now allows the user to deter-
mine the maximum number of categories that the variable should have when
grouping infrequent values (by Surya Krishnamurthy).

Minor Changes:

• Improved docs: fixed typos and tidy Readme.md (by Richard Cornelius
Suwandi)

• Improved engineering practices: added Manifest.in to include md and li-
censes in tar ball in pypi (by Chris Samiullah)

• Improved engineering practices: updated circleci yaml and created release
branch for orchestrated release of new versions with significant changes (by
Soledad Galli and Chris Samiullah)

• Improved engineering practices: added test for doc build in circleci yaml (by
Soledad Galli and Chris Samiullah)

• Transformer fix: removed parameter return_object from the RareLabelEn-
coder as it was not working as intended(by Karthik Kothareddy and Soledad
Galli)

704 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Version 0.5.0

• Deployed: Friday, July 10, 2020

• Contributors: Soledad Galli

Major Changes:

• Bug fix: fixed error in weight of evidence formula in the WoERatioCategoricalEncoder. The old
formula, that is np.log(p(1) / p(0)) is preserved, and can be obtained by setting the
encoding_method to ‘log_ratio’. If encoding_method is set to ‘woe’, now the correct formula will
operate.

– Added functionality: most categorical encoders have the option
inverse_transform, to obtain the original value of the variable from
the transformed dataset.

• Added functionality: the 'Winsorizer`, OutlierTrimmer and
ArbitraryOutlierCapper have now the option to ignore missing val-
ues, and obtain the parameters from the original variable distribution,
or raise an error if the dataframe contains na, by setting the parameter
missing_values to raise or ignore.

• New Transformer: the UserInputDiscretiser allows users to discretise
numerical variables into arbitrarily defined buckets.

Version 0.4.3

• Deployed: Friday, May 15, 2020

• Contributors: Soledad Galli, Christopher Samiullah

Major Changes:

• New Transformer: the 'SklearnTransformerWrapper` allows you to use
most Scikit-learn transformers just on a subset of features. Works with the
SimpleImputer, the OrdinalEncoder and most scalers.

Minor Changes:

• Added functionality: the 'EqualFrequencyDiscretiser` and
EqualWidthDiscretiser now have the ability to return interval boundaries
as well as integers, to identify the bins. To return boundareis set the parameter
return_boundaries=True.

• Improved docs: added contibuting section, where you can find information
on how to participate in the development of Feature-engine’s code base, and
more.

10.7. What’s new 705

feature_engine Documentation, Release 1.7.0

Version 0.4.0

• Deployed: Monday, April 04, 2020

• Contributors: Soledad Galli, Christopher Samiullah

Major Changes:

• Deprecated: the FrequentCategoryImputer was in-
tegrated into the class CategoricalVariableImputer.
To perform frequent category imputation now use:
CategoricalVariableImputer(imputation_method='frequent')

• Renamed: the AddNaNBinaryImputer is now called
AddMissingIndicator.

• New: the OutlierTrimmer was introduced into the package and allows you
to remove outliers from the dataset

Minor Changes:

• Improved: the EndTailImputer now has the additional option to place out-
liers at a factor of the maximum value.

• Improved: the FrequentCategoryImputer has now the functionality to re-
turn numerical variables cast as object, in case you want to operate with them
as if they were categorical. Set return_object=True.

• Improved: the RareLabelEncoder now allows the user to define the name
for the label that will replace rare categories.

• Improved: All feature engine transformers (except missing data imputers)
check that the data sets do not contain missing values.

• Improved: the LogTransformer will raise an error if a variable has zero or
negative values.

• Improved: the ReciprocalTransformer now works with variables of type
integer.

• Improved: the ReciprocalTransformer will raise an error if the variable
contains the value zero.

• Improved: the BoxCoxTransformer will raise an error if the variable con-
tains negative values.

• Improved: the OutlierCapper now finds and removes outliers based of per-
centiles.

• Improved: Feature-engine is now compatible with latest releases of Pandas
and Scikit-learn.

706 Chapter 10. Table of Contents

feature_engine Documentation, Release 1.7.0

Version 0.3.0

• Deployed: Monday, August 05, 2019

• Contributors: Soledad Galli.

Major Changes:

• New: the RandomSampleImputer now has the option to set one seed for batch
imputation or set a seed observation per observations based on 1 or more ad-
ditional numerical variables for that observation, which can be combined with
multiplication or addition.

• New: the YeoJohnsonTransfomer has been included to perform Yeo-
Johnson transformation of numerical variables.

• Renamed: the ExponentialTransformer is now called
PowerTransformer.

• Improved: the DecisionTreeDiscretiser now allows to provide a grid
of parameters to tune the decision trees which is done with a GridSearchCV
under the hood.

• New: Extended documentation for all Feature-engine’s transformers.

• New: Quickstart guide to jump on straight onto how to use Feature-engine.

• New: Changelog to track what is new in Feature-engine.

• Updated: new Jupyter notebooks with examples on how to use Feature-
engine’s transformers.

Minor Changes:

• Unified: dictionary attributes in transformers, which contain the transforma-
tion mappings, now end with _, for example binner_dict_.

10.8 Other versions

Web-based documentation is available for versions listed below:

• Feature-engine 1.6

10.9 Sponsor us

10.8. Other versions 707

https://feature-engine.trainindata.com/en/latest/index.html

feature_engine Documentation, Release 1.7.0

Support Feature-engine financially through Github Sponsors and help further
our mission to democratize machine learning and programming tools through
open-source.

More details about how we use donations in the sponsors page.

10.10 Sponsors

Feature-engine is a community driven project, however institutional, private
and individual support help to assure its sustainability. The project would like
to thank the following sponsors:

708 Chapter 10. Table of Contents

https://github.com/sponsors/feature-engine
https://github.com/sponsors/feature-engine
https://github.com/sponsors/feature-engine
https://www.trainindata.com/

BIBLIOGRAPHY

[1] Niculescu-Mizil, et al. “Winning the KDD Cup Orange Challenge with Ensemble Selection”. JMLR: Workshop
and Conference Proceedings 7: 23-34. KDD 2009 http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf

[1] Galli S. “Machine Learning in Financial Risk Assessment”. https://www.youtube.com/watch?v=KHGGlozsRtA

[1] Micci-Barreca D. “A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Pre-
diction Problems”. ACM SIGKDD Explorations Newsletter, 2001. https://dl.acm.org/citation.cfm?id=507538

[1] Niculescu-Mizil, et al. “Winning the KDD Cup Orange Challenge with Ensemble Selection”. JMLR: Workshop
and Conference Proceedings 7: 23-34. KDD 2009 http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf

[1] Cerda P, Varoquaux G, Kégl B. “Similarity encoding for learning with dirty categorical variables”. Machine Learn-
ing, Springer Verlag, 2018.

[2] Cerda P, Varoquaux G. “Encoding high-cardinality string categorical variables”. IEEE Transactions on Knowledge
& Data Engineering, 2020.

[1] Kotsiantis and Pintelas, “Data preprocessing for supervised leaning,” International Journal of Computer Science,
vol. 1, pp. 111 117, 2006.

[2] Dong. “Beating Kaggle the easy way”. Master Thesis. https://www.ke.tu-darmstadt.de/lehre/arbeiten/studien/
2015/Dong_Ying.pdf

[1] Kotsiantis and Pintelas, “Data preprocessing for supervised leaning,” International Journal of Computer Science,
vol. 1, pp. 111 117, 2006.

[2] Dong. “Beating Kaggle the easy way”. Master Thesis. https://www.ke.tu-darmstadt.de/lehre/arbeiten/studien/
2015/Dong_Ying.pdf

[1] Niculescu-Mizil, et al. “Winning the KDD Cup Orange Challenge with Ensemble Selection”. JMLR: Workshop
and Conference Proceedings 7: 23-34. KDD 2009 http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf

[1] J. Reiser, “Classification Systems”, https://www.slideshare.net/johnjreiser/classification-systems

[2] Geometric Interval Classification http://wiki.gis.com/wiki/index.php/Geometric_Interval_Classification

[3] Geometric progression https://en.wikipedia.org/wiki/Geometric_progression

[1] Box and Cox. “An Analysis of Transformations”. Read at a RESEARCH MEETING, 1964. https://rss.onlinelibrary.
wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x

[1] Yeo, In-Kwon and Johnson, Richard (2000). A new family of power transformations to improve normality or
symmetry. Biometrika, 87, 954-959.

[2] Weisberg S. “Yeo-Johnson Power Transformations”. https://www.stat.umn.edu/arc/yjpower.pdf

[1] Galli S. “Machine Learning in Financial Risk Assessment”. https://www.youtube.com/watch?v=KHGGlozsRtA

709

http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
https://www.youtube.com/watch?v=KHGGlozsRtA
https://dl.acm.org/citation.cfm?id=507538
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
https://www.ke.tu-darmstadt.de/lehre/arbeiten/studien/2015/Dong_Ying.pdf
https://www.ke.tu-darmstadt.de/lehre/arbeiten/studien/2015/Dong_Ying.pdf
https://www.ke.tu-darmstadt.de/lehre/arbeiten/studien/2015/Dong_Ying.pdf
https://www.ke.tu-darmstadt.de/lehre/arbeiten/studien/2015/Dong_Ying.pdf
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
https://www.slideshare.net/johnjreiser/classification-systems
http://wiki.gis.com/wiki/index.php/Geometric_Interval_Classification
https://en.wikipedia.org/wiki/Geometric_progression
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x
https://www.stat.umn.edu/arc/yjpower.pdf
https://www.youtube.com/watch?v=KHGGlozsRtA

feature_engine Documentation, Release 1.7.0

[1] Yurdakul B. “Statistical properties of population stability index”. Western Michigan University, 2018. https:
//scholarworks.wmich.edu/dissertations/3208/

[1] Weight of evidence and information value explained https://www.listendata.com/2015/03/
weight-of-evidence-woe-and-information.html

[2] WoE and IV for continuous variables https://www.listendata.com/2019/08/WOE-IV-Continuous-Dependent.html

[1] Miller, et al. “Predicting customer behaviour: The University of Melbourne’s KDD Cup report”. JMLR Workshop
and Conference Proceeding. KDD 2009 http://proceedings.mlr.press/v7/miller09/miller09.pdf

[1] Stoppiglia, et al. “Ranking a Random Feature for Variable and Feature Selection”. JMLR: 1399-1414, 2003 https:
//jmlr.org/papers/volume3/stoppiglia03a/stoppiglia03a.pdf

710 Bibliography

https://scholarworks.wmich.edu/dissertations/3208/
https://scholarworks.wmich.edu/dissertations/3208/
https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html
https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html
https://www.listendata.com/2019/08/WOE-IV-Continuous-Dependent.html
http://proceedings.mlr.press/v7/miller09/miller09.pdf
https://jmlr.org/papers/volume3/stoppiglia03a/stoppiglia03a.pdf
https://jmlr.org/papers/volume3/stoppiglia03a/stoppiglia03a.pdf

INDEX

A
AddMissingIndicator (class in fea-

ture_engine.imputation), 388
ArbitraryDiscretiser (class in fea-

ture_engine.discretisation), 452
ArbitraryNumberImputer (class in fea-

ture_engine.imputation), 375
ArbitraryOutlierCapper (class in fea-

ture_engine.outliers), 470
ArcsinTransformer (class in fea-

ture_engine.transformation), 492

B
BoxCoxTransformer (class in fea-

ture_engine.transformation), 500

C
CategoricalImputer (class in fea-

ture_engine.imputation), 382
check_all_variables() (in module fea-

ture_engine.variable_handling), 645
check_categorical_variables() (in module fea-

ture_engine.variable_handling), 645
check_datetime_variables() (in module fea-

ture_engine.variable_handling), 646
check_numerical_variables() (in module fea-

ture_engine.variable_handling), 647
classes_ (feature_engine.pipeline.Pipeline property),

628
CountFrequencyEncoder (class in fea-

ture_engine.encoding), 408
CyclicalFeatures (class in feature_engine.creation),

517

D
DatetimeFeatures (class in feature_engine.datetime),

521
DatetimeSubtraction (class in fea-

ture_engine.datetime), 526
decision_function() (fea-

ture_engine.pipeline.Pipeline method), 628

DecisionTreeDiscretiser (class in fea-
ture_engine.discretisation), 455

DecisionTreeEncoder (class in fea-
ture_engine.encoding), 428

DropConstantFeatures (class in fea-
ture_engine.selection), 535

DropCorrelatedFeatures (class in fea-
ture_engine.selection), 543

DropDuplicateFeatures (class in fea-
ture_engine.selection), 539

DropFeatures (class in feature_engine.selection), 531
DropHighPSIFeatures (class in fea-

ture_engine.selection), 569
DropMissingData (class in feature_engine.imputation),

392

E
EndTailImputer (class in feature_engine.imputation),

378
EqualFrequencyDiscretiser (class in fea-

ture_engine.discretisation), 443
EqualWidthDiscretiser (class in fea-

ture_engine.discretisation), 447
ExpandingWindowFeatures (class in fea-

ture_engine.timeseries.forecasting), 607

F
feature_names_in_ (feature_engine.pipeline.Pipeline

property), 629
find_all_variables() (in module fea-

ture_engine.variable_handling), 641
find_categorical_and_numerical_variables()

(in module feature_engine.variable_handling),
644

find_categorical_variables() (in module fea-
ture_engine.variable_handling), 641

find_datetime_variables() (in module fea-
ture_engine.variable_handling), 642

find_numerical_variables() (in module fea-
ture_engine.variable_handling), 643

fit() (feature_engine.creation.CyclicalFeatures
method), 518

711

feature_engine Documentation, Release 1.7.0

fit() (feature_engine.creation.MathFeatures method),
510

fit() (feature_engine.creation.RelativeFeatures
method), 514

fit() (feature_engine.datetime.DatetimeFeatures
method), 523

fit() (feature_engine.datetime.DatetimeSubtraction
method), 528

fit() (feature_engine.discretisation.ArbitraryDiscretiser
method), 453

fit() (feature_engine.discretisation.DecisionTreeDiscretiser
method), 458

fit() (feature_engine.discretisation.EqualFrequencyDiscretiser
method), 445

fit() (feature_engine.discretisation.EqualWidthDiscretiser
method), 449

fit() (feature_engine.discretisation.GeometricWidthDiscretiser
method), 462

fit() (feature_engine.encoding.CountFrequencyEncoder
method), 410

fit() (feature_engine.encoding.DecisionTreeEncoder
method), 431

fit() (feature_engine.encoding.MeanEncoder method),
420

fit() (feature_engine.encoding.OneHotEncoder
method), 405

fit() (feature_engine.encoding.OrdinalEncoder
method), 415

fit() (feature_engine.encoding.RareLabelEncoder
method), 435

fit() (feature_engine.encoding.StringSimilarityEncoder
method), 440

fit() (feature_engine.encoding.WoEEncoder method),
425

fit() (feature_engine.imputation.AddMissingIndicator
method), 390

fit() (feature_engine.imputation.ArbitraryNumberImputer
method), 376

fit() (feature_engine.imputation.CategoricalImputer
method), 383

fit() (feature_engine.imputation.DropMissingData
method), 393

fit() (feature_engine.imputation.EndTailImputer
method), 380

fit() (feature_engine.imputation.MeanMedianImputer
method), 373

fit() (feature_engine.imputation.RandomSampleImputer
method), 386

fit() (feature_engine.outliers.ArbitraryOutlierCapper
method), 471

fit() (feature_engine.outliers.OutlierTrimmer method),
477

fit() (feature_engine.outliers.Winsorizer method), 468
fit() (feature_engine.pipeline.Pipeline method), 629

fit() (feature_engine.preprocessing.MatchCategories
method), 614

fit() (feature_engine.preprocessing.MatchVariables
method), 619

fit() (feature_engine.selection.DropConstantFeatures
method), 537

fit() (feature_engine.selection.DropCorrelatedFeatures
method), 545

fit() (feature_engine.selection.DropDuplicateFeatures
method), 541

fit() (feature_engine.selection.DropFeatures method),
532

fit() (feature_engine.selection.DropHighPSIFeatures
method), 573

fit() (feature_engine.selection.ProbeFeatureSelection
method), 594

fit() (feature_engine.selection.RecursiveFeatureAddition
method), 566

fit() (feature_engine.selection.RecursiveFeatureElimination
method), 561

fit() (feature_engine.selection.SelectByInformationValue
method), 578

fit() (feature_engine.selection.SelectByShuffling
method), 583

fit() (feature_engine.selection.SelectBySingleFeaturePerformance
method), 556

fit() (feature_engine.selection.SelectByTargetMeanPerformance
method), 590

fit() (feature_engine.selection.SmartCorrelatedSelection
method), 551

fit() (feature_engine.timeseries.forecasting.ExpandingWindowFeatures
method), 609

fit() (feature_engine.timeseries.forecasting.LagFeatures
method), 599

fit() (feature_engine.timeseries.forecasting.WindowFeatures
method), 604

fit() (feature_engine.transformation.ArcsinTransformer
method), 493

fit() (feature_engine.transformation.BoxCoxTransformer
method), 501

fit() (feature_engine.transformation.LogCpTransformer
method), 485

fit() (feature_engine.transformation.LogTransformer
method), 481

fit() (feature_engine.transformation.PowerTransformer
method), 497

fit() (feature_engine.transformation.ReciprocalTransformer
method), 489

fit() (feature_engine.transformation.YeoJohnsonTransformer
method), 505

fit() (feature_engine.wrappers.SklearnTransformerWrapper
method), 623

fit_predict() (feature_engine.pipeline.Pipeline
method), 630

712 Index

feature_engine Documentation, Release 1.7.0

fit_transform() (fea-
ture_engine.creation.CyclicalFeatures
method), 518

fit_transform() (fea-
ture_engine.creation.MathFeatures method),
511

fit_transform() (fea-
ture_engine.creation.RelativeFeatures method),
514

fit_transform() (fea-
ture_engine.datetime.DatetimeFeatures
method), 523

fit_transform() (fea-
ture_engine.datetime.DatetimeSubtraction
method), 528

fit_transform() (fea-
ture_engine.discretisation.ArbitraryDiscretiser
method), 453

fit_transform() (fea-
ture_engine.discretisation.DecisionTreeDiscretiser
method), 458

fit_transform() (fea-
ture_engine.discretisation.EqualFrequencyDiscretiser
method), 445

fit_transform() (fea-
ture_engine.discretisation.EqualWidthDiscretiser
method), 449

fit_transform() (fea-
ture_engine.discretisation.GeometricWidthDiscretiser
method), 462

fit_transform() (fea-
ture_engine.encoding.CountFrequencyEncoder
method), 410

fit_transform() (fea-
ture_engine.encoding.DecisionTreeEncoder
method), 431

fit_transform() (fea-
ture_engine.encoding.MeanEncoder method),
420

fit_transform() (fea-
ture_engine.encoding.OneHotEncoder
method), 405

fit_transform() (fea-
ture_engine.encoding.OrdinalEncoder
method), 415

fit_transform() (fea-
ture_engine.encoding.RareLabelEncoder
method), 435

fit_transform() (fea-
ture_engine.encoding.StringSimilarityEncoder
method), 441

fit_transform() (fea-
ture_engine.encoding.WoEEncoder method),
425

fit_transform() (fea-
ture_engine.imputation.AddMissingIndicator
method), 390

fit_transform() (fea-
ture_engine.imputation.ArbitraryNumberImputer
method), 376

fit_transform() (fea-
ture_engine.imputation.CategoricalImputer
method), 383

fit_transform() (fea-
ture_engine.imputation.DropMissingData
method), 393

fit_transform() (fea-
ture_engine.imputation.EndTailImputer
method), 380

fit_transform() (fea-
ture_engine.imputation.MeanMedianImputer
method), 373

fit_transform() (fea-
ture_engine.imputation.RandomSampleImputer
method), 387

fit_transform() (fea-
ture_engine.outliers.ArbitraryOutlierCapper
method), 472

fit_transform() (fea-
ture_engine.outliers.OutlierTrimmer method),
477

fit_transform() (feature_engine.outliers.Winsorizer
method), 468

fit_transform() (feature_engine.pipeline.Pipeline
method), 630

fit_transform() (fea-
ture_engine.preprocessing.MatchCategories
method), 614

fit_transform() (fea-
ture_engine.preprocessing.MatchVariables
method), 619

fit_transform() (fea-
ture_engine.selection.DropConstantFeatures
method), 537

fit_transform() (fea-
ture_engine.selection.DropCorrelatedFeatures
method), 546

fit_transform() (fea-
ture_engine.selection.DropDuplicateFeatures
method), 541

fit_transform() (fea-
ture_engine.selection.DropFeatures method),
532

fit_transform() (fea-
ture_engine.selection.DropHighPSIFeatures
method), 573

fit_transform() (fea-
ture_engine.selection.ProbeFeatureSelection

Index 713

feature_engine Documentation, Release 1.7.0

method), 594
fit_transform() (fea-

ture_engine.selection.RecursiveFeatureAddition
method), 566

fit_transform() (fea-
ture_engine.selection.RecursiveFeatureElimination
method), 561

fit_transform() (fea-
ture_engine.selection.SelectByInformationValue
method), 578

fit_transform() (fea-
ture_engine.selection.SelectByShuffling
method), 583

fit_transform() (fea-
ture_engine.selection.SelectBySingleFeaturePerformance
method), 556

fit_transform() (fea-
ture_engine.selection.SelectByTargetMeanPerformance
method), 590

fit_transform() (fea-
ture_engine.selection.SmartCorrelatedSelection
method), 551

fit_transform() (fea-
ture_engine.timeseries.forecasting.ExpandingWindowFeatures
method), 609

fit_transform() (fea-
ture_engine.timeseries.forecasting.LagFeatures
method), 599

fit_transform() (fea-
ture_engine.timeseries.forecasting.WindowFeatures
method), 604

fit_transform() (fea-
ture_engine.transformation.ArcsinTransformer
method), 493

fit_transform() (fea-
ture_engine.transformation.BoxCoxTransformer
method), 501

fit_transform() (fea-
ture_engine.transformation.LogCpTransformer
method), 485

fit_transform() (fea-
ture_engine.transformation.LogTransformer
method), 481

fit_transform() (fea-
ture_engine.transformation.PowerTransformer
method), 497

fit_transform() (fea-
ture_engine.transformation.ReciprocalTransformer
method), 489

fit_transform() (fea-
ture_engine.transformation.YeoJohnsonTransformer
method), 505

fit_transform() (fea-
ture_engine.wrappers.SklearnTransformerWrapper

method), 624

G
GeometricWidthDiscretiser (class in fea-

ture_engine.discretisation), 460
get_feature_names_out() (fea-

ture_engine.creation.CyclicalFeatures
method), 519

get_feature_names_out() (fea-
ture_engine.creation.MathFeatures method),
511

get_feature_names_out() (fea-
ture_engine.creation.RelativeFeatures method),
515

get_feature_names_out() (fea-
ture_engine.datetime.DatetimeFeatures
method), 524

get_feature_names_out() (fea-
ture_engine.datetime.DatetimeSubtraction
method), 528

get_feature_names_out() (fea-
ture_engine.discretisation.ArbitraryDiscretiser
method), 454

get_feature_names_out() (fea-
ture_engine.discretisation.DecisionTreeDiscretiser
method), 458

get_feature_names_out() (fea-
ture_engine.discretisation.EqualFrequencyDiscretiser
method), 446

get_feature_names_out() (fea-
ture_engine.discretisation.EqualWidthDiscretiser
method), 450

get_feature_names_out() (fea-
ture_engine.discretisation.GeometricWidthDiscretiser
method), 462

get_feature_names_out() (fea-
ture_engine.encoding.CountFrequencyEncoder
method), 411

get_feature_names_out() (fea-
ture_engine.encoding.DecisionTreeEncoder
method), 431

get_feature_names_out() (fea-
ture_engine.encoding.MeanEncoder method),
421

get_feature_names_out() (fea-
ture_engine.encoding.OneHotEncoder
method), 406

get_feature_names_out() (fea-
ture_engine.encoding.OrdinalEncoder
method), 416

get_feature_names_out() (fea-
ture_engine.encoding.RareLabelEncoder
method), 436

get_feature_names_out() (fea-

714 Index

feature_engine Documentation, Release 1.7.0

ture_engine.encoding.StringSimilarityEncoder
method), 441

get_feature_names_out() (fea-
ture_engine.encoding.WoEEncoder method),
426

get_feature_names_out() (fea-
ture_engine.imputation.AddMissingIndicator
method), 390

get_feature_names_out() (fea-
ture_engine.imputation.ArbitraryNumberImputer
method), 377

get_feature_names_out() (fea-
ture_engine.imputation.CategoricalImputer
method), 384

get_feature_names_out() (fea-
ture_engine.imputation.DropMissingData
method), 393

get_feature_names_out() (fea-
ture_engine.imputation.EndTailImputer
method), 380

get_feature_names_out() (fea-
ture_engine.imputation.MeanMedianImputer
method), 374

get_feature_names_out() (fea-
ture_engine.imputation.RandomSampleImputer
method), 387

get_feature_names_out() (fea-
ture_engine.outliers.ArbitraryOutlierCapper
method), 472

get_feature_names_out() (fea-
ture_engine.outliers.OutlierTrimmer method),
478

get_feature_names_out() (fea-
ture_engine.outliers.Winsorizer method),
468

get_feature_names_out() (fea-
ture_engine.pipeline.Pipeline method), 631

get_feature_names_out() (fea-
ture_engine.preprocessing.MatchCategories
method), 614

get_feature_names_out() (fea-
ture_engine.preprocessing.MatchVariables
method), 620

get_feature_names_out() (fea-
ture_engine.selection.DropConstantFeatures
method), 537

get_feature_names_out() (fea-
ture_engine.selection.DropCorrelatedFeatures
method), 546

get_feature_names_out() (fea-
ture_engine.selection.DropDuplicateFeatures
method), 541

get_feature_names_out() (fea-
ture_engine.selection.DropFeatures method),

533
get_feature_names_out() (fea-

ture_engine.selection.DropHighPSIFeatures
method), 574

get_feature_names_out() (fea-
ture_engine.selection.ProbeFeatureSelection
method), 595

get_feature_names_out() (fea-
ture_engine.selection.RecursiveFeatureAddition
method), 566

get_feature_names_out() (fea-
ture_engine.selection.RecursiveFeatureElimination
method), 562

get_feature_names_out() (fea-
ture_engine.selection.SelectByInformationValue
method), 578

get_feature_names_out() (fea-
ture_engine.selection.SelectByShuffling
method), 584

get_feature_names_out() (fea-
ture_engine.selection.SelectBySingleFeaturePerformance
method), 557

get_feature_names_out() (fea-
ture_engine.selection.SelectByTargetMeanPerformance
method), 590

get_feature_names_out() (fea-
ture_engine.selection.SmartCorrelatedSelection
method), 552

get_feature_names_out() (fea-
ture_engine.timeseries.forecasting.ExpandingWindowFeatures
method), 610

get_feature_names_out() (fea-
ture_engine.timeseries.forecasting.LagFeatures
method), 600

get_feature_names_out() (fea-
ture_engine.timeseries.forecasting.WindowFeatures
method), 605

get_feature_names_out() (fea-
ture_engine.transformation.ArcsinTransformer
method), 494

get_feature_names_out() (fea-
ture_engine.transformation.BoxCoxTransformer
method), 502

get_feature_names_out() (fea-
ture_engine.transformation.LogCpTransformer
method), 486

get_feature_names_out() (fea-
ture_engine.transformation.LogTransformer
method), 482

get_feature_names_out() (fea-
ture_engine.transformation.PowerTransformer
method), 498

get_feature_names_out() (fea-
ture_engine.transformation.ReciprocalTransformer

Index 715

feature_engine Documentation, Release 1.7.0

method), 490
get_feature_names_out() (fea-

ture_engine.transformation.YeoJohnsonTransformer
method), 506

get_feature_names_out() (fea-
ture_engine.wrappers.SklearnTransformerWrapper
method), 624

get_metadata_routing() (fea-
ture_engine.creation.CyclicalFeatures
method), 519

get_metadata_routing() (fea-
ture_engine.creation.MathFeatures method),
511

get_metadata_routing() (fea-
ture_engine.creation.RelativeFeatures method),
515

get_metadata_routing() (fea-
ture_engine.datetime.DatetimeFeatures
method), 524

get_metadata_routing() (fea-
ture_engine.datetime.DatetimeSubtraction
method), 529

get_metadata_routing() (fea-
ture_engine.discretisation.ArbitraryDiscretiser
method), 454

get_metadata_routing() (fea-
ture_engine.discretisation.DecisionTreeDiscretiser
method), 459

get_metadata_routing() (fea-
ture_engine.discretisation.EqualFrequencyDiscretiser
method), 446

get_metadata_routing() (fea-
ture_engine.discretisation.EqualWidthDiscretiser
method), 450

get_metadata_routing() (fea-
ture_engine.discretisation.GeometricWidthDiscretiser
method), 463

get_metadata_routing() (fea-
ture_engine.encoding.CountFrequencyEncoder
method), 411

get_metadata_routing() (fea-
ture_engine.encoding.DecisionTreeEncoder
method), 432

get_metadata_routing() (fea-
ture_engine.encoding.MeanEncoder method),
421

get_metadata_routing() (fea-
ture_engine.encoding.OneHotEncoder
method), 406

get_metadata_routing() (fea-
ture_engine.encoding.OrdinalEncoder
method), 416

get_metadata_routing() (fea-
ture_engine.encoding.RareLabelEncoder

method), 436
get_metadata_routing() (fea-

ture_engine.encoding.StringSimilarityEncoder
method), 441

get_metadata_routing() (fea-
ture_engine.encoding.WoEEncoder method),
426

get_metadata_routing() (fea-
ture_engine.imputation.AddMissingIndicator
method), 391

get_metadata_routing() (fea-
ture_engine.imputation.ArbitraryNumberImputer
method), 377

get_metadata_routing() (fea-
ture_engine.imputation.CategoricalImputer
method), 384

get_metadata_routing() (fea-
ture_engine.imputation.DropMissingData
method), 394

get_metadata_routing() (fea-
ture_engine.imputation.EndTailImputer
method), 381

get_metadata_routing() (fea-
ture_engine.imputation.MeanMedianImputer
method), 374

get_metadata_routing() (fea-
ture_engine.imputation.RandomSampleImputer
method), 387

get_metadata_routing() (fea-
ture_engine.outliers.ArbitraryOutlierCapper
method), 473

get_metadata_routing() (fea-
ture_engine.outliers.OutlierTrimmer method),
478

get_metadata_routing() (fea-
ture_engine.outliers.Winsorizer method),
469

get_metadata_routing() (fea-
ture_engine.pipeline.Pipeline method), 631

get_metadata_routing() (fea-
ture_engine.preprocessing.MatchCategories
method), 615

get_metadata_routing() (fea-
ture_engine.preprocessing.MatchVariables
method), 620

get_metadata_routing() (fea-
ture_engine.selection.DropConstantFeatures
method), 538

get_metadata_routing() (fea-
ture_engine.selection.DropCorrelatedFeatures
method), 546

get_metadata_routing() (fea-
ture_engine.selection.DropDuplicateFeatures
method), 542

716 Index

feature_engine Documentation, Release 1.7.0

get_metadata_routing() (fea-
ture_engine.selection.DropFeatures method),
533

get_metadata_routing() (fea-
ture_engine.selection.DropHighPSIFeatures
method), 574

get_metadata_routing() (fea-
ture_engine.selection.ProbeFeatureSelection
method), 595

get_metadata_routing() (fea-
ture_engine.selection.RecursiveFeatureAddition
method), 567

get_metadata_routing() (fea-
ture_engine.selection.RecursiveFeatureElimination
method), 562

get_metadata_routing() (fea-
ture_engine.selection.SelectByInformationValue
method), 579

get_metadata_routing() (fea-
ture_engine.selection.SelectByShuffling
method), 584

get_metadata_routing() (fea-
ture_engine.selection.SelectBySingleFeaturePerformance
method), 557

get_metadata_routing() (fea-
ture_engine.selection.SelectByTargetMeanPerformance
method), 591

get_metadata_routing() (fea-
ture_engine.selection.SmartCorrelatedSelection
method), 552

get_metadata_routing() (fea-
ture_engine.timeseries.forecasting.ExpandingWindowFeatures
method), 610

get_metadata_routing() (fea-
ture_engine.timeseries.forecasting.LagFeatures
method), 600

get_metadata_routing() (fea-
ture_engine.timeseries.forecasting.WindowFeatures
method), 605

get_metadata_routing() (fea-
ture_engine.transformation.ArcsinTransformer
method), 494

get_metadata_routing() (fea-
ture_engine.transformation.BoxCoxTransformer
method), 502

get_metadata_routing() (fea-
ture_engine.transformation.LogCpTransformer
method), 486

get_metadata_routing() (fea-
ture_engine.transformation.LogTransformer
method), 482

get_metadata_routing() (fea-
ture_engine.transformation.PowerTransformer
method), 498

get_metadata_routing() (fea-
ture_engine.transformation.ReciprocalTransformer
method), 490

get_metadata_routing() (fea-
ture_engine.transformation.YeoJohnsonTransformer
method), 506

get_metadata_routing() (fea-
ture_engine.wrappers.SklearnTransformerWrapper
method), 624

get_params() (feature_engine.creation.CyclicalFeatures
method), 519

get_params() (feature_engine.creation.MathFeatures
method), 512

get_params() (feature_engine.creation.RelativeFeatures
method), 515

get_params() (feature_engine.datetime.DatetimeFeatures
method), 525

get_params() (feature_engine.datetime.DatetimeSubtraction
method), 529

get_params() (feature_engine.discretisation.ArbitraryDiscretiser
method), 454

get_params() (feature_engine.discretisation.DecisionTreeDiscretiser
method), 459

get_params() (feature_engine.discretisation.EqualFrequencyDiscretiser
method), 446

get_params() (feature_engine.discretisation.EqualWidthDiscretiser
method), 450

get_params() (feature_engine.discretisation.GeometricWidthDiscretiser
method), 463

get_params() (feature_engine.encoding.CountFrequencyEncoder
method), 411

get_params() (feature_engine.encoding.DecisionTreeEncoder
method), 432

get_params() (feature_engine.encoding.MeanEncoder
method), 421

get_params() (feature_engine.encoding.OneHotEncoder
method), 406

get_params() (feature_engine.encoding.OrdinalEncoder
method), 416

get_params() (feature_engine.encoding.RareLabelEncoder
method), 436

get_params() (feature_engine.encoding.StringSimilarityEncoder
method), 442

get_params() (feature_engine.encoding.WoEEncoder
method), 426

get_params() (feature_engine.imputation.AddMissingIndicator
method), 391

get_params() (feature_engine.imputation.ArbitraryNumberImputer
method), 377

get_params() (feature_engine.imputation.CategoricalImputer
method), 384

get_params() (feature_engine.imputation.DropMissingData
method), 394

get_params() (feature_engine.imputation.EndTailImputer

Index 717

feature_engine Documentation, Release 1.7.0

method), 381
get_params() (feature_engine.imputation.MeanMedianImputer

method), 374
get_params() (feature_engine.imputation.RandomSampleImputer

method), 388
get_params() (feature_engine.outliers.ArbitraryOutlierCapper

method), 473
get_params() (feature_engine.outliers.OutlierTrimmer

method), 478
get_params() (feature_engine.outliers.Winsorizer

method), 469
get_params() (feature_engine.pipeline.Pipeline

method), 631
get_params() (feature_engine.preprocessing.MatchCategories

method), 615
get_params() (feature_engine.preprocessing.MatchVariables

method), 620
get_params() (feature_engine.selection.DropConstantFeatures

method), 538
get_params() (feature_engine.selection.DropCorrelatedFeatures

method), 547
get_params() (feature_engine.selection.DropDuplicateFeatures

method), 542
get_params() (feature_engine.selection.DropFeatures

method), 533
get_params() (feature_engine.selection.DropHighPSIFeatures

method), 574
get_params() (feature_engine.selection.ProbeFeatureSelection

method), 595
get_params() (feature_engine.selection.RecursiveFeatureAddition

method), 567
get_params() (feature_engine.selection.RecursiveFeatureElimination

method), 562
get_params() (feature_engine.selection.SelectByInformationValue

method), 579
get_params() (feature_engine.selection.SelectByShuffling

method), 584
get_params() (feature_engine.selection.SelectBySingleFeaturePerformance

method), 557
get_params() (feature_engine.selection.SelectByTargetMeanPerformance

method), 591
get_params() (feature_engine.selection.SmartCorrelatedSelection

method), 552
get_params() (feature_engine.timeseries.forecasting.ExpandingWindowFeatures

method), 610
get_params() (feature_engine.timeseries.forecasting.LagFeatures

method), 600
get_params() (feature_engine.timeseries.forecasting.WindowFeatures

method), 606
get_params() (feature_engine.transformation.ArcsinTransformer

method), 494
get_params() (feature_engine.transformation.BoxCoxTransformer

method), 502
get_params() (feature_engine.transformation.LogCpTransformer

method), 487
get_params() (feature_engine.transformation.LogTransformer

method), 482
get_params() (feature_engine.transformation.PowerTransformer

method), 498
get_params() (feature_engine.transformation.ReciprocalTransformer

method), 490
get_params() (feature_engine.transformation.YeoJohnsonTransformer

method), 506
get_params() (feature_engine.wrappers.SklearnTransformerWrapper

method), 625
get_support() (feature_engine.selection.DropConstantFeatures

method), 538
get_support() (feature_engine.selection.DropCorrelatedFeatures

method), 547
get_support() (feature_engine.selection.DropDuplicateFeatures

method), 542
get_support() (feature_engine.selection.DropFeatures

method), 534
get_support() (feature_engine.selection.DropHighPSIFeatures

method), 574
get_support() (feature_engine.selection.ProbeFeatureSelection

method), 596
get_support() (feature_engine.selection.RecursiveFeatureAddition

method), 567
get_support() (feature_engine.selection.RecursiveFeatureElimination

method), 562
get_support() (feature_engine.selection.SelectByInformationValue

method), 579
get_support() (feature_engine.selection.SelectByShuffling

method), 584
get_support() (feature_engine.selection.SelectBySingleFeaturePerformance

method), 557
get_support() (feature_engine.selection.SelectByTargetMeanPerformance

method), 591
get_support() (feature_engine.selection.SmartCorrelatedSelection

method), 553

I
inverse_transform() (fea-

ture_engine.encoding.CountFrequencyEncoder
method), 411

inverse_transform() (fea-
ture_engine.encoding.DecisionTreeEncoder
method), 432

inverse_transform() (fea-
ture_engine.encoding.MeanEncoder method),
422

inverse_transform() (fea-
ture_engine.encoding.OneHotEncoder
method), 407

inverse_transform() (fea-
ture_engine.encoding.OrdinalEncoder
method), 416

718 Index

feature_engine Documentation, Release 1.7.0

inverse_transform() (fea-
ture_engine.encoding.RareLabelEncoder
method), 437

inverse_transform() (fea-
ture_engine.encoding.StringSimilarityEncoder
method), 442

inverse_transform() (fea-
ture_engine.encoding.WoEEncoder method),
427

inverse_transform() (fea-
ture_engine.pipeline.Pipeline method), 632

inverse_transform() (fea-
ture_engine.preprocessing.MatchCategories
method), 615

inverse_transform() (fea-
ture_engine.transformation.ArcsinTransformer
method), 495

inverse_transform() (fea-
ture_engine.transformation.BoxCoxTransformer
method), 503

inverse_transform() (fea-
ture_engine.transformation.LogCpTransformer
method), 487

inverse_transform() (fea-
ture_engine.transformation.LogTransformer
method), 483

inverse_transform() (fea-
ture_engine.transformation.PowerTransformer
method), 498

inverse_transform() (fea-
ture_engine.transformation.ReciprocalTransformer
method), 491

inverse_transform() (fea-
ture_engine.transformation.YeoJohnsonTransformer
method), 507

inverse_transform() (fea-
ture_engine.wrappers.SklearnTransformerWrapper
method), 625

L
LagFeatures (class in fea-

ture_engine.timeseries.forecasting), 597
load_titanic() (in module feature_engine.datasets),

639
LogCpTransformer (class in fea-

ture_engine.transformation), 484
LogTransformer (class in fea-

ture_engine.transformation), 480

M
make_pipeline() (in module feature_engine.pipeline),

638
MatchCategories (class in fea-

ture_engine.preprocessing), 612

MatchVariables (class in fea-
ture_engine.preprocessing), 616

MathFeatures (class in feature_engine.creation), 508
MeanEncoder (class in feature_engine.encoding), 418
MeanMedianImputer (class in fea-

ture_engine.imputation), 372

N
n_features_in_ (feature_engine.pipeline.Pipeline

property), 632
named_steps (feature_engine.pipeline.Pipeline prop-

erty), 632

O
OneHotEncoder (class in feature_engine.encoding), 403
OrdinalEncoder (class in feature_engine.encoding),

413
OutlierTrimmer (class in feature_engine.outliers), 474

P
Pipeline (class in feature_engine.pipeline), 627
PowerTransformer (class in fea-

ture_engine.transformation), 496
predict() (feature_engine.pipeline.Pipeline method),

632
predict_log_proba() (fea-

ture_engine.pipeline.Pipeline method), 633
predict_proba() (feature_engine.pipeline.Pipeline

method), 634
ProbeFeatureSelection (class in fea-

ture_engine.selection), 592

R
RandomSampleImputer (class in fea-

ture_engine.imputation), 385
RareLabelEncoder (class in feature_engine.encoding),

433
ReciprocalTransformer (class in fea-

ture_engine.transformation), 488
RecursiveFeatureAddition (class in fea-

ture_engine.selection), 564
RecursiveFeatureElimination (class in fea-

ture_engine.selection), 559
RelativeFeatures (class in feature_engine.creation),

513
retain_variables_if_in_df() (in module fea-

ture_engine.variable_handling), 648
return_na_data() (fea-

ture_engine.imputation.DropMissingData
method), 394

S
score() (feature_engine.pipeline.Pipeline method), 635

Index 719

feature_engine Documentation, Release 1.7.0

score_samples() (feature_engine.pipeline.Pipeline
method), 635

SelectByInformationValue (class in fea-
ture_engine.selection), 576

SelectByShuffling (class in feature_engine.selection),
580

SelectBySingleFeaturePerformance (class in fea-
ture_engine.selection), 554

SelectByTargetMeanPerformance (class in fea-
ture_engine.selection), 586

set_fit_request() (fea-
ture_engine.selection.SelectByShuffling
method), 585

set_params() (feature_engine.creation.CyclicalFeatures
method), 520

set_params() (feature_engine.creation.MathFeatures
method), 512

set_params() (feature_engine.creation.RelativeFeatures
method), 516

set_params() (feature_engine.datetime.DatetimeFeatures
method), 525

set_params() (feature_engine.datetime.DatetimeSubtraction
method), 529

set_params() (feature_engine.discretisation.ArbitraryDiscretiser
method), 455

set_params() (feature_engine.discretisation.DecisionTreeDiscretiser
method), 459

set_params() (feature_engine.discretisation.EqualFrequencyDiscretiser
method), 446

set_params() (feature_engine.discretisation.EqualWidthDiscretiser
method), 451

set_params() (feature_engine.discretisation.GeometricWidthDiscretiser
method), 463

set_params() (feature_engine.encoding.CountFrequencyEncoder
method), 412

set_params() (feature_engine.encoding.DecisionTreeEncoder
method), 432

set_params() (feature_engine.encoding.MeanEncoder
method), 422

set_params() (feature_engine.encoding.OneHotEncoder
method), 407

set_params() (feature_engine.encoding.OrdinalEncoder
method), 417

set_params() (feature_engine.encoding.RareLabelEncoder
method), 437

set_params() (feature_engine.encoding.StringSimilarityEncoder
method), 442

set_params() (feature_engine.encoding.WoEEncoder
method), 427

set_params() (feature_engine.imputation.AddMissingIndicator
method), 391

set_params() (feature_engine.imputation.ArbitraryNumberImputer
method), 377

set_params() (feature_engine.imputation.CategoricalImputer

method), 384
set_params() (feature_engine.imputation.DropMissingData

method), 394
set_params() (feature_engine.imputation.EndTailImputer

method), 381
set_params() (feature_engine.imputation.MeanMedianImputer

method), 374
set_params() (feature_engine.imputation.RandomSampleImputer

method), 388
set_params() (feature_engine.outliers.ArbitraryOutlierCapper

method), 473
set_params() (feature_engine.outliers.OutlierTrimmer

method), 479
set_params() (feature_engine.outliers.Winsorizer

method), 469
set_params() (feature_engine.pipeline.Pipeline

method), 636
set_params() (feature_engine.preprocessing.MatchCategories

method), 616
set_params() (feature_engine.preprocessing.MatchVariables

method), 620
set_params() (feature_engine.selection.DropConstantFeatures

method), 539
set_params() (feature_engine.selection.DropCorrelatedFeatures

method), 547
set_params() (feature_engine.selection.DropDuplicateFeatures

method), 543
set_params() (feature_engine.selection.DropFeatures

method), 534
set_params() (feature_engine.selection.DropHighPSIFeatures

method), 575
set_params() (feature_engine.selection.ProbeFeatureSelection

method), 596
set_params() (feature_engine.selection.RecursiveFeatureAddition

method), 568
set_params() (feature_engine.selection.RecursiveFeatureElimination

method), 563
set_params() (feature_engine.selection.SelectByInformationValue

method), 580
set_params() (feature_engine.selection.SelectByShuffling

method), 586
set_params() (feature_engine.selection.SelectBySingleFeaturePerformance

method), 558
set_params() (feature_engine.selection.SelectByTargetMeanPerformance

method), 591
set_params() (feature_engine.selection.SmartCorrelatedSelection

method), 553
set_params() (feature_engine.timeseries.forecasting.ExpandingWindowFeatures

method), 611
set_params() (feature_engine.timeseries.forecasting.LagFeatures

method), 601
set_params() (feature_engine.timeseries.forecasting.WindowFeatures

method), 606
set_params() (feature_engine.transformation.ArcsinTransformer

720 Index

feature_engine Documentation, Release 1.7.0

method), 495
set_params() (feature_engine.transformation.BoxCoxTransformer

method), 503
set_params() (feature_engine.transformation.LogCpTransformer

method), 487
set_params() (feature_engine.transformation.LogTransformer

method), 483
set_params() (feature_engine.transformation.PowerTransformer

method), 499
set_params() (feature_engine.transformation.ReciprocalTransformer

method), 491
set_params() (feature_engine.transformation.YeoJohnsonTransformer

method), 507
set_params() (feature_engine.wrappers.SklearnTransformerWrapper

method), 625
set_score_request() (fea-

ture_engine.pipeline.Pipeline method), 636
SklearnTransformerWrapper (class in fea-

ture_engine.wrappers), 621
SmartCorrelatedSelection (class in fea-

ture_engine.selection), 548
StringSimilarityEncoder (class in fea-

ture_engine.encoding), 438

T
transform() (feature_engine.creation.CyclicalFeatures

method), 520
transform() (feature_engine.creation.MathFeatures

method), 512
transform() (feature_engine.creation.RelativeFeatures

method), 516
transform() (feature_engine.datetime.DatetimeFeatures

method), 525
transform() (feature_engine.datetime.DatetimeSubtraction

method), 530
transform() (feature_engine.discretisation.ArbitraryDiscretiser

method), 455
transform() (feature_engine.discretisation.DecisionTreeDiscretiser

method), 460
transform() (feature_engine.discretisation.EqualFrequencyDiscretiser

method), 447
transform() (feature_engine.discretisation.EqualWidthDiscretiser

method), 451
transform() (feature_engine.discretisation.GeometricWidthDiscretiser

method), 464
transform() (feature_engine.encoding.CountFrequencyEncoder

method), 412
transform() (feature_engine.encoding.DecisionTreeEncoder

method), 433
transform() (feature_engine.encoding.MeanEncoder

method), 422
transform() (feature_engine.encoding.OneHotEncoder

method), 407

transform() (feature_engine.encoding.OrdinalEncoder
method), 417

transform() (feature_engine.encoding.RareLabelEncoder
method), 437

transform() (feature_engine.encoding.StringSimilarityEncoder
method), 442

transform() (feature_engine.encoding.WoEEncoder
method), 427

transform() (feature_engine.imputation.AddMissingIndicator
method), 391

transform() (feature_engine.imputation.ArbitraryNumberImputer
method), 378

transform() (feature_engine.imputation.CategoricalImputer
method), 385

transform() (feature_engine.imputation.DropMissingData
method), 395

transform() (feature_engine.imputation.EndTailImputer
method), 381

transform() (feature_engine.imputation.MeanMedianImputer
method), 375

transform() (feature_engine.imputation.RandomSampleImputer
method), 388

transform() (feature_engine.outliers.ArbitraryOutlierCapper
method), 473

transform() (feature_engine.outliers.OutlierTrimmer
method), 479

transform() (feature_engine.outliers.Winsorizer
method), 470

transform() (feature_engine.pipeline.Pipeline
method), 637

transform() (feature_engine.preprocessing.MatchCategories
method), 616

transform() (feature_engine.preprocessing.MatchVariables
method), 621

transform() (feature_engine.selection.DropConstantFeatures
method), 539

transform() (feature_engine.selection.DropCorrelatedFeatures
method), 548

transform() (feature_engine.selection.DropDuplicateFeatures
method), 543

transform() (feature_engine.selection.DropFeatures
method), 534

transform() (feature_engine.selection.DropHighPSIFeatures
method), 575

transform() (feature_engine.selection.ProbeFeatureSelection
method), 596

transform() (feature_engine.selection.RecursiveFeatureAddition
method), 568

transform() (feature_engine.selection.RecursiveFeatureElimination
method), 563

transform() (feature_engine.selection.SelectByInformationValue
method), 580

transform() (feature_engine.selection.SelectByShuffling
method), 586

Index 721

feature_engine Documentation, Release 1.7.0

transform() (feature_engine.selection.SelectBySingleFeaturePerformance
method), 558

transform() (feature_engine.selection.SelectByTargetMeanPerformance
method), 592

transform() (feature_engine.selection.SmartCorrelatedSelection
method), 553

transform() (feature_engine.timeseries.forecasting.ExpandingWindowFeatures
method), 611

transform() (feature_engine.timeseries.forecasting.LagFeatures
method), 601

transform() (feature_engine.timeseries.forecasting.WindowFeatures
method), 606

transform() (feature_engine.transformation.ArcsinTransformer
method), 495

transform() (feature_engine.transformation.BoxCoxTransformer
method), 503

transform() (feature_engine.transformation.LogCpTransformer
method), 487

transform() (feature_engine.transformation.LogTransformer
method), 483

transform() (feature_engine.transformation.PowerTransformer
method), 499

transform() (feature_engine.transformation.ReciprocalTransformer
method), 491

transform() (feature_engine.transformation.YeoJohnsonTransformer
method), 507

transform() (feature_engine.wrappers.SklearnTransformerWrapper
method), 626

transform_x_y() (fea-
ture_engine.imputation.DropMissingData
method), 395

transform_x_y() (fea-
ture_engine.outliers.OutlierTrimmer method),
479

transform_x_y() (feature_engine.pipeline.Pipeline
method), 637

transform_x_y() (fea-
ture_engine.timeseries.forecasting.ExpandingWindowFeatures
method), 611

transform_x_y() (fea-
ture_engine.timeseries.forecasting.LagFeatures
method), 601

transform_x_y() (fea-
ture_engine.timeseries.forecasting.WindowFeatures
method), 606

W
WindowFeatures (class in fea-

ture_engine.timeseries.forecasting), 602
Winsorizer (class in feature_engine.outliers), 464
WoEEncoder (class in feature_engine.encoding), 423

Y
YeoJohnsonTransformer (class in fea-

ture_engine.transformation), 504

722 Index

	A Python library for Feature Engineering and Selection
	Pst! How did you find us?

	What is unique about Feature-engine?
	Installation
	Feature-engine features in the following resources
	Feature-engine’s Transformers
	Missing Data Imputation: Imputers
	Categorical Encoders: Encoders
	Variable Discretisation: Discretisers
	Outlier Capping or Removal
	Numerical Transformation: Transformers
	Feature Creation:
	Datetime:
	Feature Selection:
	Forecasting:
	Preprocessing:
	Scikit-learn Wrapper:

	Getting Help
	Contributing
	Sponsor us
	Open Source
	Table of Contents
	Quick Start
	Installation
	Example Use
	Feature-engine with the Scikit-learn’s pipeline
	More examples
	Datasets
	Titanic dataset
	Ames House Prices dataset
	Credit Approval dataset

	User Guide
	Transformation
	Missing Data Imputation
	Imputers
	MeanMedianImputer
	Additional resources
	ArbitraryNumberImputer
	Additional resources
	EndTailImputer
	Additional resources
	CategoricalImputer
	Handling missing values
	Python implementation
	Imputation with an arbitrary string
	Imputation with the most frequent category
	Automatically impute all categorical variables
	Categorical features with 2 modes
	Considerations
	Additional resources
	RandomSampleImputer
	Setting the seed
	Important for GDPR
	Additional resources
	AddMissingIndicator
	Tip
	Additional resources
	DropMissingData
	DropMissingData
	Dropna
	Adjust target after dropna
	Return the rows with nan
	Dropna from subset of variables
	Dropna based on percentage of non-nan values
	Scikit-learn compatible
	Pipeline
	Dropna or fillna?
	Drop columns with nan
	See also
	Tutorials, books and courses

	Categorical Encoding
	OneHotEncoder
	Encoding into k vs k-1 variables
	Binary variables
	Encoding popular categories
	OneHotEncoder
	Python implementation
	Finding categorical variables automatically
	Encoding variables of type numeric
	Encoding binary variables into 1 dummy
	Encoding frequent categories
	Considerations
	Tutorials, books and courses

	CountFrequencyEncoder
	Count and frequency encoding in machine learning
	Count and Frequency encoding with Feature-engine
	Count and frequency encoding with unseen categories
	Count encoding vs other encoding methods
	Python example
	Count encoding
	Frequency encoding
	Additional resources

	OrdinalEncoder
	Additional resources

	MeanEncoder
	Overfitting
	Smoothing
	High cardinality
	Alternative Python implementations of mean encoding
	Mean encoder
	Unseen categories
	Mean encoding and machine learning
	Python examples
	Simple mean encoding
	Mean encoding with smoothing
	Mean encoding variables with numerical values
	Additional resources

	WoEEncoder
	Additional resources

	DecisionTreeEncoder
	Additional resources

	RareLabelEncoder
	Tips
	Additional resources

	StringSimilarityEncoder
	Output of the StringSimilarityEncoder()
	StringSimilarityEncoder() vs One-hot encoding
	Encoding only popular categories
	Specifying how StringSimilarityEncoder() should deal with missing values
	Important
	Examples
	More details

	Discretisation
	EqualFrequencyDiscretiser
	Advantages and Limitations
	Advantages
	Limitations
	EqualFrequencyDiscretiser
	Python code example
	Load dataset
	Equal-frequency Discretization
	Return variables as object
	Return bin boundaries
	Binning skewed data
	See Also
	Additional resources

	EqualWidthDiscretiser
	Advantages and Limitations
	Advantages
	Limitations
	EqualWidthDiscretiser
	Python code example
	Load dataset
	Equal-width Discretization
	Return variables as object
	Return bin boundaries
	See Also
	Additional resources

	ArbitraryDiscretiser
	Example
	Additional resources

	DecisionTreeDiscretiser
	More details

	GeometricWidthDiscretiser
	Additional resources

	Outlier Handling
	Winsorizer
	Additional resources

	ArbitraryOutlierCapper
	Additional resources

	OutlierTrimmer
	Identifying outliers
	Gaussian limits or z-score
	Interquartile range proximity rule
	Maximum absolute deviation
	Percentiles
	Remove outliers in Python
	Identifying outliers
	Outlier removal
	IQR
	MAD
	Z-score
	Percentiles
	Pipeline
	Tutorials, books and courses

	Variance Stabilizing Transformations
	Article
	LogTransformer
	The LogTransformer
	Python implementation
	Tutorials, books and courses
	LogCpTransformer
	Example
	Tutorials, books and courses
	ReciprocalTransformer
	Additional resources
	ArcsinTransformer
	Example
	Additional resources
	PowerTransformer
	Additional resources
	BoxCoxTransformer
	Uses of the Box Cox Transformation
	References
	BoxCoxTransformer
	Python code examples
	Tutorials, books and courses
	YeoJohnsonTransformer
	Additional resources

	Creation
	Feature Creation
	Creating New Features with Feature-engine
	Feature creation module
	CyclicalFeatures
	Cyclical encoding
	Cyclical encoding with Feature-engine
	Example
	Cyclical feature visualization
	Additional resources
	MathFeatures
	Examples
	New variables names
	Additional resources
	RelativeFeatures
	Examples
	Additional resources

	Feature-engine in Practice
	Summary
	Tutorials, books and courses
	Transformers in other Libraries

	Datetime Features
	DatetimeFeatures
	Datetime features with pandas
	Datetime features with Feature-engine
	Extract date features
	Extract time features
	Extract date and time features
	Time series
	Important
	Automating feature extraction
	Most common features
	All supported features
	Extract and select features automatically
	Working with different timezones
	Missing timestamps
	Additional resources

	DatetimeSubtraction
	Subtracting datetime features with pandas
	Datetime subtraction with Feature-engine
	Drop original variables after computation
	Subtract multiple variables simultaneously
	Working with missing values
	Working with different timezones
	Adding arbitrary names to the new variables
	get_feature_names_out()
	Combining extraction and subtraction of datetime features
	Additional resources

	Selection
	Feature Selection
	Selection Mechanism Overview
	Selectors Characteristics Overview
	Selection based on feature characteristics
	Selection based on a machine learning model
	Selection methods commonly used in finance
	Alternative feature selection methods
	Feature Selection Algorithms
	DropFeatures
	Additional resources
	DropConstantFeatures
	Additional resources
	DropDuplicateFeatures
	Additional resources
	DropCorrelatedFeatures
	Additional resources
	SmartCorrelatedSelection
	Procedure
	Variance
	Performance
	Additional resources
	SelectBySingleFeaturePerformance
	Additional resources
	RecursiveFeatureElimination
	Additional resources
	RecursiveFeatureAddition
	Additional resources
	SelectByShuffling
	Procedure
	Additional resources
	SelectByTargetMeanPerformance
	Important
	Troubleshooting
	Categorical variables
	Numerical variables
	Example
	Additional resources
	DropHighPSIFeatures
	Population Stability Index - PSI
	Important
	Threshold
	Procedure
	Splitting the data
	Proportion of observations
	Proportions of unique observations
	Using a cut-off value
	split_col
	Examples
	Case 1: split data based on proportions (split_frac)
	Case 2: split data based on variable (numerical cut_off)
	Case 3: split data based on time (date as cut_off)
	Case 4: split data based on a categorical variable (category or list as cut_off)
	Split passing a category value
	Split passing a list of categories
	Case 5: split data based on unique values (split_distinct)
	Additional resources
	SelectByInformationValue
	Example
	Note
	Additional resources
	ProbeFeatureSelection
	Example
	Using several probe features
	Additional resources

	Additional Resources

	Time series
	Time Series Features
	Forecasting Features
	LagFeatures
	What is a lag feature?
	Automating lag feature creation
	Examples
	Shift a row forward
	Create multiple lag features
	Lag features based on datetime
	Drop variable after lagging features
	Working with pandas series
	Getting the name of the lag features
	Determining the right lag
	Lags from the target vs lags from predictor variables
	See also
	Tutorials and courses
	WindowFeatures
	Rolling window features with pandas
	Sliding window features with Feature-engine
	Window features: parameters
	WindowFeatures: under the hood
	Examples
	Dropping rows with nan
	Imputing rows with nan
	Working with pandas series
	Getting the name of the new features
	Windows from the target vs windows from predictor variables
	See also
	Other open-source packages for window features
	Tutorials and courses
	ExpandingWindowFeatures
	Expanding window features with pandas
	Expanding window features with Feature-engine
	Examples
	Dropping rows with nan
	Imputing rows with nan
	Working with pandas series
	Getting the name of the new features
	See also
	Tutorials and courses

	Other
	Preprocessing
	MatchCategories
	When to use the transformer

	MatchVariables
	When to use the transformer
	More details

	Scikit-learn Wrapper
	SklearnTransformerWrapper
	More details

	Pipeline
	Pipeline
	Pipeline
	Pipeline functions
	Setting up a Pipeline
	Accessing Pipeline steps
	Finding feature names in a Pipeline
	Accessing nested parameters
	Best use: Dropping rows during data preprocessing
	Hyperparameter optimization
	Additional resources

	make_pipeline
	Setting up a Pipeline with make_pipeline
	Forecasting

	Tools
	Variable handling functions
	find_all_variables
	find_categorical_variables
	find_datetime_variables
	find_numerical_variables
	find_categorical_and_numerical_variables
	check_all_variables
	check_categorical_variables
	check_datetime_variables
	check_numerical_variables
	retain_variables_if_in_df
	Uses

	API
	Transformation
	Missing Data Imputation
	MeanMedianImputer
	ArbitraryNumberImputer
	EndTailImputer
	CategoricalImputer
	RandomSampleImputer
	AddMissingIndicator
	DropMissingData
	Missing data mechanisms
	Consequences of missing data
	Missing Data Imputation
	Univariate data imputation
	Multivariate data imputation

	Feature-engine’s imputation methods
	Feature-engine’s imputers main characteristics
	Mean-Median Imputation
	Arbitrary Number Imputation
	End Tail Imputation
	Random Sample Imputation
	Frequent Category imputation
	Categorical imputation
	Adding Missing Indicators
	Complete case analysis

	Wrapping up
	Additional resources

	Categorical Encoding
	OneHotEncoder
	CountFrequencyEncoder
	OrdinalEncoder
	MeanEncoder
	WoEEncoder
	DecisionTreeEncoder
	RareLabelEncoder
	StringSimilarityEncoder
	Other categorical encoding libraries

	Discretisation
	EqualFrequencyDiscretiser
	EqualWidthDiscretiser
	ArbitraryDiscretiser
	DecisionTreeDiscretiser
	GeometricWidthDiscretiser
	Additional transformers for discretisation

	Outlier Handling
	Winsorizer
	ArbitraryOutlierCapper
	OutlierTrimmer

	Variance Stabilizing Transformations
	LogTransformer
	LogCpTransformer
	ReciprocalTransformer
	ArcsinTransformer
	PowerTransformer
	BoxCoxTransformer
	YeoJohnsonTransformer
	Transformers in other Libraries

	Creation
	Feature Creation
	MathFeatures
	RelativeFeatures
	CyclicalFeatures
	Transformers in other Libraries

	Datetime Features
	DatetimeFeatures
	DatetimeSubtraction

	Selection
	Feature Selection
	Selection based on feature characteristics
	Selection based on a machine learning model
	Selection methods commonly used in finance
	Alternative feature selection methods
	DropFeatures
	DropConstantFeatures
	DropDuplicateFeatures
	DropCorrelatedFeatures
	SmartCorrelatedSelection
	SelectBySingleFeaturePerformance
	RecursiveFeatureElimination
	RecursiveFeatureAddition
	DropHighPSIFeatures
	SelectByInformationValue
	SelectByShuffling
	SelectByTargetMeanPerformance
	ProbeFeatureSelection

	Other Feature Selection Libraries

	Time series
	Time Series Features
	Forecasting Features
	LagFeatures
	WindowFeatures
	ExpandingWindowFeatures

	Other
	Preprocessing
	MatchCategories
	MatchVariables

	Scikit-learn Wrapper
	SklearnTransformerWrapper
	Other wrappers

	Pipeline
	Pipeline
	Pipeline
	make_pipeline

	Datasets
	Datasets
	load__titanic

	Tools
	Variable handling functions
	find_all_variables
	find_categorical_variables
	find_datetime_variables
	find_numerical_variables
	find_categorical_and_numerical_variables
	check_all_variables
	check_categorical_variables
	check_datetime_variables
	check_numerical_variables
	retain_variables_if_in_df

	Resources
	Courses
	Books
	Blogs, Videos and More
	Blogs
	Feature engineering
	Feature selection

	Videos
	Podcasts
	En Español

	Tutorials
	How To
	Kaggle Kernels
	Video tutorials

	Contribute
	Ways to contribute
	Getting in touch
	Contributing Guide
	Contribute Code
	Contributing workflow
	Fork the Repository
	Clone the Repository
	Set up the Development Environment
	venv
	conda
	Install dependencies

	Create a branch
	Code your feature
	Commit
	Make a Pull Request
	Create Docstrings

	Test the Code
	Test functionality
	Code coverage
	Test Code Style
	Test Typehint
	Test the docs
	Using tox

	Review Process
	Merge Pull Requests
	Releases
	Keep your Fork up to Date

	Contribute Docs
	Documents organisation
	Docstrings
	Link a new transformer
	Expand the User Guide
	Build the documentation

	Contribute Jupyter notebooks
	Jupyter contribution workflow
	Jupyter creation guidelines

	Other ways to contribute
	Spread the word
	Sponsor us

	Code of Conduct

	About
	About
	History
	Governance
	Core contributors
	Former core contributors
	Contributors
	Citing Feature-engine
	Artwork

	Governance
	Roles and Responsibilities
	Contributors
	Core Contributors
	Founder and Leadership

	Join the community

	Roadmap
	Purpose
	Vision
	Current functionality
	Wanted functionality
	Goals

	What’s new
	Version 1.7.X
	Version 1.7.0
	Contributors
	New functionality
	Enhancements
	Bug fixes
	Code improvements
	Documentation
	Deprecations

	Version 1.6.X
	Version 1.6.2
	Contributors
	New functionality
	Bug fixes
	Code improvements
	Documentation

	Version 1.6.1
	Contributors
	New functionality
	Bug fixes
	Code improvements

	Version 1.6.0
	Contributors
	New transformers
	New functionality
	New modules
	Bug fixes
	Documentation
	Deprecations
	Code improvements

	Version 1.5.X
	Version 1.5.2
	Contributors
	New functionality
	Bug fixes
	Documentation

	Version 1.5.0
	Contributors
	New transformers
	New functionality
	Bug fixes
	Documentation
	Deprecations
	Code improvements

	Version 1.4.X
	Version 1.4.1
	Contributors
	Enhancements
	Bug fixes
	Documentation

	Version 1.4.0
	Contributors
	New transformers
	Bug fixes
	Documentation
	Deprecations
	Code improvements
	For developers

	Version 1.3.X
	Version 1.3.0
	Contributors
	New modules
	New transformers
	New functionality
	Enhancements
	Bug fixes
	Documentation
	Deprecations
	Code improvements
	For developers
	Experimental

	Version 1.2.X
	Version 1.2.0
	Contributors
	New transformers
	Enhancements
	Bug fixes
	Documentation

	Version 1.1.X
	Version 1.1.2
	Contributors
	Bug fix

	Version 1.1.1
	Contributors
	Mayor changes
	New transformer
	Minor changes
	Documentation

	Version 1.1.0
	Contributors
	Mayor changes
	Minor changes
	New transformer
	Code improvement
	Documentation
	Community

	Version 1.0.2
	Contributors
	New transformers
	Bug Fix
	Tutorials

	Version 1.0.1
	Bug Fix

	Version 1.0.0
	Contributors
	New transformers for Feature Selection
	Renaming of Modules
	Renaming of Classes
	Renaming of Parameters
	Tutorials
	For Contributors and Developers
	Code Architecture
	Documentation

	Other Changes

	Version 0.6.X
	Version 0.6.1
	Version 0.6.0
	Version 0.5.0
	Version 0.4.3
	Version 0.4.0
	Version 0.3.0

	Other versions
	Sponsor us
	Sponsors

	Bibliography
	Index

